Colle 9 – Questions de cours

QUESTION DE COURS N⁰1 — Intégrales de Wallis (relation de récurrence).

$$\forall n \in \mathbb{N}, \quad I_{n+2} = \frac{n+1}{n+2} I_n$$

Preuve. Soit
$$n \in \mathbb{N}$$
. On a : $I_{n+2} = \int_0^{\pi/2} \cos^{n+2}(t) dt = \int_0^{\pi/2} \cos(t) \cos^{n+1}(t) dt$

$$\text{Posons}: \forall t \in \left[0, \pi/2\right], \ \left\{ \begin{array}{ll} u(t) = \sin(t) \\ \\ v(t) = \cos^{n+1}(t) \end{array} \right. \quad \text{d'où}: \forall t \in \left[0, \pi/2\right], \ \left\{ \begin{array}{ll} u'(t) = \cos(t) \\ \\ v'(t) = -\left(n+1\right)\sin(t)\cos^{n}(t) \end{array} \right.$$

Selon la formule d'IPP (u et v sont de classe \mathscr{C}^1 sur $[0,\pi/2]$) :

$$I_{n+2} = \underbrace{\left[\sin(t)\cos^{n+1}(t)\right]_0^{\pi/2}}_{=0} + (n+1)\int_0^{\pi/2}\sin^2(t)\cos^n(t)dt$$

D'où :
$$I_{n+2} = (n+1) \int_0^{\pi/2} (1 - \cos^2(t)) \cos^n(t) dt = (n+1) \int_0^{\pi/2} \cos^n(t) dt - (n+1) \int_0^{\pi/2} \cos^{n+2}(t) dt$$

C'est-à-dire :
$$I_{n+2} = (n+1) I_n - (n+1) I_{n+2}$$
 d'où : $I_{n+2} = \frac{n+1}{n+2} I_n$

QUESTION DE COURS $N^0 2$ — Propriété - Stabilité par combinaison linéaire de l'ensemble des solutions de ay' + by = 0.

Soient $a, b: I \longrightarrow \mathbb{K}$ continues (avec I un intervalle de \mathbb{R} , et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Notons (H) l'équation différentielle homogène ay' + by = 0.

Soient f et g dans $\mathscr{C}^1(I, \mathbb{K})$.

Si f et g sont solutions de (H), alors pour tout couple $(\lambda, \mu) \in \mathbb{K}^2$, la fonction $\lambda f + \mu g$ est solution de (H).

<u>Preuve</u>. Sous les hypothèses de l'énoncé on a pour tout couple $(\lambda, \mu) \in \mathbb{K}^2$:

$$a (\lambda f + \mu g)' + b (\lambda f + \mu g)$$

$$= a (\lambda f' + \mu g') + b (\lambda f + \mu g) \qquad (linéarité de la dérivation)$$

$$= a\lambda f' + a\mu g' + b\lambda f + b\mu g$$

$$= \lambda \underbrace{(af' + bf)}_{=0} + \mu \underbrace{(ag' + bg)}_{=0} \qquad (f et g solutions de (H))$$

$$= 0$$

En résumé : $a(\lambda f + \mu g)' + b(\lambda f + \mu g) = 0$. Ce qui signifie que la fonction $\lambda f + \mu g$ est solution de (H).

QUESTION DE COURS N⁰3 — Propriété - Structure de l'ensemble des solutions de ay' + by = c.

Soient $a, b, c: I \longrightarrow \mathbb{K}$ continues *

Soit f_p une solution particulière de l'EDL1 (E) : ay' + by = c

Soit enfin $\varphi \in \mathscr{C}^1(I, \mathbb{K})$. On a:

 $(\varphi \text{ est solution de } (E)) \iff (\varphi - f_P \text{ est solution de } ay' + by = 0)$

Preuve. Sous les hypothèses de l'énoncé, φ est en particulier dérivable sur I et on a :

 φ est solution de (E)

$$\iff a\varphi' + b\varphi = c$$

$$\iff a\varphi' + b\varphi = af_P' + bf_P \qquad (car f_P \text{ est solution } de(E))$$

$$\iff$$
 $a(\varphi' - f_P') + b(\varphi - f_P) = 0$

$$\iff$$
 $a(\varphi - f_P)' + b(\varphi - f_P) = 0$ (par linéarité de la dérivation)

$$\iff \varphi - f_P$$
 est solution de $ay' + by = 0$ Ce qui achève la preuve. \triangle

Cet énoncé assure que la solution générale de l'EDL1 ay' + by = c est la somme d'une solution particulière de celle-ci, et de la solution générale de équation homogène associée à (E).

QUESTION DE COURS N⁰4 — Théorème (solution générale d'une EDL1 homogène). Soient $a, b : I \longrightarrow \mathbb{K}$ continues, a ne s'annulant pas sur I.

Les solutions de l'EDL a(x)y' + b(x)y = 0 sont les fonctions $f_k : I \longrightarrow \mathbb{K}$ définies sur I par $f_k(x) = \lambda e^{-A(x)}$ ($\lambda \in \mathbb{K}$), où A désigne une primitive sur I de la fonction $\frac{b}{a}$.

Preuve. Notons (E) l'EDL : a(x)y' + b(x)y = 0.

La fonction b/a est continue sur I (H+TG). A ce titre, b/a admet des primitives sur I (théorème fondamental de l'Analyse); notons A l'une d'entre elles.

Soit $\varphi \in \mathscr{C}^1(I,\mathbb{K})$. Définissons une fonction q en posant : $\forall x \in I, \ q(x) = \varphi(x)e^{A(x)}$.

La fonction g est dérivable (et même de classe \mathscr{C}^1 , H+TG) sur I, et :

$$\forall x \in I, \ g'(x) = \varphi'(x)e^{A(x)} + \frac{b(x)}{a(x)}\varphi(x)e^{A(x)}$$

$$\iff \forall x \in I, \ g'(x) = e^{A(x)}\left(\varphi'(x) + \frac{b(x)}{a(x)}\varphi(x)\right) \tag{\clubsuit}$$

Ce calcul fait on a:

$$\begin{split} g \text{ est constante sur } I \\ \iff \forall \, x \in \, I, \, \, g'(x) = 0 \\ \iff \forall \, x \in \, I, \, \, \mathrm{e}^{A(x)} \left(\varphi'(x) + \frac{b(x)}{a(x)} \, \varphi(x) \right) = 0 \qquad (d'après \, ((\clubsuit))) \\ \iff \forall \, x \in \, I, \, \, \varphi'(x) + \frac{b(x)}{a(x)} \, \varphi(x) = 0 \qquad (\mathrm{e}^{A(x)} \neq 0) \\ \iff \forall \, x \in \, I, \, \, a(x) \varphi'(x) + b(x) \varphi(x) = 0 \qquad (a(x) \neq 0) \\ \iff \varphi \text{ solution de } (E) \end{split}$$

En résumé, φ est solution de (E) SSI il existe $\lambda \in \mathbb{K}$ tel que $g = \lambda$.

Autrement écrit : φ est solution de (E) SSI $\exists \lambda \in \mathbb{K}, \ \forall x \in I, \ \varphi(x)e^{A(x)} = \lambda$

Conclusion.
$$\varphi$$
 est solution de (E) SSI $\exists \lambda \in \mathbb{K}, \ \forall x \in I, \ \varphi(x) = \lambda e^{-A(x)}$

QUESTION DE COURS N⁰5 — "La méthode de variation de la constante marche à tous les coups".

Plus précisément, avec les notations et hypothèses de la question de cours 4, il existe une fonction $K \in \mathscr{C}^1(I,\mathbb{K})$ telle que la fonction f_p définie par

$$\forall x \in I, \qquad f_P(x) = K(x)e^{-A(x)} \quad (\text{où } A \text{ est une primitive de } \frac{b}{a} \text{ sur } I)$$

est solution de l'équation différentielle (E).

<u>Preuve</u>. Soit $K \in \mathcal{C}^1(I, \mathbb{K})$. Posons : $\forall x \in I$, $f_P(x) = K(x)e^{-A(x)}$. La fonction f_P est de classe \mathcal{C}^1 sur I (H+TG). A ce titre, elle est dérivable sur I et :

$$\forall x \in I, \ f'_{P}(x) = e^{-A(x)} \left(K'(x) - A'(x)K(x) \right) = e^{-A(x)} \left(K'(x) - \frac{b(x)}{a(x)} K(x) \right)$$

On en déduit que :

$$f_{P} \text{ est solution de } (E)$$

$$\iff \forall x \in I, \ a(x)f'_{P}(x) + b(x)f_{P}(x) = c(x)$$

$$\iff \forall x \in I, \ a(x)e^{-A(x)}\left(K'(x) - \frac{b(x)}{a(x)}K(x)\right) + b(x)K(x)e^{-A(x)} = c(x)$$

$$\iff \forall x \in I, \ a(x)e^{-A(x)}K'(x) \underbrace{-b(x)K(x)e^{-A(x)} + b(x)K(x)e^{-A(x)}}_{=0} = c(x)$$

$$\iff \forall x \in I, \ a(x)e^{-A(x)}K'(x) = c(x)$$

$$\iff \forall x \in I, \ K'(x) = \frac{c(x)}{a(x)}e^{A(x)} \qquad (\spadesuit)$$

Les hypothèses du théorème et les théorèmes généraux sur la continuité assure que la fonction $x \mapsto \frac{c(x)}{a(x)} e^{A(x)}$ est continue sur I; elle admet donc une primitive sur I. En d'autres termes, il existe une fonction K de classe \mathscr{C}^1 sur I satisfaisant l'identité (\spadesuit). On en déduit que la fonction $f_P: x \in I \mapsto K(x)e^{-A(x)}$ est solution de (E).

BANQUE D'EXERCICES

Définition. On appelle **intégrales de Wallis** les intégrales définies en posant pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^{\pi/2} \cos^n(t) dt \quad \text{et} \quad J_n = \int_0^{\pi/2} \sin^n(t) dt$$

Exo-W 1. — Montrer que : $\forall n \in \mathbb{N}, I_n = J_n$

Exo-W 2. — Montrer que la suite (I_n) est positive, décroissante, convergente.

Exo-W 3. — Montrer que : $\forall n \in \mathbb{N}, (n+1)I_{n+1}I_n = \frac{\pi}{2}$. (en admettant le résultat de la question de cours 1)

En déduire : $\lim_{n \to +\infty} I_n = 0$ (on pourra justifier brièvement que la suite (I_n) converge vers une limite $\ell \geqslant 0$, mais on ne demande pas de refaire intégralement l'exercice W-2!)

Exo-W 4. — Montrer que $\forall p \in \mathbb{N}$, $I_{2p+1} = \frac{2^{2p} (p!)^2}{(2p+1)!}$ (en admettant le résultat de la question de cours 1)

EXERCICE 1. — Calcul de $\int \frac{1}{1 + \operatorname{ch}(x)} dx$ (primitive sur \mathbb{R})

EXERCICE 2. — Calcul de $\int \frac{1}{x^2 - 7x + 6} dx$ (primitive sur $]6, +\infty[$)

EXERCICE 3. — Calcul de $\int \frac{1}{\cos(x)} dx$ (primitive sur] $-\pi/2, \pi/2$ [)

EXERCICE 4. — Calcul de $\int e^{-x} \sin(2x) dx$ (primitive sur \mathbb{R})

L'exercice 5 ci-dessous est **non-exigible** en colle la semaine prochaine, et est donné à titre d'exo d'entraînement. Au passage, il permet d'établir un joli résultat sur le nombre e, qui sera généralisé cette année au S2, et archi-généralisé en Spé...

EXERCICE 5. On pose pour tout $n \in \mathbb{N} : I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$

- 1/ Montrer que (I_n) tend vers 0.
- 2/ Montrer que pour tout $n \in \mathbb{N}^*$: $\frac{1}{n!} = I_{n-1} I_n$
- 3/ En déduire que : $e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$

BANQUE D'EXERCICES - CORRIGÉS

Exo-W 1. — Montrer que : $\forall n \in \mathbb{N}, I_n = J_n$

Soit n un entier naturel. Selon la formule du changement de variable :

$$J_n = \int_0^{\pi/2} \sin^n(t) dt = \int_{u-\frac{\pi}{2}-t}^0 \int_{\pi/2}^0 \sin^n\left(\frac{\pi}{2} - u\right) (-du) = \int_0^{\pi/2} \cos^n(t) dt = I_n$$

Exo-W 2. — Montrer que la suite (I_n) est positive, décroissante, convergente.

ightharpoonup Pour tout $(n,t) \in \mathbb{N} \times [0,\pi/2]$, on a : $\cos^n(t) \geqslant 0$.

Par positivité de l'intégrale, on en déduit que : $\forall n \in \mathbb{N}, \int_0^{\pi/2} \cos^n(t) dt \ge 0$. La suite (I_n) est positive.

 \triangleright Pour tout $n \in \mathbb{N}$, on a:

$$I_{n+1} - I_n = \int_0^{\pi/2} \cos^{n+1}(t) - \cos^n(t) dt = \int_0^{\pi/2} \underbrace{\cos^n(t)}_{>0} \underbrace{(\cos(t) - 1)}_{<0} dt$$

Par positivité de l'intégrale, on en déduit que : $\forall n \in \mathbb{N}, I_{n+1} - I_n \leq 0$. La suite (I_n) est décroissante.

 \triangleright La suite (I_n) est décroissante et minorée (par 0) : donc elle est convergente (théorème de la limite monotone).

Exo-W 3. — Montrer que :
$$\forall n \in \mathbb{N}, (n+1)I_{n+1}I_n = \frac{\pi}{2}$$
. En déduire : $\lim_{n \to +\infty} I_n = 0$

Pour tout $n \in \mathbb{N}$, notons P(n) l'assertion : $(n+1)I_{n+1}I_n = \frac{\pi}{2}$.

Deux calculs immédiats donnent $I_0 = \frac{\pi}{2}$ et $I_1 = 1$. On en déduit que P(0) est vraie.

Supposons à présent la propriété vraie pour un certain $n \in \mathbb{N}$. Alors :

$$(n+2) I_{n+2} I_{n+1} = (n+2) \frac{n+1}{n+2} I_n I_{n+1} = (n+1) I_{n+1} I_n = \frac{\pi}{2}$$

la première égalité provenant de la question de cours 1, et la dernière de l'hypothèse de récurrence. On en déduit que P(n+1) est vraie. Récurrence établie.

Ainsi :
$$\forall n \in \mathbb{N}, (n+1)I_{n+1}I_n = \frac{\pi}{2}$$
 (\spadesuit)

La suite (I_n) étant décroissante et positive, elle converge vers un réel $\ell \geqslant 0$.

Supposons
$$\ell > 0$$
. Alors : $\lim_{n \to +\infty} I_{n+1} = \ell^{\dagger}$. D'où : $\lim_{n \to +\infty} I_{n+1} I_n = \ell^2 > 0$.

On en déduit que : $\lim_{n \to +\infty} (n+1)I_{n+1}I_n = +\infty$. Contradiction avec (\spadesuit).

Il s'ensuit que $\ell = 0$. Ainsi : $\lim_{n \to +\infty} I_n = 0$.

^{†.} Facile à comprendre, mais admis à ce stade de l'année. A l'attention des colleurs : aucun résultat sur les suites extraites n'a été vu en cours à ce jour.

Exo-W 4. — Montrer que $\forall p \in \mathbb{N}$, $I_{2p+1} = \frac{2^{2p} (p!)^2}{(2p+1)!}$ (en admettant le résultat de la question de cours 1)

Pour tout $p \in \mathbb{N}$, notons P(p): $I_{2p+1} = \frac{2^{2p} (p!)^2}{(2p+1)!}$

 $\underline{\underline{\text{Initialisation}}}: \text{pour } p = 0, \text{ on a d'une part } I_1 = \int_0^{\pi/2} \cos(t) dt = [\sin(t)]_0^{\pi/2} = 1 \text{ et d'autre part } \frac{2^0 (0!)^2}{1!} = 1. P(0) \text{ est vraie.}$

Hérédité : supposons P(p) vraie pour un certain entier naturel p.

On a:
$$I_{2(p+1)+1} = I_{2p+3} = \frac{2p+2}{2p+3}I_{2p+1} = \frac{2(p+1)}{2p+3}\frac{2^{2p}(p!)^2}{(2p+1)!} = \frac{2^2(p+1)^2}{2(p+1)(2p+3)}\frac{2^{2p}(p!)^2}{(2p+1)!} = \frac{2^{2(p+1)}\left[(p+1)!\right]^2}{(2p+3)!}$$

Ce qui signifie que $P\left(p+1\right)$ est vraie, et achève la preuve de l'hérédité.

Conclusion.
$$\forall p \in \mathbb{N}, \ I_{2p+1} = \frac{2^{2p} (p!)^2}{(2p+1)!}$$

EXERCICE 1. — Calcul de $\int \frac{1}{1 + \operatorname{ch}(x)} dx$ (primitive sur \mathbb{R})

On a:
$$\int \frac{1}{1 + \operatorname{ch}(x)} dx = \int \frac{1}{1 + \frac{e^x + e^{-x}}{2}} dx = \int \frac{2}{2 + e^x + e^{-x}} dx.$$

En posant $u = e^x$ dans l'intégrale précédente, on obtient :

$$\int \frac{2}{2+u+\frac{1}{u}} \times \frac{1}{u} du = \int \frac{2}{u^2+2u+1} du = 2 \int \frac{1}{(u+1)^2} du = -\frac{2}{u+1}$$

Finalement : $\int \frac{1}{1 + \operatorname{ch}(x)} \, \mathrm{d}x = -\frac{2}{\mathrm{e}^x + 1}$

EXERCICE 2. — Calcul de $\int \frac{1}{x^2 - 7x + 6} dx$ (primitive sur $]6, +\infty[)$

Soit x un réel > 6. On a : $\frac{1}{x^2 - 7x + 6} = \frac{1}{(x-1)(x-6)}$

Il existe donc deux réels a et b tels que : $\frac{1}{x^2 - 7x + 6} = \frac{a}{x - 1} + \frac{b}{x - 6}$ (\spadesuit) (décomposition en éléments simples).

On peut déterminer a et b par la méthode de multiplication/évaluation ‡ :

$$ightharpoonup$$
 Calcul de $a.$ $(x-1) imes (\spadesuit) \iff \frac{1}{x-6} = a + \frac{b(x-1)}{x-6}$. Par évaluation en $1: a = -\frac{1}{5}$

$$ightharpoonup$$
 Calcul de b . $(x-6) imes (\spadesuit) \iff \frac{1}{x-1} = \frac{a(x-6)}{x-1} + b$. Par évaluation en $6: b = \frac{1}{5}$

Ainsi:
$$\int \frac{1}{x^2 - 7x + 6} dx = \frac{1}{5} \int \frac{1}{x - 6} - \frac{1}{x - 1} dx = \ln \left(\left(\frac{x - 6}{x - 1} \right)^{1/5} \right)$$

^{‡.} Plus que celle d'identification, à utiliser in articulo mortis.

EXERCICE 3. — Calcul de $\int \frac{1}{\cos(x)} dx$ (primitive sur] $-\pi/2, \pi/2$ [)

Changement de variable : $u = \tan(x/2)$; $x = 2\arctan(u) \Longrightarrow dx = \frac{du}{1+u^2}$

$$\int \frac{1}{\cos(x)} \, \mathrm{d}x = \int \frac{1 + u^2}{1 - u^2} \times \frac{\mathrm{d}u}{1 + u^2} = \int \frac{1}{1 - u^2} \, \mathrm{d}u = \int \frac{1}{(1 - u)(1 + u)} \, \mathrm{d}u$$

Il existe deux réels a et b tels que : $\frac{1}{1-u^2} = \frac{a}{1-u} + \frac{b}{1+u}$ (\spadesuit) (décomposition en éléments simples).

On peut déterminer a et b par la méthode de multiplication/évaluation :

$$ightharpoonup$$
 Calcul de $a.$ $(1-u)\times (\spadesuit)\Longleftrightarrow \frac{1}{1+u}=a+\frac{b(1-u)}{1+u}.$ Par évaluation en $1:a=\frac{1}{2}$

$$ightharpoonup$$
 Calcul de $b.$ $(1+u) \times (\spadesuit) \Longleftrightarrow \frac{1}{1-u} = \frac{a(1+u)}{1-u} + b.$ Par évaluation en $-1: b = \frac{1}{2}$

Ainsi:
$$\int \frac{1}{(1-u)(1+u)} du = \frac{1}{2} \int \left(\frac{1}{1-u} + \frac{1}{1+u}\right) du = \frac{1}{2} \left(-\ln(1-u) + \ln(1+u)\right) = \ln\left(\sqrt{\frac{1+u}{1-u}}\right)$$

Finalement:
$$\int \frac{1}{\cos(x)} dx = \ln\left(\sqrt{\frac{1 + \tan(x/2)}{1 - \tan(x/2)}}\right)$$

EXERCICE 4. — Calcul de $\int e^{-x} \sin(2x) dx$ (primitive sur \mathbb{R})

On a :
$$\int e^{-x} \sin(2x) dx = \text{Im} \left(\int e^{-x} e^{2ix} dx \right) = \text{Im} \left(\int e^{(-1+2i)x} dx \right) = \text{Im} \left(\frac{1}{-1+2i} e^{(-1+2i)x} \right)$$

$$\operatorname{Or}: \frac{1}{-1+2\mathrm{i}} \mathrm{e}^{(-1+2\mathrm{i})x} = \frac{-1-2\mathrm{i}}{5} \mathrm{e}^{-x} \left(\cos(2x) + \mathrm{i}\sin(2x) \right). \text{ Par suite}: \operatorname{Im} \left(\frac{1}{-1+2\mathrm{i}} \mathrm{e}^{(-1+2\mathrm{i})x} \right) = -\frac{\mathrm{e}^{-x}}{5} \left(2\cos(2x) + \sin(2x) \right).$$

Finalement : $\int e^{-x} \sin(2x) dx = -\frac{e^{-x}}{5} (2\cos(2x) + \sin(2x))$

EXERCICE 5. On pose pour tout $n \in \mathbb{N}$: $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$

1/ Montrer que (I_n) tend vers 0.

Pour tout
$$(x, n) \in [0, 1] \times \mathbb{N}$$
 on $a : 0 \leqslant \frac{(1 - x)^n}{n!} e^x \leqslant \frac{e}{n!}$.

Par croissance de l'intégrale : $0 \le I_n \le \frac{\mathrm{e}}{n!}$.

Par théorème d'encadrement : $\lim_{n\to 0} I_n = 0$.

2/ Montrer que pour tout $n \in \mathbb{N}^*$: $\frac{1}{n!} = I_{n-1} - I_n$

Soit n un entier naturel non nul. On a : $I_n = \frac{1}{n!} \int_0^1 \underbrace{(1-x)^n}_{v(x)} \underbrace{\mathrm{e}^x}_{u'(x)} \mathrm{d}x$

Selon la formule d'intégration par parties :

$$I_n = \frac{1}{n!} \left(\left[(1-x)^n e^x \right]_0^1 + n \int_0^1 (1-x)^{n-1} e^x \, dx \right) = -\frac{1}{n!} + \underbrace{\frac{1}{(n-1)!} \int_0^1 (1-x)^{n-1} e^x \, dx}_{I_{n-1}}$$

Ainsi :
$$I_n = -\frac{1}{n!} + I_{n-1}$$
. On en déduit que : $\forall n \in \mathbb{N}^*$, $\frac{1}{n!} = I_{n-1} - I_n$.

$$3$$
/ En déduire que : $e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$

Soit $n \in \mathbb{N}^*$. On a :

$$\sum_{k=0}^{n} \frac{1}{k!} \underset{Chasles}{=} 1 + \sum_{k=1}^{n} \frac{1}{k!} \underset{q.2}{=} 1 + \sum_{k=1}^{n} (I_{k-1} - I_k) \underset{t \notin lescop}{=} 1 + I_0 - I_n$$

$$\mathrm{Or}: I_0 = \int_0^1 \mathrm{e}^x \, \mathrm{d}x = \mathrm{e} - 1. \qquad \mathrm{II \ s'ensuit \ que}: \quad \forall \, n \in \, \mathbb{N}^*, \, \, \sum_{k=0}^n \frac{1}{k!} = \mathrm{e} - I_n \ \, (\spadesuit).$$

Or, selon la q.1, on a : $\lim_{n\to 0} I_n = 0$.

On en déduit, avec (
$$\spadesuit$$
), que : $e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$

Remarque (pour l'avenir!). Plus tard cette année, nous noterons ce résultat :

$$\sum_{k=0}^{+\infty} \frac{1}{k!} = e$$

On dira alors que la série de terme général $\frac{1}{k!}$ est convergente et a pour somme e (dans le chapitre sur les séries).

On prouvera également une version plus générale de ce résultat : $\forall x \in \mathbb{R}, e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$