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Colle 14 – Questions de cours

Remarque : la transposée d’une matrice A pourra être notée TA, tA, AT ou At en fonction de la direction du vent, ou
de la valeur modulo 4 du jour de la semaine où on l’écrit.

Question de cours 1. — Propriété : la matrice identité In est l’élément neutre pour le produit matriciel. On
montrera ici que : ∀A ∈ Mn (K) , A× In = A et on pourra admettre In ×A = A.

Soient n un entier naturel non nul, et A = (aij) une matrice de Mn (K).

Notons P = (pij) la matrice produit A× In. On rappelle que ∀ (i, j) ∈ [[ 1, n ]]
2
, (In)ij = δij . ∗

Soient i et j deux entiers de [[ 1, n ]]. On a : Pij =

n∑
k=1

aik (In)kj .

Or (In)kj = 0 pour k ̸= j, et (In)jj = 1. Il s’ensuit que : Pij = aij .

En résumé : ∀ (i, j) ∈ [[ 1, n ]]
2
, Pij = aij . Donc P = A, et donc : A× In = A .

Question de cours 2. — Théorème : toute matrice de Mn (K) s’écrit de manière unique (à l’ordre près) comme
somme d’une matrice symétrique et d’une matrice antisymétrique, soit

∀M ∈ Mn (K) , ∃! (S,A) ∈ Sn (K)×An (K) , M = S +A

On raisonne par analyse-synthèse. Soit M ∈ Mn (K).

ä Analyse : supposons qu’il existe une matrice symétrique S et une matrice antisymétrique A telles que : M = S +A.

Alors : tM = tS + tA. Or par hypothèse tS = S et tA = −A. On a donc : tM = S −A.

Il s’ensuit que S et A sont solutions du système :
{

S +A = M
S −A = tM

La résolution aisée de celui-ci donne : S =
1

2

(
M + tM

)
et A =

1

2

(
M − tM

)
.

ä Synthèse : il ne reste plus qu’à vérifier que le couple (S,A) obtenu précédemment convient. Pour cela on commence
par s’assurer que M = S +A (trivial). En outre :

ã en posant S =
1

2

(
M + tM

)
, on a : tS =

1

2

(
tM + t

(
tM

))
=

1

2

(
tM + M

)
=

1

2

(
M + tM

)
= S ; donc S est

symétrique ;

ã et en posant A =
1

2

(
M − tM

)
, on a : tA =

1

2

(
tM −M

)
= −1

2

(
M − tM

)
= −A ; donc A est antisymétrique.

Conclusion (partielle) : on a établi l’existence, pour toute matrice carrée M d’un couple (S,A) (avec S symétrique et A
antisymétrique) tel que : M = S +A.

En outre, ce couple est explicitement donné par les formules : S =
1

2

(
M + tM

)
et A =

1

2

(
M − tM

)
.

L’unicité du couple (S,A) provient de l’unicité de la solution du système obtenu dans la partie analyse.

Question de cours 3. — Propriété de la trace : ∀ (A,B) ∈ Mn (K)
2
, tr (AB) = tr (BA)

Preuve. Soient A = (aij) et B = (bij) deux matrices de Mn (K).

D’une part : tr (AB) =

n∑
i=1

(AB)ii =

n∑
i=1

n∑
k=1

aikbki.

D’autre part : tr (BA) =

n∑
i=1

(BA)ii =

n∑
i=1

n∑
k=1

bikaki =

n∑
k=1

n∑
i=1

bikaki =

n∑
i=1

n∑
k=1

bkiaik.

Conclusion : tr(AB) = tr(BA)

∗. Où δij désigne le symbole de Kronecker, càd : δij =

{
1 si i = j

0 sinon .
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Question de cours 4. — Propriété (linéarité de la trace) : ∀ (A,B) ∈ Mn (K)
2
, ∀ (λ, µ) ∈ K2, tr(λA+µB) =

λtr(A) + µtr(B)

Soient (A,B) ∈ Mn (K)
2 et (λ, µ) ∈ K2. On a :

tr (λA+ µB) =

n∑
i=1

(λA+ µB)ii =

n∑
i=1

(λaii + µbii) = λ

n∑
i=1

aii + µ

n∑
i=1

bii = λtr(A) + µtr(B)

Conclusion. ∀ (A,B) ∈ Mn (K)
2
, ∀ (λ, µ) ∈ K2, tr(λA+ µB) = λtr(A) + µtr(B)

Question de cours 5. — Propriété : SN (K) est stable par combinaison linéaire.

Soient A et B dans SN (K), λ et µ deux scalaires. On a :

(λA+ µB)T = λAT + µBT = λA+ µB

la première égalité provenant de la linéarité du passage à la transposée, et la seconde de l’hypothèse de symétrie faite sur
A et B. On en déduit que λA+ µB est symétrique, d’où la conclusion.

Question de cours 6. — Propriété : diag (λ1, . . . , λn)× diag (µ1, . . . , µn) = diag (λ1µ1, . . . , λnµn)

Soient 2n scalaires λ1, . . . , λn, µ1, . . . , µn. Posons A = diag (λ1, . . . , λn), B = diag (µ1, . . . , µn) et P = AB.

ä Commençons par montrer que P est diagonale : soient i et h deux entiers de [[ 1, n ]] tels que i ̸= j.

Alors : Pij =

n∑
k=1

aikbkj = aiibij = λi × bij︸︷︷︸
=0 (B diag)

= 0.

Ainsi : ∀ (i, j) ∈ [[ 1, n ]]
2
, [i ̸= j] =⇒ [Pij = 0]. D’où : P est diagonale.

ä Déterminons à présent les coefficients diagonaux de P . Soit i ∈ [[ 1, n ]]. On a :

Pii =

n∑
k=1

aikbki = aiibii = λiµi

Ainsi : ∀ i ∈ [[ 1, n ]], Pii = λiµi.

Conclusion. P est diagonale et ∀ i ∈ [[ 1, n ]], Pii = λiµi. Ainsi :

diag (λ1, . . . , λn)× diag (µ1, . . . , µn) = diag (λ1µ1, . . . , λnµn)
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Banque d’exercices

Exercice 1. — Donner des exemples de matrices A et B de M2(R) illustrant les situations suivantes :

å AB ̸= BA

å A ̸= 0M2(R), B ̸= 0M2(R) mais AB = 0M2(R)

å A ̸= 0M2(R), B ̸= 0M2(R) mais AB = 0M2(R) avec A et B diagonales

å A ̸= 0M2(R), mais A2 = 0M2(R)

Exercice 2. — Pour tout entier naturel N , calculer AN avec A =

 2 1 1
0 2 1
0 0 2

.

Exercice 3. — Soient A et B deux matrices de Mn (K).

On suppose que A et B sont semblables, càd qu’il existe une matrice P ∈ GLn(K) telle que B = P−1AP .

Montrer que : BN = P−1ANP pour tout entier naturel N .

Exercice 4. — Montrer que P =

 2 −1 −1
−1 1 2
−1 1 1

 est inversible et calculer son inverse.

Exercice 5. — (Commutant d’une matrice). Soient A ∈ Mn (K). On note COM(A) le commutant de la matrice
A, c’est à dire l’ensemble des matrices de Mn (K) qui commutent avec A :

COM(A) = {M ∈ Mn (K) , AM = MA}
Montrer que (COM(A),+) est un sous-groupe de (Mn (K) ,+).
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Banque d’exercices - Corrigés

Exercice 1. — Donner des exemples de matrices A et B de M2(R) illustrant les situations suivantes :

å AB ̸= BA

A =

(
1 0
0 0

)
et B =

(
0 1
0 0

)
. On a : AB =

(
0 1
0 0

)
et BA = 0M2(R)

å A ̸= 0M2(R), B ̸= 0M2(R) mais AB = 0M2(R)

A =

(
1 0
0 0

)
et B =

(
0 1
0 0

)
. On a : AB =

(
0 1
0 0

)
et BA = 0M2(R)

å A ̸= 0M2(R), B ̸= 0M2(R) mais AB = 0M2(R) avec A et B diagonales

A =

(
1 0
0 0

)
et B =

(
0 0
0 1

)
. On a : AB = 0M2(R)

å A ̸= 0M2(R), mais A2 = 0M2(R)

A =

(
0 1
0 0

)
. On a : A ̸= 0M2(R) mais A2 = 0M2(R)

Exercice 2. — Pour tout entier naturel N , calculer AN avec A =

 2 1 1
0 2 1
0 0 2

.

Observons que : A = 2I3 +B avec B =

 0 1 1
0 0 1
0 0 0

.

ä On a : B2 =

 0 0 1
0 0 0
0 0 0

 et B3 = 0M3(K). Ainsi : ∀ k ∈ N, (k ⩾ 3) =⇒
(
Bk = 0M3(K)

)
(♠). †

ä On a : (2I3)×B = B× (2I3) (♣). En effet, toute matrice de la forme (λ I3) ‡ commute avec toute matrice de M3 (K).

ä Soit N un entier naturel. On a : AN = (2I3 +B)
N . Grâce à (♣), on peut utiliser la formule du binôme de Newton

pour écrire :

AN =

N∑
k=0

(
N

k

)
Bk (2I3)

n−k
=

N∑
k=0

(
N

k

)
2N−kBk

D’après (♠), on a encore : AN =

2∑
k=0

(
N

k

)
2N−kBk = 2N B0︸︷︷︸

=I3

+N2N−1B +
N(N − 1)

2
2N−2B2

Explicitement :

AN =

 2N 0 0
0 2N 0
0 0 2N

+

 0 N2N−1 N2N−1

0 0 N2N−1

0 0 0

+

 0 0 N(N − 1)2N−3

0 0 0
0 0 0



D’où finalement : ∀N ∈ N, AN =

 2N N2N−1 N (N + 3) 2N−3

0 2N N2N−1

0 0 2N



†. Ainsi la matrice B est nilpotente.
‡. Une telle matrice est appelée matrice scalaire.
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Exercice 3. — Soient A et B deux matrices de Mn (K).

Montrer que si A et B sont semblables, alors AN et BN sont semblables pour tout entier naturel N .

Supposons A et B semblables : ∃P ∈ GLn(K), B = P−1AP .

Pour tout entier naturel N , notons P (N) l’assertion : “BN = P−1ANP ”.

L’initialisation (pour N = 0) est immédiate puisque B0 = In et P−1A0P = P−1InP = P−1P = In.

Passons à l’hérédité : supposons P (N) vraie pour un certain entier naturel N .

Alors, en utilisant notamment l’hypothèse de récurrence et l’associativité du produit matriciel :

BN+1 = BN ×B =
(
P−1ANP

) (
P−1AP

)
= P−1AN

(
PP−1

)
AP = P−1AN+1P

Ainsi : BN+1 = P−1AN+1P . Ce qui assure que P(N + 1) est vraie. Récurrence établie.

Conclusion. Si A et B (dans Mn (K)) sont semblables, alors AN et BN sont semblables pour tout N ∈ N.

Exercice 4. — Montrer que P =

 2 −1 −1
−1 1 2
−1 1 1

 est inversible et calculer son inverse.

Soient B =

 b1
b2
b3

 ∈ R3 et X =

 x1

x2

x3

 ∈ R3. On a :

[PX = B]⇐⇒

 2x1 − x2 − x3 = b1 (L1)
−x1 + x2 + 2x3 = b2 (L2)
−x1 + x2 + x3 = b3 (L3)

⇐⇒

 2x1 − x2 − x3 = b1 (L1)
x2 + 3x3 = b1 + 2b2 (L2)←− (L1) + 2 (L2)
x2 + x3 = b1 + 2b3 (L3)←− (L1) + 2 (L3)

⇐⇒

 2x1 − x2 − x3 = b1 (L1)
x2 + 3x3 = b1 + 2b2 (L2)

2x3 = 2b2 − 2b3 (L3)←− (L2)− (L3)
⇐⇒

 2x1 − x2 − x3 = b1 (L1)
x2 + 3x3 = b1 + 2b2 (L2)

x3 = b2 − b3 (L3)

⇐⇒

 2x1 = 2b1 + 2b3 (L1)
x2 = b1 − b2 + 3b3 (L2)
x3 = b2 − b3 (L3)

⇐⇒

 x1 = b1 + b3 (L1)
x2 = b1 − b2 + 3b3 (L2)
x3 = b2 − b3 (L3)

Conclusion. P ∈ GL3(R) et P−1 =

 1 0 1
1 −1 3
0 1 −1



Exercice 5. — (Commutant d’une matrice). Soient A ∈ Mn (K). On note COM(A) le commutant de la matrice
A, c’est à dire l’ensemble des matrices de Mn (K) qui commutent avec A :

COM(A) = {M ∈ Mn (K) , AM = MA}
Montrer que (COM(A),+) est un sous-groupe de (Mn (K) ,+).

Il suffit de vérifier les quatre axiomes assurant que (COM(A),+) est un sous-groupe de (Mn (K) ,+).

Les axiomes SG1 (COM(A) ⊂ Mn (K)) et SG2 (0Mn(K) ∈ COM(A)) sont évidemment réalisés.

Il est à peine moins évident de vérifier que COM(A) est stable par somme (SG3) :

Si M et N ∈ COM(A), alors : (M +N)A = MA+NA = AM +AN = A(M +N). D’où : (M +N) ∈ COM(A)

Enfin, COM(A) est stable par passage à l’opposé (SG4) :

Si M ∈ COM(A), alors : (−M)A = −(MA) = −(AM) = A× (−M). D’où : (−M) ∈ COM(A)

Conclusion. COM(A) est une partie de Mn (K), contenant 0Mn(K) (l’élément neutre pour l’addition dans Mn (K)), stable
par somme et par passage à l’opposé. Il s’ensuit que (COM(A),+) est un sous-groupe de (Mn (K) ,+).

En particulier, (COM(A),+) est un groupe (abélien).


