
MPSI – Novembre 2025

Exercices 9 — Equations différentielles
linéaires — Corrigé

NB : Sauf mention explicite du contraire, dans les exercices de cette feuille, par “résoudre l’équation diffé-
rentielle” on entend “déterminer toutes les solutions à valeurs réelles”.

EDL d’ordre 1.

Méthode “universelle” de résolution des EDL
1) Choix de l’intervalle de résolution (s’il n’est pas imposé dans l’énoncé).

2) Résolution de l’équation homogène (ou sans second membre) associée.

3) Recherche d’une solution particulière de l’équation complète (avec second membre).

4) Solutions de l’EDL complète obtenues en “faisant la somme des deux étapes précédentes”.

Remarque : un mot sur la première étape, rapidement évoquée en cours. Souvent, l’intervalle de résolution
est donné dans l’énoncé (on vous demande “Résoudre sur. . .”). Lorsque ce n’est pas le cas, il faut déterminer
quelle est la partie de R sur lesquelles les fonctions (les coefficients notés a, b et c dans le cours) sont définies,
continues, et où a ne s’annule pas.

Exercice 1. — Résoudre les équations différentielles linéaires du premier ordre suivantes (on précisera
bien à chaque fois l’intervalle de résolution) :

1) ch(t)y ′ + sh (t)y = ch2(t)

2) y ′ +
y

τ
= E0 avec τ et E0 réels non nuls

3) (1 + x2)y ′ + 2xy =
1

x
4) xy ′ + (x− 1)y = x3

5) xy ′ + y = arctan(x)

6) x(x2 − 1)y ′ + 2y = x2

7) sin(x)y ′ − cos(x)y − sin3(x) = 0

8) y ′ + 2y =
e−2t

√
1 + t2
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La première question corrigée ci-dessous est la d) ; la motivation pour ce choix est double. D’une part, la
recherche de la solution particulière est un peu plus simple que dans la question a), et d’autre part, les
illustrations (voir page suivante) y sont encore plus jolies !

d) Résolution de l’équation différentielle (E4) : xy ′ + (x− 1)y = x3

ä Choix de l’intervalle de résolution. Les trois fonctions a, b et c sont continues sur R, mais a s’annule
en 0. Comme dans l’exemple précédent, on choisira de résoudre (E4) sur ] 0; +∞ [ ou sur ] − ∞; 0 [ . De
nouveau, nous prendrons dans un premier temps ] 0; +∞ [ comme intervalle de résolution.

L’intervalle de résolution de (E4) est donc ] 0; +∞ [ .

ä Résolution de l’équation homogène associée. Notons (H4) xy
′+(x−1)y = 0 l’équation homogène

associée à (E4). On a :

∀ x ∈ R∗
+,

b(x)

a(x)
=
x− 1

x
= 1− 1

x
; une primitive de

b

a
sur R∗

+ est donc A : x ∈ R∗
+ 7−→ x− ln(x).

D’après le cours, la solution générale de (H4) est fC : x ∈ R∗
+ 7−→ Celn(x)−x soit

fC : x ∈ R∗
+ 7−→ Cxe−x (C ∈ R) .

ä Recherche d’une solution particulière de l’équation complète (avec second membre).

On peut utiliser la méthode de variation de la constante, c’est-à-dire en cherchant une solution parti-
culière fP sous la forme :

∀ x ∈ R∗
+, fP (x) = C(x)xe−x

Alors : ∀ x ∈ R∗
+, f ′

P (x) = C ′(x)xe−x + C(x) (e−x − xe−x)

C’est-à-dire : ∀ x ∈ R∗
+, f ′

P (x) = C ′(x)xe−x + C(x)e−x (1− x)

Par suite : ∀ x ∈ R∗
+, xf ′

P (x) + (x− 1) fP (x) = C ′(x)x2e−x + C(x)e−xx (1− x) + C(x)e−xx (x− 1)︸ ︷︷ ︸
=0

D’où : ∀ x ∈ R∗
+, xf ′

P (x) + (x− 1) fP (x) = C ′(x)x2e−x

On en déduit que fP est solution de (E4) si et seulement si : ∀ x ∈ R∗
+, C

′(x)x2e−x = x3, soit : ∀ x ∈
R∗

+, C
′(x) = xex. Il reste donc à déterminer une primitive sur R∗

+ de x 7→ xex, via une intégration par
parties : ∫

xex dx = xex −
∫

ex dx = xex − ex = ex (x− 1) donc : ∀ x ∈ R∗
+, C(x) = ex (x− 1)

Une solution particulière de (E4) est donc fP : x ∈ R∗
+ 7−→ x (x− 1) .

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de
(E4) sur R∗

+ est

gc : x ∈ R∗
+ 7−→ x (x− 1) + Cxe−x (C ∈ R) c’est-à-dire gc : x ∈ R∗

+ 7−→ x (x− 1 + Ce−x) (C ∈ R)

Remarque : très peu de modifications sont nécessaires pour résoudre cette EDL sur R∗
−. Il est assez facile

de voir que la solution générale de (E4) sur R∗
− est gc : x ∈ R∗

− 7−→ x (x− 1 + Ce−x) (C ∈ R)
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Représentation des solutions

ä Le premier graphique (“rouge”) montre quelques courbes représentatives de l’équation homogène, c’est-
à-dire des fonctions fC : x ∈ R∗

+ 7−→ Cxe−x (pour plusieurs valeurs de C).

ä Le second correspond à la courbe représentative d’une solution particulière de l’équation avec second
membre, la fonction fP : x ∈ R∗

+ 7−→ x (x− 1).

ä Sur le dernier graphique sont tracées les courbes de quelques solutions de l’équation avec second membre,
c’est-à-dire quelques fonctions gC : x ∈ R∗

+ 7−→ x (x− 1) + Cxe−x.

Solution générale de l’équation ho-
mogène

+ Une solution particulière de l’équa-
tion complète

= Solution générale de l’équation complète
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a) Résolution de l’équation différentielle (E1) : ch(t)y ′ + sh (t)y = ch2(t)

ä Choix de l’intervalle de résolution. Les trois fonctions a, b et c de l’EDL (E1) sont continues sur
R. Comme en outre a (qui est la fonction ch) ne s’annule pas sur R, l’équation (E1) peut être résolue sur R.

L’intervalle de résolution de (E1) est donc R .

ä Résolution de l’équation homogène associée. Notons (H1) ch(t)y ′ + sh (t)y = 0 l’équation homo-
gène associée à (E1). On a :

∀ t ∈ R,
b(t)

a(t)
= th(t) ; une primitive de

b

a
sur R est donc A : t ∈ R 7−→ ln (ch(t)).

D’après le cours 1, la solution générale de (H1) est fC : t ∈ R 7−→ Ce− ln(ch(t)) soit fC : t ∈ R 7−→ C

ch (t)
(C ∈ R) .

ä Recherche d’une solution particulière de l’équation complète (avec second membre). En l’absence
d’intuition géniale, on recherche une solution particulière par la méthode de variation de la constante,
c’est-à-dire en cherchant une solution particulière fP sous la forme :

∀ t ∈ R, fP (t) =
C(t)

ch (t)

Alors : ∀ t ∈ R, f ′
P (t) =

C ′(t)ch (t)− C(t)sh (t)

ch2 (t)

Par suite : ∀ t ∈ R, ch(t)f ′
P (t) + sh (t)fP (t) =

C ′(t)ch (t)− C(t)sh (t)

ch (t)
+

sh (t)C(t)

ch (t)

D’où : ∀ t ∈ R, ch(t)f ′
P (t) + sh (t)fP (t) = C ′(t)

On en déduit que fP est solution de (E1) si et seulement si : ∀ t ∈ R, C ′(t) = ch2(t). Il reste donc à
déterminer une primitive sur R de ch2 :∫

ch2(t) dt =
∫ (

et + e−t

2

)2

dt =
1

4

∫
e2t + 2 + e−2t dt =

1

4

∫
2ch (2t) + 2 dt =

1

4
(sh (2t) + 2t)

Par conséquent : ∀ t ∈ R, C(t) =
1

4
(sh (2t) + 2t).

Une solution particulière de (E1) est donc fP : t ∈ R 7−→ sh (2t) + 2t

4ch(t)
.

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de
(E1) est

gc : t ∈ R 7−→ sh (2t) + 2t

4ch(t)
+

C

ch (t)
(C ∈ R) c’est-à-dire gc : t ∈ R 7−→ sh (2t) + 2t+ C

4ch(t)
(C ∈ R)

1. Plus précisément, d’après le théorème donnant la forme des solutions d’une EDL du premier ordre sans second membre.
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b) Résolution de l’équation différentielle (E2) : y ′ +
y

τ
= E0 avec τ et E0 réels non nuls

ä Choix de l’intervalle de résolution. Les trois fonctions a, b et c (constantes dans ce cas particulier)
de l’EDL (E2) sont continues sur R. Comme en outre a (qui est constante égale à 1) ne s’annule pas sur R,
l’équation (E2) peut être résolue sur R.

L’intervalle de résolution de (E2) est donc R .

ä Résolution de l’équation homogène associée. Notons (H2) y
′+
y

τ
= 0 l’équation homogène associée

à (E2). On a :

∀ t ∈ R,
b(t)

a(t)
= τ−1 ; une primitive de

b

a
sur R est donc A : t ∈ R 7−→ t/τ .

D’après le cours, la solution générale de (H2) est fC : t ∈ R 7−→ Ce−t/τ (C ∈ R) .

ä Recherche d’une solution particulière de l’équation complète (avec second membre). Les coeffi-
cients de (E2) étant constants, on recherche une solution particulière sous la forme d’une constante, c’est-
à-dire en posant fP = K avec K ∈ R.

La fonction fP est solution de (E2) si et seulement si :
K

τ
= E0, d’où : K = τ E0.

Une solution particulière de (E2) est donc fP : t ∈ R 7−→ τ E0 .

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de
(E2) est

gc : t ∈ R 7−→ τ E0 + Ce−t/τ (C ∈ R)
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c) Résolution de l’équation différentielle (E3) : (1 + x2)y ′ + 2xy =
1

x

ä Choix de l’intervalle de résolution. Les fonctions a et b sont définies sur R, et a ne s’annule pas
sur R. Mais la fonction c n’est définie que sur R∗

+. On résoudra donc l’équation (E3) sur ] 0; +∞ [ ou sur
]−∞; 0 [ . En général, dans ce genre de situation, l’énoncé précisera l’intervalle de résolution. Pour fixer les
idées, nous choisirons ici de résoudre (E3) sur ] 0; +∞ [ .
L’intervalle de résolution de (E3) est donc ] 0; +∞ [ . 2

ä Résolution de l’équation homogène associée. Notons (H3) (1 + x2)y ′ + 2xy = 0 l’équation homo-
gène associée à (E3). On a :

∀ x ∈ R∗
+,

b(x)

a(x)
=

2x

1 + x2
; une primitive de

b

a
sur R∗

+ est donc A : x ∈ R∗
+ 7−→ ln (1 + x2).

D’après le cours, la solution générale de (H3) est fC : x ∈ R∗
+ 7−→ Ce− ln(1+x2) soit

fC : x ∈ R∗
+ 7−→ C

1 + x2
(C ∈ R) .

ä Recherche d’une solution particulière de l’équation complète (avec second membre). On peut uti-
liser la méthode de variation de la constante, c’est-à-dire en cherchant une solution particulière fP
sous la forme :

∀ x ∈ R∗
+, fP (x) =

C(x)

1 + x2

Alors : ∀ x ∈ R∗
+, f ′

P (x) =
C ′(x) (1 + x2)− 2xC(x)

(1 + x2)2

Par suite : ∀ x ∈ R∗
+, (1 + x2) f ′

P (x) + 2xfP (x) =
C ′(x) (1 + x2)− 2xC(x)

1 + x2
+

2xC(x)

1 + x2

D’où : ∀ x ∈ R∗
+, (1 + x2) f ′

P (x) + 2xfP (x) = C ′(x)

On en déduit que fP est solution de (E3) si et seulement si : ∀ x ∈ R∗
+, C

′(x) =
1

x
. Puisque l’on travaille

sur R∗
+, on en déduit que : ∀ x ∈ R∗

+, C(x) = ln(x).

Une solution particulière de (E3) est donc fP : x ∈ R∗
+ 7−→ ln(x)

1 + x2
.

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de
(E3) sur R∗

+ est

gc : x ∈ R∗
+ 7−→ ln(x)

1 + x2
+

C

1 + x2
(C ∈ R) c’est-à-dire gc : x ∈ R∗

+ 7−→ ln(x) + C

1 + x2
(C ∈ R)

Remarque : très peu de modifications sont nécessaires pour résoudre cette EDL sur R∗
−. De fait, le seul

changement dans ce qui précède vient du fait qu’une primitive de x 7→ 1/x sur R∗
− est x 7→ ln (−x). On

peut donc conclure, sans refaire tous les calculs, que la solution générale de (E3) sur R∗
− est

gc : x ∈ R∗
− 7−→ ln (−x) + C

1 + x2
(C ∈ R)

2. Mais, pour enfoncer le clou, rien n’empêche de choisir ]−∞; 0 [ .
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e) Résolution de l’équation différentielle (E5) : xy ′ + y = arctan(x)

ä Choix de l’intervalle de résolution. Les trois fonctions a, b et c sont continues sur R, mais a s’annule
en 0. Vous avez l’habitude à présent : on choisira de résoudre (E5) sur ] 0; +∞ [ ou sur ] − ∞; 0 [ . Nous
prendrons dans un premier temps ] 0; +∞ [ comme intervalle de résolution.

L’intervalle de résolution de (E5) est donc ] 0; +∞ [ .

ä Résolution de l’équation homogène associée. Notons (H5) xy
′ + y = 0 l’équation homogène asso-

ciée à (E5). On a :

∀ x ∈ R∗
+,

b(x)

a(x)
=

1

x
; une primitive de

b

a
sur R∗

+ est donc A : x ∈ R∗
+ 7−→ ln(x).

D’après le cours, la solution générale de (H5) est fC : x ∈ R∗
+ 7−→ Ce− ln(x) soit fC : x ∈ R∗

+ 7−→ C

x
(C ∈ R) .

ä Recherche d’une solution particulière de l’équation complète. On utilise la méthode de varia-
tion de la constante, en cherchant une solution particulière fP sous la forme :

∀ x ∈ R∗
+, fP (x) =

C(x)

x
Alors : ∀ x ∈ R∗

+, f ′
P (x) =

C ′(x)x− C(x)

x2

Par suite : ∀ x ∈ R∗
+, xf ′

P (x) + fP (x) =
C ′(x)x− C(x)

x
+
C(x)

x

D’où : ∀ x ∈ R∗
+, xf ′

P (x) + (x− 1) fP (x) = C ′(x)

On en déduit que fP est solution de (E5) si et seulement si : ∀ x ∈ R∗
+, C

′(x) = arctan(x). Pour déterminer
C, il “suffit” de connaître une primitive de arctan. Je vous renvoie alors au chapitre précédent, dans lequel
nous avons déterminé une telle primitive (par intégration par parties). On a donc :

∀ x ∈ R∗
+, C(x) = x arctan(x)− ln

(√
1 + x2

)
Une solution particulière de (E5) est donc fP : x ∈ R∗

+ 7−→ arctan(x)−
ln
(√

1 + x2
)

x
.

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de

(E5) sur R∗
+ est : gc : x ∈ R∗

+ 7−→ arctan(x)−
ln
(√

1 + x2
)

x
+
C

x
(C ∈ R)

c’est-à-dire gc : x ∈ R∗
+ 7−→ arctan(x)−

C + ln
(√

1 + x2
)

x
(C ∈ R)

Remarque : de même, la solution générale de (E5) sur R∗
− est

gc : x ∈ R∗
− 7−→ arctan(x)−

C + ln
(√

1 + x2
)

x
(C ∈ R)
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f) Résolution de l’équation différentielle (E6) : x(x2 − 1)y ′ + 2y = x2

ä Choix de l’intervalle de résolution. Les trois fonctions a, b et c sont continues sur R, mais a s’annule
en 0, en 1 et −1. . . On a donc l’embarras du choix pour l’intervalle de résolution : ] − ∞;−1 [ , ] − 1; 0 [ ,
] 0; 1 [ ou ] 1; +∞ [ . Nous prendrons dans un premier temps ] 1; +∞ [ comme intervalle de résolution.
L’intervalle de résolution de (E6) est I6 = ] 1;+∞ [ .

ä Résolution de l’équation homogène associée. Notons (H6) x(x
2 − 1)y ′ + 2y = 0 l’équation homo-

gène associée à (E6). On a :

∀ x ∈ R∗
+,

b(x)

a(x)
=

2

x (x2 − 1)

On détermine une primitive de
b

a
sur I6 par le biais d’une décomposition en éléments simples.

∃ (a, b, c) ∈ R3, ∀ x ∈ I6,
2

x (x2 − 1)
=
a

x
+

b

x− 1
+

c

x+ 1

Par la méthode de votre choix (identification ou limites), on obtient a = −2, et b = c = 1. Par conséquent :

∀ x ∈ I6,
2

x (x2 − 1)
= −2

x
+

1

x− 1
+

1

x+ 1

Une primitive de
b

a
sur I6 est donc A : x ∈ R∗

+ 7−→ ln

(
x2 − 1

x2

)
.

D’après le cours, la solution générale de (H6) est fC : x ∈ R∗
+ 7−→ Ce− ln

(
x2−1

x2

)
soit

fC : x ∈ R∗
+ 7−→ Cx2

x2 − 1
(C ∈ R) .

ä Recherche d’une solution particulière de l’équation complète. On utilise la méthode de varia-
tion de la constante, en cherchant une solution particulière fP sous la forme :

∀ x ∈ I6, fP (x) =
C(x)x2

x2 − 1

Alors : ∀ x ∈ I6, f ′
P (x) =

(C ′(x)x2 + 2xC(x)) (x2 − 1)− 2xC(x)x2

(x2 − 1)2

Soit : ∀ x ∈ I6, f ′
P (x) =

(C ′(x)x2 + 2xC(x)) (x2 − 1)− 2x3C(x)

(x2 − 1)2

Soit enfin : ∀ x ∈ I6, f ′
P (x) =

(C ′(x)x2 + 2xC(x))

x2 − 1
− 2x3C(x)

(x2 − 1)2

Par suite :

∀ x ∈ I6, x(x2 − 1)f ′
P (x) + 2fP (x) = x (C ′(x)x2 + 2xC(x))− 2x4C(x)

x2 − 1
+ 2

C(x)x2

x2 − 1

⇐⇒ ∀ x ∈ I6, x(x2 − 1)f ′
P (x) + 2fP (x) = C ′(x)x3 + 2x2C(x)− 2x4C(x)

x2 − 1
+

2C(x)x2

x2 − 1

⇐⇒ ∀ x ∈ I6, x(x2− 1)f ′
P (x)+ 2fP (x) = C ′(x)x3+

2x2 (x2 − 1)C(x)

x2 − 1
− 2x4C(x)

x2 − 1
+

2C(x)x2

x2 − 1
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⇐⇒ ∀ x ∈ I6, x(x2−1)f ′
P (x)+2fP (x) = C ′(x)x3+

2x4C(x)− 2x2C(x)− 2x4C(x) + 2C(x)x2

x2 − 1

⇐⇒ ∀ x ∈ I6, x(x2 − 1)f ′
P (x) + 2fP (x) = C ′(x)x3

On en déduit que fP est solution de (E6) si et seulement si : ∀ x ∈ I6, C
′(x)x3 = x2. Pour déterminer C,

il “suffit” de connaître une primitive de x 7→ 1/x sur I6. On a donc :

∀ x ∈ I6, C(x) = ln(x) Une solution particulière de (E6) est donc fP : x ∈ I6 7−→
x2 ln(x)

x2 − 1
.

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de
(E6) sur I6 est

gc : x ∈ I6 7−→
x2 ln(x)

x2 − 1
+

Cx2

x2 − 1
(C ∈ R) c’est-à-dire gc : x ∈ I6 7−→

x2 (C + ln(x))

x2 − 1
(C ∈ R)

Remarque : la solution générale de (E6) est la même sur ] 0; 1 [ . En revanche, sur chacun des intervalles

]−∞;−1 [ et ]− 1; 0 [ est gc : x 7−→ x2 (C + ln (−x))
x2 − 1

(C ∈ R) .

g) Résolution de l’équation différentielle (E7) : sin(x)y ′ − cos(x)y − sin3(x) = 0

Contrairement aux apparences, ce n’est pas une équation homogène puisque :

(E7) : sin(x)y ′ − cos(x)y = sin3(x)

ä Choix de l’intervalle de résolution. Les trois fonctions a, b et c sont continues sur R, mais a s’annule
en kπ (avec k ∈ Z). On peut donc prendre comme intervalle de résolution tout intervalle Ik = ] kπ; (k + 1) π [ ,
et puisque l’on ne nous impose rien ici, choisissons I0 = ] 0; π [ .

L’intervalle de résolution de (E7) est donc I0 = ] 0; π [ .

ä Résolution de l’équation homogène associée. Notons (H7) sin(x)y ′ − cos(x)y = 0 l’équation ho-
mogène associée à (E7). On a :

∀ x ∈ I0,
b(x)

a(x)
= −cotan(x) ; une primitive de

b

a
sur I0 est donc A : x ∈ I0 7−→ − ln (sin(x)). 3

D’après le cours, la solution générale de (H7) est fC : x ∈ I0 7−→ Celn(sin(x)) soit

fC : x ∈ I0 7−→ C sin (x) (C ∈ R) .

3. Il ne s’agit pas ici d’une primitive usuelle à proprement parler, puisque la fonction cotangente n’est même pas une
fonction usuelle du programme (de Sup ou de Spé). Mais la fonction à intégrer (− cos / sin) étant de la forme −u′/u, une de
ses primitives est donc − ln |u|, c’est-à-dire − lnu dans la présente situation puisque la fonction u = sin est à valeurs positives
sur l’intervalle I0.
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ä Recherche d’une solution particulière de l’équation complète. On utilise la méthode de varia-
tion de la constante, en cherchant une solution particulière fP sous la forme :

∀ x ∈ I0, fP (x) = C(x) sin(x)

Alors : ∀ x ∈ I0, f ′
P (x) = C ′(x) sin(x) + C(x) cos(x)

Par suite : ∀ x ∈ I0, sin(x)f ′
P (x)− cos(x)fP (x) = C ′(x) sin2(x) + C(x) cos(x) sin(x)− C(x) cos(x) sin(x)

D’où : ∀ x ∈ I0, sin(x)f ′
P (x)− cos(x)fP (x) = C ′(x) sin2(x)

On en déduit que fP est solution de (E7) si et seulement si : ∀ x ∈ R∗
+, C

′(x) sin2(x) = sin3(x).
D’où ∀ x ∈ I0, C

′(x) = sin(x), et par suite : ∀ x ∈ I0, C(x) = − cos(x).

Une solution particulière de (E7) est donc fP : x ∈ I0 7−→ − sin(x) cos(x) .

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de
(E7) sur I0 est
gc : x ∈ I0 7−→ − sin(x) cos(x) + C sin(x) (C ∈ R)

c’est-à-dire gc : x ∈ I0 7−→ (C − cos(x)) sin(x) (C ∈ R)

Remarque : de même, la solution générale de (E7) sur Ik = ] kπ; (k + 1) π [ est

gc : x ∈ Ik 7−→ (C − cos(x)) sin(x) (C ∈ R) .
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Exercice 2. — Résoudre l’équation différentielle (E) : (x2 + 1) y′ − xy = (x2 + 1)
3/2.

L’équation à résoudre est une EDL d’ordre 1 avec second membre.

ä Résolution de l’équation homogène associée (H) : (x2 + 1) y′ − xy = 0. Les fonctions a et b étant
continues sur R, et a ne s’annulant pas sur R, la solution générale de (H) sur R est yH(x) = Ce−A(x) où A
est une primitive de b/a sur R, et C un réel arbitraire. Or :

∀ x ∈ R,
b(x)

a(x)
=

−x
x2 + 1

; une primitive de
b

a
sur R est donc A : x ∈ R 7−→ − ln(

√
1 + x2).

D’après le cours, la solution générale sur R est fH : x ∈ R 7−→ Celn(
√
1+x2) soit

fH : x ∈ R 7−→ C
√
1 + x2 (C ∈ R) .

ä Solution particulière de l’équation complète (E) : on peut utiliser la méthode de variation de la
constante, c’est-à-dire en cherchant une solution particulière fP sous la forme :

∀ x ∈ R, fP (x) = C(x)
√
1 + x2

Alors : ∀ x ∈ R, f ′
P (x) = C ′(x)

√
1 + x2 + C(x)

x√
1 + x2

Par suite : ∀ x ∈ R, (x2 + 1)f ′
P (x)− xfP (x) = C ′(x) (x2 + 1)

3/2
+ C(x)x

√
x2 + 1− xC(x)

√
x2 + 1︸ ︷︷ ︸

=0

D’où : ∀ x ∈ R, (x2 + 1)f ′
P (x)− xfP (x) = C ′(x) (x2 + 1)

3/2

On en déduit que fP est solution de (E) si et seulement si : ∀ x ∈ R, C ′(x) (x2 + 1)
3/2

= (x2 + 1)
3/2, soit :

∀ x ∈ R, C ′(x) = 1. Une primitive sur R est : ∀ x ∈ R, C(x) = x.

On en déduit que la fonction fP : x ∈ R 7−→ x
√
x2 + 1 est une solution particulière de (E).

ä Conclusion - Solution générale de l’équation complète (E) : d’après ce qui précède, la solution
générale de (E) est :

f : x ∈ R 7−→ (x+ C)
√
x2 + 1 (C ∈ R) .

Exercice 3. — (Mines d’Albi, Douai, Nantes. . .). Résoudre l’équation différentielle
(E) : x2y′ + (2x− 1) y = 0 sur chacun des intervalles R∗

+ et R∗
−.

L’équation à résoudre est une EDL d’ordre 1 homogène. Les fonctions a et b étant continues sur R∗
+, la

solution générale sur R∗
+ est y(x) = Ce−A(x) où A est une primitive de b/a sur R∗

+, et C un réel arbitraire.
Or :

∀ x ∈ R∗
+,

b(x)

a(x)
=

2x− 1

x2
=

2x

x2
− 1

x2
; une primitive de

b

a
sur R∗

+ est donc A : x ∈ R∗
+ 7−→ ln(x2) +

1

x
.

D’après le cours, la solution générale sur R∗
+ est f : x ∈ R∗

+ 7−→ Ce− ln(x2)+1/x soit

f : x ∈ R∗
+ 7−→ C

x2
e−1/x (C ∈ R) .

Solution analogue sur R∗
−.
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Exercice 4. — (Mines d’Albi, Douai, Nantes. . .). Résoudre l’équation différentielle

(E) : xy′ + y = ch (x) sur R∗
+.

L’équation à résoudre est une EDL d’ordre 1 avec second membre.

ä Résolution de l’équation homogène associée (H) : xy′ + y = 0. Les fonctions a et b étant continues
sur R∗

+, et a ne s’annulant pas sur R∗
+, la solution générale de (H) sur R∗

+ est yH(x) = Ce−A(x) où A est une
primitive de b/a sur R∗

+, et C un réel arbitraire. Or :

∀ x ∈ R∗
+,

b(x)

a(x)
=

1

x
; une primitive de

b

a
sur R∗

+ est donc A : x ∈ R∗
+ 7−→ ln(x).

D’après le cours, la solution générale sur R∗
+ est fH : x ∈ R∗

+ 7−→ Ce− ln(x) soit

fH : x ∈ R∗
+ 7−→ C

x
(C ∈ R) .

ä Solution particulière de l’équation complète (E) : on peut utiliser la méthode de variation de la
constante, c’est-à-dire en cherchant une solution particulière fP sous la forme :

∀ x ∈ R∗
+, fP (x) =

C(x)

x

Alors : ∀ x ∈ R∗
+, f ′

P (x) =
xC ′(x)− C(x)

x2

Par suite : ∀ x ∈ R∗
+, xf ′

P (x) + fP (x) =
xC ′(x)− C(x)

x
+
C(x)

x

D’où : ∀ x ∈ R∗
+, xf ′

P (x) + fP (x) = C ′(x)

On en déduit que fP est solution de (E) si et seulement si : ∀ x ∈ R∗
+, C

′(x) = ch(x). Une primitive sur R∗
+

est : ∀ x ∈ R∗
+, C(x) = sh (x).

On en déduit que la fonction fP : x ∈ R∗
+ 7−→ sh (x)

x
est une solution particulière de (E).

ä Conclusion - Solution générale de l’équation complète (E) : d’après ce qui précède, la solution
générale de (E) est :

f : x ∈ R∗
+ 7−→ C + sh (x)

x
(C ∈ R) .
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EDL d’ordre 1 – Problèmes de Cauchy.

Exercice 5. — Désintégration radioactive. Dans un tissu radioactif, les lois de la Physique
permettent d’affirmer que la vitesse de désintégration des noyaux radioactifs (à l’instant t) est proportionnelle
au nombre N(t) de noyaux radioactifs présents dans le tissu à l’instant t. 4

Ce phénomène, appelé désintégration radioactive, peut
être modélisé par le problème de Cauchy suivant :

∀ t ∈ [0; +∞ [ ,
dN (t)

dt
+ λN (t) = 0

N (0) = N0

où N0 est le nombre de noyaux radioactifs présents à
l’instant t = 0, et λ désigne une constante strictement
positive.

1) Déterminer l’expression de N(t) pour tout réel t ⩾ 0.

L’équation à résoudre est une EDL d’ordre 1 homogène. Sans difficulté, la solution générale de (E) sur
R+ est :

f : t ∈ R+ 7−→ Ce−λt (C ∈ R)

La condition initiale impose C = N0.

Conclusion. L’unique solution du problème de Cauchy est : ∀ t ∈ R+, N(t) = N0e−λt

2) Déterminer la période de demi-vie, c’est à dire la valeur de T telle que : N(T ) = N0/2.

D’après ce qui précède :

N(T ) = N0/2 ⇐⇒ N0e−λT = N0/2 ⇐⇒ e−λT = 1/2 ⇐⇒ T = ln(2)

Conclusion. La période de demi-vie est T = ln(2).

4. Pour plus de précisions à ce sujet, consulter M Roveillo !
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Exercice 6. — Evolution d’une tension.

On peut étudier l’évolution de la tension u(t) lors de la charge
d’un condensateur à travers un résistor, sous une tension E.
La tension u(t) est dans ce cas donnée par :

∀ t ∈ [0; +∞ [ ,
du (t)

dt
+
u (t)

RC
=

E

RC

u (0) = u0 (u0 ∈ R+)

1) Déterminer l’expression de u(t) pour tout réel t ⩾ 0.

On commence par résoudre sur R+ l’équation homogène associée :
du (t)

dt
+
u (t)

RC
= 0.

Il est immédiat que la solution générale de cette équation est :
f : t ∈ R+ 7−→ Ke−t/RC (K ∈ R)

Le second membre de l’équation complète étant constant (de même que les coefficients), on recherche une
solution particulière constante. Il est aisé de voir que la fonction constante égale à E est solution.

On déduit de ce qui précède que la solution générale de l’équation avec second membre est :
f : t ∈ R+ 7−→ E +Ke−t/RC (K ∈ R)

La condition initiale impose :
E +K = u0 ⇐⇒ K = u0 − E

Conclusion. L’unique solution de ce problème de Cauchy est :

∀ t ∈ R+, u(t) = E + (u0 − E)e−t/RC soit : ∀ t ∈ R+, u(t) = E
(
1− e−t/RC

)
+ u0e−t/RC

2) Déterminer la limite de u(t) lorsque t tend vers +∞.

D’après la question précédente : lim
t→+∞

u(t) = E.

Exercice 7. — Résoudre le problème de Cauchy :


y ′ − y

x
+ ln(x) = 0

y(1) = 1

L’équation à résoudre est une EDL d’ordre 1 avec second membre.

ä Résolution de l’équation homogène associée (H) : y′ − y

x
= 0. Les fonctions a et b étant continues

sur R∗
+, et a ne s’annulant pas sur R∗

+, la solution générale de (H) sur R∗
+ est yH(x) = Ce−A(x) où A est une

primitive de b/a sur R∗
+, et C un réel arbitraire. Or :

∀ x ∈ R∗
+,

b(x)

a(x)
= −1

x
; une primitive de

b

a
sur R∗

+ est donc A : x ∈ R∗
+ 7−→ − ln(x).

D’après le cours, la solution générale sur R∗
+ est fH : x ∈ R∗

+ 7−→ Celn(x) soit

fH : x ∈ R∗
+ 7−→ Cx (C ∈ R) .
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ä Solution particulière de l’équation complète (E) : on peut utiliser la méthode de variation de la
constante, c’est-à-dire en cherchant une solution particulière fP sous la forme :

∀ x ∈ R∗
+, fP (x) = C(x)x

Alors : ∀ x ∈ R∗
+, f ′

P (x) = xC ′(x) + C(x)

Par suite : ∀ x ∈ R∗
+, f ′

P (x)−
fP (x)

x
= xC ′(x) + C(x)− C(x)

D’où : ∀ x ∈ R∗
+, f ′

P (x)−
fP (x)

x
= xC ′(x)

On en déduit que fP est solution de (E) si et seulement si : ∀ x ∈ R∗
+, xC

′(x) = − ln(x) ⇐⇒ ∀ x ∈

R∗
+, C

′(x) = − ln(x)

x
. Une primitive sur R∗

+ est : ∀ x ∈ R∗
+, C(x) = − ln2(x)

2
.

On en déduit que la fonction fP : x ∈ R∗
+ 7−→ −x ln

2(x)

2
est une solution particulière de (E).

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de (E)
est :

f : x ∈ R∗
+ 7−→ x

(
C − ln2(x)

2

)
(C ∈ R) .

ä La condition initiale (y(1) = 1) impose : C = 1.

ä Conclusion. L’unique solution de ce problème de Cauchy est :

f : x ∈ R∗
+ 7−→ x

(
1− ln2(x)

2

)

Exercice 8. — Résoudre le problème de Cauchy :
xy ′ + y =

1

2
√
1− x2

y

(
1

2

)
= 0

L’équation à résoudre est une EDL d’ordre 1 avec second membre.

ä Intervalle de résolution : le second membre, la condition initiale, et le fait que a s’annule en 0 imposent
de résoudre l’équation différentielle sur I =]0, 1[.

ä Résolution de l’équation homogène associée (H) : xy′ + y = 0. Les fonctions a et b étant continues
sur I, et a ne s’annulant pas sur I, la solution générale de (H) sur I est yH(x) = Ce−A(x) où A est une
primitive de b/a sur I, et C un réel arbitraire. Or :

∀ x ∈ I,
b(x)

a(x)
=

1

x
; une primitive de

b

a
sur I est donc A : x ∈ I 7−→ ln(x).
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D’après le cours, la solution générale sur I est fH : x ∈ I 7−→ Ce− ln(x) soit

fH : x ∈ I 7−→ C

x
(C ∈ R) .

ä Solution particulière de l’équation complète (E) : on peut utiliser la méthode de variation de la
constante, c’est-à-dire en cherchant une solution particulière fP sous la forme :

∀ x ∈ I, fP (x) =
C(x)

x

Alors : ∀ x ∈ I, f ′
P (x) =

xC ′(x)− C(x)

x2

Par suite : ∀ x ∈ I, xf ′
P (x) + fP (x) =

xC ′(x)− C(x)

x
+
C(x)

x

D’où : ∀ x ∈ I, xf ′
P (x) + fP (x) = C ′(x)

On en déduit que fP est solution de (E) si et seulement si : ∀ x ∈ I, C ′(x) = 1
2
√
1−x2 . Une primitive sur I

est : ∀ x ∈ I, C(x) =
arcsin(x)

2
.

On en déduit que la fonction fP : x ∈ I 7−→ arcsin(x)

2x
est une solution particulière de (E).

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de (E)
est :

f : x ∈ I 7−→ C + arcsin(x)

2x
(C ∈ R) .

ä La condition initiale (y(1/2) = 0) impose : C = − arcsin(1/2), càd : C = −π/6.

ä Conclusion. L’unique solution de ce problème de Cauchy est :

f : x ∈ I 7−→
arcsin(x)− π

6

2x

EDL d’ordre 2.
Exercice 9. — Résoudre les équations différentielles linéaires du second ordre suivantes :

1) y ′′ + y ′ − 2y = x2e−x

ä Résolution de l’équation homogène associée (H) : y ′′ + y ′ − 2y = 0.

L’équation caractéristique associée est (EC) : r2 + r − 2 = 0

(EC) possède deux racines : 1 et −2.

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ C1ex + C2e−2x (C1 et C2 ∈ R) .
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ä Solution particulière de l’équation avec second membre. Puisque le coefficient de l’exponentielle
au second membre (−1) n’est pas racine de l’équation caractéristique, on peut chercher une solution sous
la forme :

∀ x ∈ R, fP (x) = (ax2 + bx+ c) e−x (avec a, b et c réels).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = (−ax2 + (2a− b)x+ b− c) e−x puis : fP ′′(x) = (ax2 + (b− 4a)x+ 2a− 2b+ c) e−x

Par suite : ∀ x ∈ R, f ′′
P (x) + f ′

P (x)− 2fP (x)

= e−x [ax2 + (b− 4a)x+ 2a− 2b+ c− ax2 + (2a− b)x+ b− c− 2ax2 − 2bx− 2c]

D’où : ∀ x ∈ R, f ′′
P (x) + f ′

P (x)− 2fP (x) = e−x [−2ax2 − 2(a+ b)x+ 2a− 2c− b]

On en déduit que fP est solution de (E) si et seulement si :

∀ x ∈ R, e−x [−2ax2 − 2(a+ b)x+ 2a− 2c− b] = x2e−x ⇐⇒ ∀ x ∈ R, −2ax2−2(a+b)x+2a−2c−b = x2

⇐⇒

 −2a = 1
−2(a+ b) = 0
2a− 2c− b = 0

⇐⇒

 a = −1/2
b = 1/2
c = −3/4

On en déduit que : la fonction fP : x ∈ R 7−→ −2x2 + 2x− 3

4
e−x est une solution particulière de (E).

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de
(E) est :

f : x ∈ R 7−→ −2x2 + 2x− 3

4
e−x + C1ex + C2e−2x (C1 et C2 ∈ R) .

2)
y ′′

2
− y ′ +

y

2
= sh (x) ⇐⇒ y ′′ − 2y ′ + y = ex − e−x

ä Résolution de l’équation homogène associée (H) : y ′′ − 2y ′ + y = 0.

L’équation caractéristique associée est (EC) : r2 − 2r + 1 = 0

(EC) possède une unique racine : 1.

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ (C1 + C2x) ex (C1 et C2 ∈ R) .

ä Solution particulière de l’équation avec second membre.

D’après le principe de superposition des solutions, on cherche séparément une solution particulière de
y ′′ − 2y ′ + y = ex, et une solution particulière de y ′′ − 2y ′ + y = e−x

ã Solution particulière de y ′′ − 2y ′ + y = ex.

Puisque le coefficient de l’exponentielle au second membre (1) est racine double de l’équation caractéris-
tique, on peut chercher une solution sous la forme :
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∀ x ∈ R, fP (x) = ax2ex (avec a réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = (ax2 + 2ax) ex puis : fP ′′(x) = (ax2 + 4ax+ 2a) ex

Par suite : ∀ x ∈ R, f ′′
P (x)− 2f ′

P (x) + fP (x) = ex [ax2 + 4ax+ 2a− 2ax2 − 4ax+ ax2] = 2aex.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, 2aex = ex ⇐⇒ a =
1

2

On en déduit que : la fonction f1 : x ∈ R 7−→ x2ex

2
est une solution particulière de y ′′ − 2y ′ + y = ex.

ã Solution particulière de y ′′ − 2y ′ + y = e−x.

Puisque le coefficient de l’exponentielle au second membre (−1) n’est pas racine de l’équation caracté-
ristique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = ae−x (avec a réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = −ae−x puis : fP ′′(x) = ae−x

Par suite : ∀ x ∈ R, f ′′
P (x)− 2f ′

P (x) + fP (x) = e−x [a+ 2a+ a] = 4ae−x.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, 4ae−x = e−x ⇐⇒ a =
1

4

On en déduit que : la fonction f2 : x ∈ R 7−→ e−x

4
est une solution particulière de y ′′ − 2y ′ + y = e−x.

ã D’après le principe de superposition, on déduit de ce qui précède que :

la fonction f : x ∈ R 7−→ x2ex

2
− e−x

4
est une solution particulière de y ′′ − 2y ′ + y = 2sh (x).

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de
(E) est :

f : x ∈ R 7−→ x2 + C2x+ C1

2
ex − e−x

4
(C1 et C2 ∈ R) .
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3) y′′ + 2y′ + y = xex

ä Résolution de l’équation homogène associée (H) : y ′′ + 2y ′ + y = 0.

L’équation caractéristique associée est (EC) : r2 + 2r + 1 = 0

(EC) possède une racine double : (−1).

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ (C1 + C2x) e−x (C1 et C2 ∈ R) .

ä Solution particulière de l’équation avec second membre. Puisque le coefficient de l’exponentielle
au second membre (1) n’est pas racine de l’équation caractéristique, on peut chercher une solution sous
la forme :

∀ x ∈ R, fP (x) = (ax+ b) ex (avec a et b réels).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = (ax+ a+ b) ex puis : fP ′′(x) = (ax+ 2a+ b) ex

Par suite : ∀ x ∈ R, f ′′
P (x) + 2f ′

P (x) + fP (x) = ex [ax+ 2a+ b+ 2ax+ 2a+ 2b+ ax+ b]

D’où : ∀ x ∈ R, f ′′
P (x) + 2f ′

P (x) + fP (x) = ex [4ax+ 4 (a+ b)]

On en déduit que fP est solution de (E) si et seulement si :

[∀ x ∈ R, 4ax+ 4(a+ b) = x] ⇐⇒
[
a =

1

4
∧ b = −1

4

]

On en déduit que : la fonction fP : x ∈ R 7−→ x− 1

4
ex est une solution particulière de (E).

ä Solution générale de l’équation (E) : d’après ce qui précède, la solution générale de (E) est :

f : x ∈ R 7−→ x− 1

4
ex + (C1 + C2x) e−x (C1 et C2 ∈ R) .

4) y ′′ + y ′ = 3 + 2x

On peut résoudre cette équation comme précédemment : comme ce corrigé comporte suffisamment de
résolutions d’EDL2, on présente ici une autre méthode.

Via le changement de fonction inconnue Y = y′, l’équation de l’énoncé devient une EDL1 : Y ′+Y = 3+2x.

La solution générale s’obtient aisément : ∀ x ∈ R, Y (x) = 2x+ 1 + C1e−x (avec C1 ∈ R).

En revenant à la fonction initiale, on peut conclure que la solution générale de (E) est :

f : x ∈ R 7−→ x2 + x+ C1e−x + C2 (C1 et C2 ∈ R) .
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5) y′′ + 4y′ + 4y = sin x

ä Résolution de l’équation homogène associée (H) : y ′′ + 4y ′ + 4y = 0.

L’équation caractéristique associée est (EC) : r2 + 4r + 4 = 0

(EC) possède une racine double : (−2).

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ (C1 + C2x) e−2x (C1 et C2 ∈ R) .

ä Solution particulière de l’équation avec second membre. On observe que sin(x) = Im
(
eix

)
, et

on introduit l’équation :

(E ′) y′′ + 4y′ + 4y = eix

Puisque le coefficient de l’exponentielle au second membre (i) n’est pas racine de l’équation caractéris-
tique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = Keix (avec K réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = iKeix puis : fP ′′(x) = −Keix

Par suite : ∀ x ∈ R, f ′′
P (x) + 4f ′

P (x) + 4fP (x) = eix [−K + 4iK + 4K]

D’où : ∀ x ∈ R, f ′′
P (x) + 4f ′

P (x) + 4fP (x) = Keix [3 + 4i]

On en déduit que fP est solution de (E ′) si et seulement si :

∀ x ∈ R, Keix [3 + 4i] = eix ⇐⇒ K =
1

3 + 4i

D’où fP (x) =
1

3 + 4i
eix est une solution particulière de (E ′).

Or pour tout réel x :

fP (x) =
1

3 + 4i
eix =

3− 4i
25

(cos(x) + i sin(x))

D’où pour tout réel x :

Im (fP (x)) =
1

25
(3 sin(x)− 4 cos(x))

On en déduit que :

la fonction gP : x ∈ R 7−→ 1

25
(3 sin(x)− 4 cos(x)) est une solution particulière de (E).
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ä Solution générale de l’équation (E) : d’après ce qui précède, la solution générale de (E) est :

f : x ∈ R 7−→ 1

25
(3 sin(x)− 4 cos(x)) + (C1 + C2x) e−2x (C1 et C2 ∈ R) .

6) y′′ − 4y′ + 4y = cos (2x)

ä Résolution de l’équation homogène associée (H) : y ′′ − 4y ′ + 4y = 0.

L’équation caractéristique associée est (EC) : r2 − 4r + 4 = 0

(EC) possède une racine double : (2).

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ (C1 + C2x) e2x (C1 et C2 ∈ R) .

ä Solution particulière de l’équation avec second membre. On observe que cos(2x) = Re
(
e2ix

)
,

et on introduit l’équation :

(E ′) y′′ − 4y′ + 4y = e2ix

Puisque le coefficient de l’exponentielle au second membre (2i) n’est pas racine de l’équation caractéris-
tique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = Ke2ix (avec K réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = 2iKe2ix puis : fP ′′(x) = −4Ke2ix

Par suite : ∀ x ∈ R, f ′′
P (x)− 4f ′

P (x) + 4fP (x) = e2ix (−4K − 8iK + 4K)

D’où : ∀ x ∈ R, f ′′
P (x)− 4f ′

P (x) + 4fP (x) = Ke2ix (−8i)

On en déduit que fP est solution de (E ′) si et seulement si :

∀ x ∈ R, −8iKe2ix = e2ix ⇐⇒ K =
1

−8i

D’où fP (x) =
1

−8i
e2ix est une solution particulière de (E ′).

Or pour tout réel x :

fP (x) =
1

−8i
e2ix =

1

8
i (cos(2x) + i sin(2x))

D’où pour tout réel x :

Re (fP (x)) = −1

8
sin(2x)
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On en déduit que : la fonction gP : x ∈ R 7−→ −1

8
sin(2x) est une solution particulière de (E).

ä Solution générale de l’équation (E) : d’après ce qui précède, la solution générale de (E) est :

f : x ∈ R 7−→ −1

8
sin(2x) + (C1 + C2x) e2x (C1 et C2 ∈ R) .

7) y′′ + 4y′ − 5y = 3ex

ä Résolution de l’équation homogène associée (H) : y ′′ + 4y ′ − 5y = 0.

L’équation caractéristique associée est (EC) : r2 + 4r − 5 = 0

(EC) possède deux racines : 1 et −5.

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ C1ex + C2e−5x (C1 et C2 ∈ R) .

ä Solution particulière de l’équation avec second membre.
Puisque le coefficient de l’exponentielle au second membre (1) est racine double de l’équation caractéris-
tique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = axex (avec a réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = (ax+ a) ex puis : fP ′′(x) = (ax+ 2a) ex

Par suite : ∀ x ∈ R, f ′′
P (x) + 4f ′

P (x)− 5fP (x) = aex [x+ 2 + 4x+ 4− 5x] = 6aex.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, 6aex = 3ex ⇐⇒ a =
1

2

On en déduit que : la fonction fP : x ∈ R 7−→ xex

2
est une solution particulière de y ′′ + 4y ′ − 5y = 3ex.

ä Solution générale de l’équation (E) : d’après ce qui précède, la solution générale de (E) est :

f : x ∈ R 7−→ xex

2
+ C1ex + C2e−5x (C1 et C2 ∈ R) .
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8) (MinSup) y′′ − 3y′ + 2y = ch (x) ⇐⇒ y′′ − 3y′ + 2y =
1

2
ex +

1

2
e−x

ä Résolution de l’équation homogène associée (H) : y ′′ − 3y ′ + 2y = 0.

L’équation caractéristique associée est (EC) : r2 − 3r + 2 = 0

(EC) possède deux racines : 1 et 2.

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ C1ex + C2e2x (C1 et C2 ∈ R) .

ä Solution particulière de l’équation avec second membre.

D’après le principe de superposition des solutions, on cherche séparément une solution particulière de

y ′′ − 3y ′ + 2y =
1

2
ex, et une solution particulière de y ′′ − 3y ′ + 2y =

1

2
e−x

ã Solution particulière de y ′′ − 3y ′ + 2y =
1

2
ex.

Puisque le coefficient de l’exponentielle au second membre (1) est racine simple de l’équation caractéris-
tique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = axex (avec a réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = a (x+ 1) ex puis : fP ′′(x) = a (x+ 2) ex

Par suite : ∀ x ∈ R, f ′′
P (x)− 3f ′

P (x) + 2fP (x) = aex [x+ 2− 3x− 3 + 2x] = −aex.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, −aex =
1

2
ex ⇐⇒ a = −1

2

On en déduit que : la fonction f1 : x ∈ R 7−→ −xe
x

2
est une solution particulière de y ′′ − 3y ′ + 2y = ex.

ã Solution particulière de y ′′ − 3y ′ + 2y = e−x.

Puisque le coefficient de l’exponentielle au second membre (−1) n’est pas racine de l’équation caracté-
ristique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = ae−x (avec a réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = −ae−x puis : fP ′′(x) = ae−x
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Par suite : ∀ x ∈ R, f ′′
P (x)− 3f ′

P (x) + 2fP (x) = e−x [a+ 3a+ 2a] = 6ae−x.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, 6ae−x =
1

2
e−x ⇐⇒ a =

1

12

On en déduit que :

la fonction f2 : x ∈ R 7−→ e−x

12
est une solution particulière de y ′′ − 3y ′ + 2y =

1

2
e−x.

ã D’après le principe de superposition, on déduit de ce qui précède que :

la fonction f : x ∈ R 7−→ −xe
x

2
+

e−x

12
est une solution particulière de y ′′ − 3y ′ + 2y = ch(x).

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de
(E) est :

f : x ∈ R 7−→ −xe
x

2
+

e−x

12
+ C1ex + C2e2x (C1 et C2 ∈ R) .

9) (MinSup) y′′ + 6y′ + 9y = e3x + 2e−3x

ä Résolution de l’équation homogène associée (H) : y ′′ + 6y ′ + 9y = 0.

L’équation caractéristique associée est (EC) : r2 + 6r + 9 = 0

(EC) possède une racine double : −3.

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ (C1 + C2x) e−3x (C1 et C2 ∈ R) .

ä Solution particulière de l’équation avec second membre.

D’après le principe de superposition des solutions, on cherche séparément une solution particulière de
y′′ + 6y′ + 9y = e3x, et une solution particulière de y′′ + 6y′ + 9y = e3x

ã Solution particulière de y′′ + 6y′ + 9y = e3x.

Puisque le coefficient de l’exponentielle au second membre (3) n’est pas racine de l’équation caractéris-
tique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = ae3x (avec a réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = 3ae3x puis : fP ′′(x) = 9ae3x
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Par suite : ∀ x ∈ R, f ′′
P (x) + 6f ′

P (x) + 9fP (x) = ae3x [9 + 18 + 9] = 36ae3x.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, 36ae3x = e3x ⇐⇒ a =
1

36

On en déduit que : la fonction f1 : x ∈ R 7−→ 1

36
e3x est une solution particulière de y′′ + 6y′ + 9y = e3x.

ã Solution particulière de y′′ + 6y′ + 9y = e−3x.

Puisque le coefficient de l’exponentielle au second membre (−3) est racine double de l’équation caracté-
ristique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = ax2e−3x (avec a réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = ae−3x (2x− 3x2) puis : fP ′′(x) = ae−3x (2− 12x+ 9x2)

Par suite : ∀ x ∈ R, f ′′
P (x) + 6f ′

P (x) + 9fP (x)

= ae−3x [2− 12x+ 9x2 + 12x− 18x2 + 9x2] = 2ae−3x.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, 2ae−3x = e−3x ⇐⇒ a =
1

2

On en déduit que :

la fonction f2 : x ∈ R 7−→ 1

2
x2e−3x est une solution particulière de y′′ + 6y′ + 9y = e−3x.

ã D’après le principe de superposition, on déduit de ce qui précède que :

la fonction f : x ∈ R 7−→ 1

36
e3x + x2e−3x est une solution particulière de y ′′ + 6y ′ + 9y = e3x + 2e−3x.

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de
(E) est :

f : x ∈ R 7−→ 1

36
e3x + x2e−3x + (C1 + C2x) e−3x (C1 et C2 ∈ R) .
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10) y′′ − 2y′ + y = 6xex

ä Résolution de l’équation homogène associée (H) : y ′′ − 2y ′ + y = 0.

L’équation caractéristique associée est (EC) : r2 − 2r + 1 = 0

(EC) possède une unique racine : 1.

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ (C1 + C2x) ex (C1 et C2 ∈ R) .

ã Solution particulière de y′′ − 2y′y = 6xex.

Puisque le coefficient de l’exponentielle au second membre (1) est racine double de l’équation caractéris-
tique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = (ax3 + bx2) ex (avec a et b réels).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = ex (ax3 + (b+ 3a) x2 + 2bx) puis : fP ′′(x) = ex (ax3 + (b+ 6a) x2 + (4b+ 6a) x+ 2b)

Par suite : ∀ x ∈ R, f ′′
P (x)− 2f ′

P (x) + fP (x)

= ex [ax3 + (b+ 6a) x2 + (4b+ 6a) x+ 2b− 2ax3 − 2 (b+ 3a) x2 − 4bx+ ax3 + bx2] = (6ax+ 2b)ex.

On en déduit que fP est solution si et seulement si :

∀ x ∈ R, (6ax+ 2b)ex = 6xex ⇐⇒ a = 1 ∧ b = 0

On en déduit que :

la fonction f : x ∈ R 7−→ x3ex est une solution particulière de y′′ − 2y′ + y = 6xex.

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de
(E) est :

f : x ∈ R 7−→ (C1 + C2x+ x3) ex (C1 et C2 ∈ R) .
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11) y′′ + y = |x|+ 1

L’idée est ici de résoudre séparément l’EDL sur R+ et sur R−.

ä Sur R+, l’équation à résoudre est : y′′ + y = x+ 1.

Sa solution générale est : f : x ∈ R+ 7−→ (C1 cos(x) + C2 sin(x)) + x+ 1 (C1 et C2 ∈ R) .

ä Sur R−, l’équation à résoudre est : y′′ + y = −x+ 1.

Sa solution générale est : f : x ∈ R− 7−→ (K1 cos(x) +K2 sin(x))− x+ 1 (K1 et K2 ∈ R) .

ä La question de savoir s’il existe des solutions sur R est un peu plus fine.

Une fonction f définie sur R et à valeurs réelles est solution de l’EDL sur R si et seulement si :


∀ x ∈ R+, f(x) = (C1 cos(x) + C2 sin(x)) + x+ 1
∀ x ∈ R−, f(x) = (K1 cos(x) +K2 sin(x))− x+ 1
lim
x→0+

f(x) = lim
x→0−

f(x)

lim
x→0+

f ′(x) = lim
x→0−

f ′(x)

⇐⇒


∀ x ∈ R+, f(x) = (C1 cos(x) + C2 sin(x)) + x+ 1
∀ x ∈ R−, f(x) = (K1 cos(x) +K2 sin(x))− x+ 1
C1 + 1 = K1 + 1
C2 + 1 = K2 − 1

Les solutions sur R de l’EDL2 y′′ + y = |x|+ 1 sont les fonctions f définies par :

∀ x ∈ R, f(x) =

 (C1 cos(x) + C2 sin(x)) + x+ 1 si x ⩾ 0

(C1 cos(x) + (C2 + 2) sin(x)) + x+ 1 si x ⩽ 0

où C1 et C2 désignent deux réels arbitraires.

12) y′′ + y = Max (x, 0)

Comme précédemment, l’idée est de résoudre séparément l’EDL sur R+ et sur R−.

ä Sur R+, l’équation à résoudre est : y′′ + y = x.

Sa solution générale est : f : x ∈ R+ 7−→ (C1 cos(x) + C2 sin(x)) + x (C1 et C2 ∈ R) .

ä Sur R−, l’équation à résoudre est : y′′ + y = 0.

Sa solution générale est : f : x ∈ R− 7−→ (K1 cos(x) +K2 sin(x)) (K1 et K2 ∈ R) .
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ä Cherchons les solutions sur R de l’EDL.

Une fonction f définie sur R et à valeurs réelles est solution de l’EDL sur R si et seulement si :


∀ x ∈ R+, f(x) = (C1 cos(x) + C2 sin(x)) + x
∀ x ∈ R−, f(x) = (K1 cos(x) +K2 sin(x))
lim
x→0+

f(x) = lim
x→0−

f(x)

lim
x→0+

f ′(x) = lim
x→0−

f ′(x)

⇐⇒


∀ x ∈ R+, f(x) = (C1 cos(x) + C2 sin(x)) + x
∀ x ∈ R−, f(x) = (K1 cos(x) +K2 sin(x))
C1 = K1

C2 + 1 = K2

Les solutions sur R de l’EDL2 y′′ + y = Max (x, 0) sont les fonctions f définies par :

∀ x ∈ R, f(x) =

 (C1 cos(x) + C2 sin(x)) + x si x ⩾ 0

(C1 cos(x) + (C2 + 1) sin(x)) si x ⩽ 0

où C1 et C2 désignent deux réels arbitraires.

Exercice 10. — Recherche d’une solution particulière quand le second membre est “P (x)eαx”

Pour chacune des équations différentielles linéaires suivantes, déterminer une solution particulière.
Dans chaque question, on applique la règle du cours permettant de trouver une solution particulière lorsque
le second membre est le produit d’un polynôme et d’une exponentielle.

1) (E) y′′ + y′ − 2y = 2− 4x

On recherche une solution particulière sous la forme : ∀ x ∈ R, f(x) = ax+ b.

Après calculs, une solution particulière est : fP : x ∈ R 7−→ 2x.

2) (E) y′′ + y = x3

On recherche une solution particulière sous la forme : ∀ x ∈ R, f(x) = ax3 + bx2 + cx+ d.

Après calculs, une solution particulière est : fP : x ∈ R 7−→ x3 − 6x.

3) (E) y′′ + y′ = 2xex

On recherche une solution particulière sous la forme : ∀ x ∈ R, f(x) = (ax+ b) ex (puisque 1 n’est pas
racine de l’équation caractéristique).

Après calculs, une solution particulière est : fP : x ∈ R 7−→
(
x− 3

2

)
ex.
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4) (E) y′′ + y′ − 2y = 4x2e−x

On recherche une solution particulière sous la forme : ∀ x ∈ R, f(x) = (ax2 + bx+ c) e−x (puisque −1
n’est pas racine de l’équation caractéristique).

Après calculs, une solution particulière est : fP : x ∈ R 7−→ (−2x2 + 2x− 3) e−x

5) (E) y′′ + y′ − 2y = 54xex

On recherche une solution particulière sous la forme : ∀ x ∈ R, f(x) = (ax2 + bx) ex (puisque 1 est
racine simple de l’équation caractéristique).

Après calculs, une solution particulière est : fP : x ∈ R 7−→ (9x2 − 6x) ex

6) (E) y′′ − 2y′ + y = 6 (x+ 1) ex

On recherche une solution particulière sous la forme : ∀ x ∈ R, f(x) = (ax3 + bx2) ex (puisque 1 est
racine double de l’équation caractéristique).

Après calculs, une solution particulière est : fP : x ∈ R 7−→ (x3 + 3x2) e−x

EDL d’ordre 2 – Problèmes de Cauchy.
Exercice 11. — Résoudre le problème de Cauchy :

y ′′ − 2y ′ + 2y = ex sin(x)

y
(π
2

)
= y ′

(π
2

)
= 0

ä Résolution de l’équation homogène associée (H) : y ′′ − 2y ′ + 2y = 0.

L’équation caractéristique associée est (EC) : r2 − 2r + 2 = 0

(EC) possède deux racines complexes conjuguées : 1± i.

D’après le cours, la solution générale de (H) est donc :

fH : x ∈ R 7−→ (C1 cos(x) + C2 sin(x)) ex (C1 et C2 ∈ R) .

ã Solution particulière de y ′′ − 2y ′ + 2y = ex sin(x).

On commence par observer que pour tout réel x on a : ex sin(x) = Im
(
e(1+i)x

)
.

On introduit alors l’équation (E ′) : y ′′ − 2y ′ + 2y = e(1+i)x.

Puisque le coefficient de l’exponentielle au second membre (1+ i) est racine simple de l’équation caractéris-
tique, on peut chercher une solution sous la forme :

∀ x ∈ R, fP (x) = (ax+ b)e(1+i)x (avec K réel).

La fonction fP est de classe C 2 sur R et on a pour tout réel x :

fP
′(x) = ((1 + i) ax+ (1 + i) b+ a) e(1+i)x puis :

fP
′′(x) = (2iax+ 2ib+ (1 + i)a+ (1 + i)a) e(1+i)x = (2iax+ 2ib+ 2a+ 2ia) e(1+i)x
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Par suite pour tout réel x on a :
f ′′

P (x)− 2f ′
P (x) + 2fP (x) = e(1+i)x (2iax+ 2ib+ 2a+ 2ia− 2 (1 + i) ax− 2b− 2ib− 2a+ 2ax+ 2b) e(1+i)x

= 2iae(1+i)x

On en déduit que fP est solution de (E ′) 5 si :

∀ x ∈ R, 2iae(1+i)x = e(1+i)x ⇐⇒ a = − i
2

On en déduit que la fonction f : x ∈ R 7−→ − i
2
xe(1+i)x est une solution particulière de y′′−2y′+2y = e(1+i)x

Or pour tout réel x on a : f(x) = − i
2
xe(1+i)x = − i

2
xex (cos(x) + i sin(x)).

D’où : ∀ x ∈ R, Im(f(x)) = −1

2
xex cos(x).

On en déduit que :

la fonction f : x ∈ R 7−→ −1

2
xex cos(x) est une solution particulière de y′′ − 2y′ + 2y = ex sin(x).

ä Solution générale de l’équation complète (E) : d’après ce qui précède, la solution générale de (E)
est :

f : x ∈ R 7−→ −1

2
xex cos(x) + (C1 cos(x) + C2 sin(x)) ex (C1 et C2 ∈ R) .

ã Utilisation des conditions initiales.

Soit f une solution du problème de Cauchy de l’énoncé. Alors on a :

∀ x ∈ R, f(x) = −1

2
xex cos(x) + (C1 cos(x) + C2 sin(x)) ex

D’où :

∀ x ∈ R, f ′(x) = −1

2
ex [(x+ 1) cos(x)− sin(x)] + ex ((C1 + C2) cos(x) + (C2 − C1) sin(x))

Les conditions initiales de l’énoncé (y
(π
2

)
= y ′

(π
2

)
= 0) se traduisent donc par le sympathique système :

C2eπ/2 = 0

1

2
eπ/2 − C1eπ/2 = 0

⇐⇒


C2 = 0

C1 =
1

2

Conclusion. L’unique solution du problème de Cauchy de l’énoncé est la fonction définie sur R par :

∀ x ∈ R, f(x) = −1

2
xex cos(x) +

1

2
ex cos(x) =

ex cos(x)
2

(1− x)

5. Et que l’on aurait pu chercher fP sous la forme fP (x) = axe(1+i)x, c’est la fatigue.
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Exercice 12. — Résoudre le problème de Cauchy : y ′′ − 4y = 4e−2x

y(0) = 0, y ′(0) = 1

La solution générale de (E) est :

f : x ∈ R 7−→ −xe−2x + C1e2x + C2e−2x (C1 et C2 ∈ R) .

ã Utilisation des conditions initiales.
Soit f une solution du problème de Cauchy de l’énoncé. Alors on a :

∀ x ∈ R, f(x) = C1e2x + (C2 − x) e−2x

D’où :
∀ x ∈ R, f ′(x) = 2C1e2x + [−2 (C2 − x)− 1] e−2x

Les conditions initiales de l’énoncé (y(0) = 0, y ′(0) = 1) se traduisent donc par le système : C1 + C2 = 0

2C1 − 2C2 − 1 = 1
⇐⇒


C1 =

1

2

C2 = −1

2

Conclusion. L’unique solution du problème de Cauchy de l’énoncé est la fonction définie sur R par :
∀ x ∈ R, f(x) = −xe−2x + sh (2x)
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Exercice 13. — Oscillateur harmonique libre. Le but de cet exercice est de résoudre une
équation différentielle modélisant ce que les Physiciens appellent un oscillateur harmonique. 6. Tout au long
de cet exercice, on considère l’équation différentielle linéaire du deuxième ordre :

(E) : y′′(t) + 2my′(t) + ω2
0y(t) = 0

dans laquelle m ⩾ 0, et ω0 > 0.

Par ailleurs, dans cet énoncé, résoudre (E) signifiera : déterminer les fonctions définies sur R+ et à valeurs
réelles solutions de (E).

1) Le cas m = 0 (sans frottements). Dans cette question, on suppose donc m = 0.

a) Résoudre (E).
b) Problème de Cauchy. Soit y0 un réel. Déterminer la solution ψ de (E) satisfaisant les deux conditions

initiales : ψ(0) = y0 et ψ′(0) = 0.
c) Retour sur le cas général : montrer que la solution générale de (E) peut s’écrire fH(t) = K cos (ω0t− φ)

(où K et φ désignent deux réels).

2) Le cas m > 0 (avec frottements). Dans cette question, on suppose donc m > 0.

a) Vérifier que le discriminant ∆ de l’équation caractéristique associée à (E) est : ∆ = 4 (m2 − ω2
0).

b) Résoudre (E) en distinguant les 3 cas : ∆ < 0 (régime pseudo-périodique), ∆ = 0 (régime critique) et
∆ > 0 (régime apériodique).

3) Considérons à présent l’EDL :

(E) : y′′(t) + 2my′(t) + ω2
0y(t) = A cos (ωt)

dans laquelle on suppose que A, m, ω et ω0 sont dans R∗
+. Déterminer une solution particulière de E.

4) Soient R, L et C trois réels strictement positifs. Résoudre l’équation (E) :
d2q

dt
+
R

L

dq

dt
+

1

LC
q = 0

Corrigé. Voir pdf du cours.

Extraits de DS

Exercice 14. — EDL 1

1) Soit f la fonction définie en posant : f(x) =
1

x (x2 − 1)
.

a) Quel est l’ensemble de définition de f ? Dans la suite, nous noterons D cet ensemble.
b) Déterminer la décomposition en éléments simples de f , c’est-à-dire déterminer trois réels a, b et c tels

que :

∀ x ∈ D, f(x) =
a

x
+

b

x− 1
+

c

x+ 1

6. Pour plus de précisions à ce sujet, consulter. . .
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2) Résoudre l’équation différentielle suivante :

(E) : x(x2 − 1)y ′ + 2y = x2

en n’oubliant pas de préciser l’intervalle de résolution (que vous êtes libre de choisir).

Corrigé.

1) a) D = R\ {−1; 0; 1} .

b) Décomposons en éléments simples la fraction rationnelle f .

∃ (a, b, c) ∈ R3, ∀ x ∈ D,
1

x (x2 − 1)
=
a

x
+

b

x− 1
+

c

x+ 1

On a pour tout x dans D :
a

x
+

b

x− 1
+

c

x+ 1
=

(a+ b+ c) x2 + (b− c) x− a

x (x2 − 1)

Par identification, on en déduit le système :

 −a = 1
b− c = 0

a+ b+ c = 0
d’où :

 a = −1
b = 1/2
c = 1/2

Conclusion : ∀ x ∈ D,
1

x (x2 − 1)
= −1

x
+

1/2

x− 1
+

1/2

x+ 1

2) Les trois fonctions a, b et c sont continues sur R, mais a s’annule en 0, en 1 et −1. On a donc l’embarras
du choix pour l’intervalle de résolution : ]−∞;−1 [ , ]−1; 0 [ , ] 0; 1 [ ou ] 1; +∞ [ . Nous pouvons par exemple
choisir I = ] 1;+∞ [ comme intervalle de résolution.

ä Résolution de l’équation homogène associée. Notons (H) x(x2−1)y ′+2y = 0 l’équation homogène
associée à (E). On a :

∀ x ∈ R∗
+,

b(x)

a(x)
=

2

x (x2 − 1)

On détermine une primitive de
b

a
sur I par le biais de la décomposition en éléments simples du b).

∀ x ∈ I,
2

x (x2 − 1)
= −2

x
+

1

x− 1
+

1

x+ 1

Une primitive de
b

a
sur I est donc A : x ∈ I 7−→ ln

(
x2 − 1

x2

)
.

D’après le cours, la solution générale de (H) est fC : x ∈ I 7−→ Ce− ln
(

x2−1

x2

)
soit

fC : x ∈ I 7−→ Cx2

x2 − 1
(C ∈ R) .
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ä Recherche d’une solution particulière de l’équation complète. On peut utiliser la méthode de
variation de la constante, en cherchant une solution particulière fP sous la forme :

∀ x ∈ I, fP (x) =
C(x)x2

x2 − 1

Alors : ∀ x ∈ I, f ′
P (x) =

(C ′(x)x2 + 2xC(x)) (x2 − 1)− 2xC(x)x2

(x2 − 1)2

Soit : ∀ x ∈ I, f ′
P (x) =

(C ′(x)x2 + 2xC(x)) (x2 − 1)− 2x3C(x)

(x2 − 1)2

Soit enfin : ∀ x ∈ I, f ′
P (x) =

(C ′(x)x2 + 2xC(x))

x2 − 1
− 2x3C(x)

(x2 − 1)2

Par suite :
∀ x ∈ I, x(x2 − 1)f ′

P (x) + 2fP (x) = x (C ′(x)x2 + 2xC(x))− 2x4C(x)

x2 − 1
+ 2

C(x)x2

x2 − 1

⇐⇒ ∀ x ∈ I, x(x2 − 1)f ′
P (x) + 2fP (x) = C ′(x)x3 + 2x2C(x)− 2x4C(x)

x2 − 1
+

2C(x)x2

x2 − 1

⇐⇒ ∀ x ∈ I, x(x2 − 1)f ′
P (x) + 2fP (x) = C ′(x)x3 +

2x2C(x)

x2 − 1
− 2x4C(x)

x2 − 1
+

2C(x)x2

x2 − 1

⇐⇒ ∀ x ∈ I, x(x2−1)f ′
P (x)+2fP (x) = C ′(x)x3+

2x4C(x)− 2x2C(x)− 2x4C(x) + 2C(x)x2

x2 − 1

⇐⇒ ∀ x ∈ I, x(x2 − 1)f ′
P (x) + 2fP (x) = C ′(x)x3

On en déduit que fP est solution de (E) si et seulement si : ∀ x ∈ I, C ′(x)x3 = x2. Pour déterminer C, il
“suffit” de connaître une primitive de x 7→ 1/x sur I. On a donc :

∀ x ∈ I, C(x) = ln(x) Une solution particulière de (E) est donc fP : x ∈ I 7−→ x2 ln(x)

x2 − 1
.

ä Conclusion. D’après les résultats obtenus au cours des deux étapes précédentes, la solution générale de
(E) sur I est

gc : x ∈ I 7−→ x2 ln(x)

x2 − 1
+

Cx2

x2 − 1
(C ∈ R) c’est-à-dire gc : x ∈ I 7−→ x2 (C + ln(x))

x2 − 1
(C ∈ R)

Remarque : la solution générale de (E) est la même sur ] 0; 1 [ . En revanche, sur chacun des intervalles

]−∞;−1 [ et ]− 1; 0 [ est gc : x 7−→ x2 (C + ln (−x))
x2 − 1

(C ∈ R) .
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Exercice 15. — EDL 2

Soient A, ω et y0 trois réels strictement positifs, et α un réel strictement supérieur à 1.

Résoudre dans R (c’est-à-dire déterminer les solutions définies sur R et à valeurs réelles) le problème de
Cauchy suivant :  (E) : y′′ + ω2y = A sin (αx)

y(0) = y0 et y′(0) = 0

Corrigé.

Pour résoudre le problème de Cauchy de l’énoncé, on commence par résoudre (E) (EDL d’ordre 2 à coeffi-
cients constants).

ä Résolution de l’équation homogène associée. Notons (H) y′′ + ω2y = 0 l’équation homogène as-
sociée à (E). L’équation caractéristique associée est X2 + ω2 = 0, et elle a donc deux racines complexes
conjuguées : ±iω. On en déduit que la solution générale de (H) est

f : x ∈ R 7−→ C1 cos (ωx) + C2 sin (ωx) (avec C1 et C2 réels)

ä Recherche d’une solution particulière de l’équation complète. On peut penser à déterminer une
solution particulière de l’équation auxiliaire

(E’) y′′ + ωy = Aeiαx

Mais il faut alors distinguer deux cas suivant que α = ω (car alors iα est racine de l’équation caractéristique)
ou α 6= ω. 7

ã Cas α 6= ω. Ici, on cherche une solution particulière fP de (E’) en posant : ∀ x ∈ R, fP (x) = Keiαx. On
en déduit que : ∀ x ∈ R, f ′′

P (x) = −α2Keiαx. Il s’ensuit que fP est solution de (E’) si et seulement si :

∀ x ∈ R, Keiαx
(
ω2 − α2

)
= Aeiαx ⇐⇒ K =

A

ω2 − α2

Ainsi la fonction x ∈ R 7−→ A

ω2 − α2
eiαx est solution de (E’). On en déduit que sa partie imaginaire, la

fonction : fP : x ∈ R 7−→ A

ω2 − α2
sin (αx) est une solution particulière de (E).

Conclusion. Dans le cas α 6= ω, la solution générale de (E) sur R est

y : x ∈ R 7−→ A

ω2 − α2
sin (αx) + C1 cos (ωx) + C2 sin (ωx) (C1 et C2 réels)

7. Remarquons quand même, pour se remonter le moral, que l’on ne peut avoir α = −ω, puisque ces deux réels sont supposés
strictement positifs dans l’énoncé.
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ã Cas α = ω. Dans cette situation, on cherche une solution particulière fP de (E’) en posant : ∀ x ∈
R, fP (x) = Kxeiαx. On en déduit que : ∀ x ∈ R, f ′

P (x) = (1 + iα x)Keiαx, puis : ∀ x ∈ R, f ′′
P (x) =

(2iα− α2 x)Keiαx Il s’ensuit que fP est solution de (E’) si et seulement si :

∀ x ∈ R, Keiαx ((2iα− α2 x) + ω2x) = Aeiαx ⇐⇒ ∀ x ∈ R, Keiαx (2iα) = Aeiαx ⇐⇒ K = − A

2α
i

Ainsi la fonction x ∈ R 7−→ − A

2α
ixeiαx est solution de (E’). On en déduit que sa partie imaginaire, la

fonction : fP : x ∈ R 7−→ − A

2α
x cos (αx) est une solution particulière de (E).

Conclusion. Dans le cas α = ω, la solution générale de (E) sur R est

y : x ∈ R 7−→ − A

2α
x cos (αx) + C1 cos (αx) + C2 sin (αx) (C1 et C2 réels)

Il ne reste “plus qu’à” résoudre le problème de Cauchy dans chaque cas :
ä Dans le cas α 6= ω, la solution générale de (E) sur R est :

y : x ∈ R 7−→ A

ω2 − α2
sin (αx) + C1 cos (ωx) + C2 sin (ωx) (C1 et C2 réels)

Les conditions de Cauchy y(0) = y0 et y′(0) = 0 imposent :


C1 = y0

Aα

ω2 − α2
+ ωC2 = 0

d’où :


C1 = y0

C2 =
Aα

ω (α2 − ω2)

Conclusion. Dans le cas α 6= ω, la solution du problème de Cauchy constitué de (E) et des conditions
y(0) = y0 et y′(0) = 0 est

y : x ∈ R 7−→ A

ω2 − α2
sin (αx) + y0 cos (ωx) +

Aα

ω (α2 − ω2)
sin (ωx)

ä Dans le cas α = ω, la solution générale de (E) sur R est

y : x ∈ R 7−→ − A

2α
x cos (αx) + C1 cos (αx) + C2 sin (αx) (C1 et C2 réels)

Les conditions de Cauchy y(0) = y0 et y′(0) = 0 imposent :


C1 = y0

− A

2α
+ αC2 = 0

d’où :


C1 = y0

C2 =
A

2α2

Conclusion. Dans le cas α = ω, la solution du problème de Cauchy constitué de (E) et des conditions
y(0) = y0 et y′(0) = 0 est

y : x ∈ R 7−→ − A

2α
x cos (αx) + y0 cos (αx) +

A

2α2
sin (αx)
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Exercice 16. — (Oscillateur harmonique forcé). Le but de cet exercice est de décrire
le comportement de l’oscillateur harmonique initialement au repos, sans frottements, et “forcé” à l’aide de
différents signaux. Mathématiquement, il s’agit donc de résoudre le problème de Cauchy suivant : y′′ + ω2

0y = f(t) (E)

y(0) = 0 et y(t1) = 0
(avec ω0 > 0, t1 > 0, et f ∈ C 0(R,R))

La première des questions ci-dessous consiste à résoudre l’équation homogène associée à (E), et les trois
autres à déterminer la solution générale de (E) avec différents seconds membres.

Par ailleurs, dans cet exercice, lorsque l’on demande de “déterminer la solution générale d’une équation
différentielle”, on entend “déterminer l’ensemble des fonctions de C 2(R,R) solutions”.

1/ Déterminer la solution générale de l’EDL (H) : y′′ + ω2
0y = 0

2/ Signal constant. Soit C ∈ R∗
+. Déterminer la solution générale de l’EDL

(E1) : y′′ + ω2
0y = C

3/ Signal sinusoïdal. Soient A et ω dans R∗
+. Déterminer la solution générale de l’EDL

(E2) : y′′ + ω2
0y = A cos (ωt)

4/ Signal sinusoïdal et phénomène de résonance. Soit A ∈ R∗
+. Résoudre le problème de Cauchy :


y′′ + ω2

0y = A cos (ω0t) (E3)

y(0) = 0 et y

(
π

2ω0

)
= 0

Remarque : attention, l’EDL (E3) est très semblable à l’équation (E2), à ceci près que dans (E3), on a
ω = ω0. Ce n’est pas un petit détail !. . .

Corrigé.

1/ Puisque ω2
0 > 0, l’équation caractéristique (x2 + ω2

0 = 0) admet deux racines complexes conjuguées :
±iω0. La solution générale de (H) est donc : ∀ t ∈ R, fH(t) = C1 cos(ω0t) + C2 sin(ω0t) (C1, C2 réels)

2/ La fonction constante égale à C/ω2
0 est clairement solution de (E1). On en déduit que la solution générale

de (E1) est : ∀ t ∈ R, f(t) =
C

ω2
0

+ C1 cos(ω0t) + C2 sin(ω0t) (C1, C2 réels)
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3/ Introduisons l’équation (E’) : y′′ + ω2
0y = Aeiωt. Si ω 6= ω0, alors ω n’est pas racine de l’équation

caractéristique associée à (E ′). Posons alors : ∀ t ∈ R, fP (t) = Keiωt avec K ∈ C. La fonction fP est de
classe C 2 sur R et :

∀ t ∈ R, f ′
P (t) = iωKeiωt et ∀ t ∈ R, f ′′

P (t) = −Kω2eiωt

Il s’ensuit que : fP est solution de (E’) ⇐⇒ ∀ t ∈ R, −Kω2eiωt +Kω2
0eiωt = Aeiωt ⇐⇒ K =

A

ω2
0 − ω2

.

Une solution de (E’) est donc : ∀ t ∈ R, fP (t) =
A

ω2
0 − ω2

eiωt.

Par suite, une solution de (E2) est : ∀ t ∈ R, fP (t) =
A

ω2
0 − ω2

cos (ωt).

Conclusion. Si ω 6= ω0, la solution générale de y′′ + ω2
0y = A cos (ωt) est

∀ t ∈ R, f(t) =
A

ω2
0 − ω2

cos (ωt) + C1 cos(ω0t) + C2 sin(ω0t) (C1, C2 réels)

Le cas ω = ω0 est traité dans la question suivante.

4/ Notons (E’) : y′′ + ω2
0y = Aeiω0t. Puisque ω0 est racine de l’équation caractéristique associée à (E’), on

pose : ∀ t ∈ R, fP (t) = Kteiω0t avec K ∈ C. La fonction fP est de classe C 2 sur R et :

∀ t ∈ R, f ′
P (t) = K(1 + iω0t)eiω0t et ∀ t ∈ R, f ′′

P (t) = K(2iω0 − ω2
0t)eiω0t

Il s’ensuit que : fP est solution de (E’) ⇐⇒ ∀ t ∈ R, K(2iω0−ω2
0t)eiω0t+Kω2

0teiω0t = Aeiω0t ⇐⇒ K =
A

2iω0

.

Une solution de (E’) est donc : ∀ t ∈ R, fP (t) =
A

2iω0

teiω0t.

Par suite, une solution de (E3) est : ∀ t ∈ R, fP (t) =
A

2ω0

t sin (ω0t).

Conclusion. La solution générale de y′′ + ω2
0y = A cos (ω0t) est :

∀ t ∈ R, f(t) = C1 cos(ω0t) +

(
C2 +

A

2ω0

t

)
sin(ω0t) (C1, C2 réels)

Déterminons à présent la solution satisfaisant les conditions initiales de l’énoncé. On a :

ä f(0) = 0 et f(0) = C1. D’où : C1 = 0.

ä f

(
π

2ω0

)
= 0 et f

(
π

2ω0

)
= C2 +

Aπ

4ω2
0

. D’où : C2 = −Aπ

4ω2
0

.

Conclusion. L’unique solution de y′′ + ω2
0y = A cos(ω0t) telle que y(0) = 0 et y

(
π

2ω0

)
= 0 est

la fonction définie sur R par :

∀ t ∈ R, f(t) =
(
−Aπ

4ω2
0

+
A

2ω0

t

)
sin(ω0t)
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Illustration. Lorsque ω = ω0, on fait apparaître un phénomène appelé résonance. Le comportement
de l’oscillateur harmonique devient alors “sauvage”, dans le sens où l’amplitude de ses oscillations tend
(théoriquement) vers l’infini !. . .


