MPSI-COLLE 9 (24 AU 28 NOVEMBRE) : MÉTHODES DE CALCUL INTÉGRAL / EDL1

Chapitre 8 : Primitives et intégrales

1 - Primitives (généralités)

2 - Primitives usuelles

3 - Intégrale d'une fonction continue sur un segment

4 – Intégration par parties

5 - Changement de variable

6 - Compléments

- a) Extension aux fonctions à valeurs complexes; essentiellement pour le calcul de $\int \mathrm{e}^{\alpha x} \cos(\beta x) \, \mathrm{d}x \text{ ou de } \int \mathrm{e}^{\alpha x} \sin(\beta x) \, \mathrm{d}x$
- b) Calcul de $\int \frac{1}{x^2 + bx + c} dx$, en distinguant 3 cas suivant la valeur de Δ ($\Delta > 0 \longrightarrow$ décomposition en éléments simples; $\Delta = 0 \longrightarrow$ formalité; $\Delta < 0 \longrightarrow$ changement de variable pour se ramener à arctan)
- c) Changement de variable $u=\tan(x/2)$, par exemple pour le calcul de $\frac{\mathrm{d}x}{\cos x}$ ou $\frac{\mathrm{d}x}{\sin x}$
- d) Incontournable 1 : $e = \lim_{k=0}^{n} \frac{1}{k!}$
- e) Incontournable 2 : intégrales de Wallis

Chapitre 9 : Equations différentielles linéaires

<u>Convention</u>: dans ce chapitre, I est un intervalle non-vide de \mathbb{R} ; et la lettre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Méthode "universelle" de résolution pour une EDL 1 ou 2 :

- (i) Résolution de l'équation homogène (H) associée à (E)
- (ii) Détermination d'une solution particulière de (E)
- (iii) Conclusion : la solution générale de (E) est $S_H + S_P$ où S_H désigne la solution générale de (H) et S_P une solution particulière de (E).

1 – Equations différentielles linéaires d'ordre 1 (EDL1)

Théorème (solution générale d'une EDL1 homogène). Soient $a, b: I \longrightarrow \mathbb{K}$ continues, a ne s'annulant pas sur I. Les solutions de l'EDL a(x)y' + b(x)y = 0 sont les fonctions $f_C: I \longrightarrow \mathbb{K}$ définies sur I par $f_C(x) = Ce^{-A(x)}$ ($C \in \mathbb{K}$), où A désigne une primitive sur I de la fonction $\frac{b}{a}$.

Pour le second point, on peut utiliser son intuition, ou la **méthode de variation de la constante**, en cherchant une solution particulière f_P de l'équation avec second membre sous la forme " $f_P(x) = C(\underline{x})e^{-A(x)}$ ".

Théorème (existence et unicité de la solution à un problème de Cauchy d'ordre 1). Soient a, b et c trois fonctions de $\mathscr{C}^0(I,\mathbb{K})$, tque a ne s'annule pas sur I. On note (E) l'EDL1 : a(x)y' + b(x)y = c(x).

Pour tout couple $(x_0, y_0) \in I \times \mathbb{K}$, il existe une unique fonction $\varphi \in \mathscr{C}^1(I, \mathbb{K})$ tq:

$$\begin{cases} \forall x \in I, \quad a(x)\varphi'(x) + b(x)\varphi(x) = c(x) \\ \\ \varphi(x_0) = y_0 \end{cases}$$

QUESTIONS DE COURS

➤ Exercice. Intégrales de Wallis (relation de récurrence) :

$$\forall n \in \mathbb{N}, \quad I_{n+2} = \frac{n+1}{n+2} I_n$$

▶ **Propriété**. Stabilité par combinaison linéaire de l'ensemble des solutions de ay' + by = 0.

- ightharpoonup Propriété. Structure de l'ensemble des solutions de ay' + by = c.
- ➤ Théorème. Solution générale d'une EDL1 homogène.
- ➤ Théorème. Existence d'une solution pour une EDL1 <u>ou</u> "La méthode de variation de la constante marche à tous les coups!".

APRÈS LA QC: UN EXO EXTRAIT DE LA BANQUE D'EXERCICES

OBJECTIFS

Compétences particulières pour cette colle

- ➤ Savoir reconnaître et déterminer rapidement une primitive usuelle
- ➤ Calcul d'une intégrale/primitive en utilisant une intégration par parties, ou un changement de variable
- ightharpoonup Connaître la définition de l'intégrale de Wallis I_n , et savoir retrouver la relation de récurrence $I_{n+2}=\frac{n+1}{n+2}\,I_n$ (se souvenir de l'astuce du "n+2=(n+1)+1")

ightharpoonup Calcul de $\int e^{ax} \cos(bx) dx$ en observant que

$$\int e^{ax} \cos(bx) dx = \operatorname{Re} \left(\int e^{a+ibx} dx \right)$$

➤ Résolution d'une EDL1