Lycée Jean Bart — MPSI — 16 janvier 2026

COLLE 14 — QUESTIONS DE COURS

Remarque : la transposée d’une matrice A pourra étre notée TA, A, AT ou A' en fonction de la direction du vent, ou
de la valeur modulo 4 du jour de la semaine ot on [’écrit.

QUESTION DE COURS 1. — Propriété : la matrice identité I,, est I’élément neutre pour le produit matriciel. On
montrera ici que : VA € M, (K), Ax I, = A et on pourra admettre I, x A = A.

Soient n un entier naturel non nul, et A = (a;;) une matrice de M, (K).

Notons P = (p;;) la matrice produit A x I,,. On rappelle que ¥V (i,7) € [ 1,1 ], (In);; = 045"
Soient ¢ et j deux entiers de [1,n]. Ona: P;; = Z ik (In)k]

Or (I,),; = 0 pour k # j, et (I,);; = 1. Il s’ensuit que : P;; = a;;.
En résumé : V (i,7) € 1,n]? P;; = a;;. Donc P = A, et donc: AxIL,=A4|

QUESTION DE COURS 2. — Théoréme : toute matrice de M,, (K) s’écrit de maniére unique (a Pordre prés) comme
somme d’une matrice symétrique et d’'une matrice antisymétrique, soit

Y MeM, (K), 3l (S,4) € S, (K)x A, (K), M=S+A

On raisonne par analyse-synthése. Soit M € M,, (K).
» Analyse : supposons qu’il existe une matrice symétrique S et une matrice antisymétrique A telles que : M = S + A.
Alors : 'tM = S 4+ tA. Or par hypothése tS = S et A= —A. Onadonc: ‘M =S5 — A.

, . . . S+A = M
Il s’ensuit que S et A sont solutions du systéme : { S_A — tug

1 1
La résolution aisée de celui-ci donne : S = 3 (M + tM) et A= 3 (M — tM).
» Synthése : il ne reste plus qu’a vérifier que le couple (S, A) obtenu précédemment convient. Pour cela on commence
par s’assurer que M = S + A (trivial). En outre :

(*M+ '(*M)) = -("M+ M) =z (M+ 'M) = S; donc S est

DN | =

1
2

DN | =

1
>enposantS:§(M+ tM),ona:tS:
symétrique ;

> et en posant A = (M — tM), ona:tA= ( M — M) ; (M — tM) = —A; donc A est antisymétrique.

1
2

N =

Conclusion (partielle) : on a établi Pexistence, pour toute matrice carrée M d’un couple (S, A) (avec S symétrique et A
antisymeétrique) tel que : M = S + A.

(M — M),

N

1
En outre, ce couple est explicitement donné par les formules : S = 3 (M + M ) et A=

L’unicité du couple (S, A) provient de 'unicité de la solution du systéme obtenu dans la partie analyse.

QUESTION DE COURS 3. — Propriété de la trace : V (4, B) € M,, (K)*, tr (AB) = tr (BA)

PREUVE. Soient A = (a;;) et B = (b;;) deux matrices de M,, (K).

D’une part : tr (AB) Z i = E”: z”: i bps.-

i=1 i=1 k=1

D’autre part : tr (BA) = i = i ib Ok = i i bixag; = i ibkiaik.

=1
Conclusion : tr(AB) = tr(BA) ‘

Isii=j

*. Ou d;; désigne le symbole de Kronecker, cad : §;; = { 0 sinon
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QUESTION DE COURS 4. — Propriété (linéarité de la trace) : V (A4, B) € M, (K)*,V (A, 1) € K2, tr(AA+puB) =
Atr(A) + ptr(B)

Soient (A, B) € M, (K)* et (A, u) € K2. On a :

)\A + /.LB = Z )\A + /.LB Z )\aii + /.Lbii) = /\Z(I,‘i + Mzbii = )\tI‘(A) + Mtr(B)
i=1 =1 =1 =1

Conclusion. ¥ (4, B) € M,, (K)*,V (\ ) € K2, tr(AM + uB) = Atr(A) + utr(B)

QUESTION DE COURS 5. — Propriété : Sy (K) est stable par combinaison linéaire.
Soient A et B dans Sy (K), A et 4 deux scalaires. On a :
(A + uB)T = XAT + uBT = \A + uB

la premiére égalité provenant de la linéarité du passage a la transposée, et la seconde de 'hypothése de symétrie faite sur
A et B. On en déduit que A\A + uB est symétrique, d’ou la conclusion.

QUESTION DE COURS 6. — Propriété : diag (A1,...,\,) x diag (p1, ..., ) = diag (A pe1, - -+, Anfin)

Soient 2n scalaires A1, ..., Ap, i1, - .., fin. Posons A = diag (A1,...,\,), B =diag(p1,...,un) et P = AB.

» Commengons par montrer que P est diagonale : soient i et h deux entiers de [ 1,n ] tels que i # j.

Alors : P = Zaikbkj = aiibij = Aix by =0.

k=1
=0 (B diag)

Ainsi: V(i,5) €[ 1,n]?, [i # j] = [P, 5 = 0]. D’ou : P est diagonale.

» Déterminons a présent les coefficients diagonaux de P. Soit i €[ 1,n]. On a :

n
Pi = aikbri = aiibii = Nift;
k=1

Ainsi :Vie[1,n], Py = Xip.

Conclusion. P est diagonale et Vi €[ 1,n ], Py = A;ju;. Ainsi :

diag (A1, ..., An) x diag (p1, ..., un) = diag (A1, - -+, Anfin)
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BANQUE D’EXERCICES

EXERCICE 1. — Donner des exemples de matrices A et B de My (R) illustrant les situations suivantes :
w AB # BA
- A 7& 0M2(R)7 B 7& OMQ(R) mais AB = OMQ(R)
= A # Oy, (r); B # O, r) mais AB = Oy, gy avec A et B diagonales

- AL On, (), Mais A? = On, ()

2 11
EXERCICE 2. — Pour tout entier naturel N, calculer AN avec A= 0 2 1

0 0 2
EXERCICE 3. — Soient A et B deux matrices de M, (K).

On suppose que A et B sont semblables, cad qu’il existe une matrice P € GL, (K) telle que B = P~1AP.

Montrer que : BN = P~1AN P pour tout entier naturel N.

2 -1 -1
EXERCICE 4. — DMontrer que P=| —1 1 2 est inversible et calculer son inverse.
-1 1 1
EXERCICE 5. — (Commutant d’une matrice). Soient A € M,, (K). On note COM(A) le commutant de la matrice

A, c’est & dire ’ensemble des matrices de M, (K) qui commutent avec A :
COM(4) ={M € M,,(K), AM = MA}
Montrer que (COM(A), +) est un sous-groupe de (M, (K),+).
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BANQUE D’EXERCICES - CORRIGES

EXERCICE 1. — Donner des exemples de matrices A et B de Ma(R) illustrant les situations suivantes :

- AB =+ BA

1 0 1
< )etB < O)' Ona:ABz(O O>etBA:OM2(R)

- A 7& 0M2(R)7 B 7é OMQ(R) mais AB = OMQ(R)

10 0 1 0 1
:<0 O)QtB:<O 0) OnaAB:(O O>etBA:0]\/12(]R)

w A # Oy (r), B # On,(r) mais AB = Oy, (r) avec A et B diagonales

1 0 0 0
:(0 O>etB:(0 1). Ona: AB = Ony(r)

- A £ On, (R), mMais A% = O, (r)

0 1 .
A= ( 0 0 ) Ona: A 75 ONIQ(R) mails A2 = OMQ(R)

2 1 1
EXERCICE 2. — Pour tout entier naturel N, calculer AN avec A= 0 2 1
0 0 2
0 1 1
Observons que : A=2[3+ Bavec B=| 0 0 1
0 00
0 0 1
»Ona:B>=| 0 0 0 | etB®>=0y,mx.Ainsi: Vk € N, (k>3) = (B* = 0y)) (#).7
0 00
» Ona: (2I3) x B=Bx (2I3) (&). En effet, toute matrice de la forme (AI3)* commute avec toute matrice de Mz (K).

» Soit N un entier naturel. On a : AN = (2I3 4+ B)". Grace a (&), on peut utiliser la formule du binome de Newton
pour écrire :

AN = g: (JZ) B (213)" f: ( )2N—’fB’f

k=0 k=0

2

N N(N -1

D’aprés (#), on a encore : AN = oN=kpk — 9N BO +N2N-IB 4+ ¥2N*232
k 2

k=0 —Ig
Explicitement :
200 0 N2N-1 N2N-1 0 0 N(N-1)2V=3
AN=1 0 2V 0 |+ O 0 N2V=L b0 0 0
0 0 2V 0 0 0 0 0 0
2V N2N-1 N (N +3)2N-3
D’ou finalement : VN € N, AN = 0 2N N2N-1

0 0 oN

t. Ainsi la matrice B est nilpotente.
1. Une telle matrice est appelée matrice scalaire.
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EXERCICE 3. — Soient A et B deux matrices de M, (K).

Montrer que si A et B sont semblables, alors AN et BN sont semblables pour tout entier naturel N.

Supposons A et B semblables : 3P € GL,(K), B= P 1AP.

Pour tout entier naturel N, notons & (N) l'assertion : “BY = P~1ANp”.

L’initialisation (pour N = 0) est immédiate puisque B =1, et P71A°P = P7'[,P = PP =1,.

Passons a I’hérédité : supposons & (N) vraie pour un certain entier naturel N.

Alors, en utilisant notamment I’hypothése de récurrence et I'associativité du produit matriciel :
BNl = BN x B = (P7'ANP) (P7'AP) = P7'AN (PP7') AP = P71ANTIP

Ainsi : BNt1 = P1ANF1P Ce qui assure que (N + 1) est vraie. Récurrence établie.

Conclusion. Si A et B (dans M, (K)) sont semblables, alors AN et BY sont semblables pour tout N € N.

2 -1 -1
EXERCICE 4. — Montrer que P = -1 1 2 est inversible et calculer son inverse.
-1 1 1
bl 1
Solent B=| by | e RPet X=| 20 | € R3 Ona-:
b3 x3
231‘1 — X2 — I3 = bl (Ll) 21‘1 — X9 — I3 = bl (Ll)
[PX = B] < —T1 + a9+ 223 = by (LQ) < To+3x3 = b+ 2by (Lg) — (Ll) + 2 (Lg)
—r1+x2+x3 = by (L3) 2 +x3 = bi+2by (L3)<— (L1)+2(L3)
2251 — X9 — X3 = bl (Ll) 2‘751 — Ty — T3 — bl (Ll)
< ro+3x3 = by 4+ 2by (LQ) <~ ro+3x3 = by 4+ 2by (LQ)
2.%‘3 = 2b2 — 2b3 (Lg) <— (Lg) — (Lg) r3 = b2 — b3 (Lg)
2x17 = 2by + 2b3 (Ll) r1 = by +bs (Ll)
< ro = by — by +3b3 (Lz) = o = by — by + 3b3 (Lg)
r3 = by —bs (L3) r3 = by—b3 (Ls)
1 0 1
Conclusion. P € GLz(R)et P71=| 1 -1 3
0o 1 -1
EXERCICE 5. — (Commutant d’une matrice). Soient A € M,, (K). On note COM(A) le commutant de la matrice

A, c’est a dire 'ensemble des matrices de M,, (K) qui commutent avec A :
COM(A) ={M € M,,(K), AM = MA}

Montrer que (COM(A), +) est un sous-groupe de (M, (K),+).
11 suffit de vérifier les quatre axiomes assurant que (COM(A), +) est un sous-groupe de (M, (K),+).
Les axiomes SG1 (COM(A) C M, (K)) et SG2 (Oy, (k) € COM(A)) sont évidemment réalisés.
Il est & peine moins évident de vérifier que COM(A) est stable par somme (SG3) :

Si M et N € COM(A), alors : (M + N)A = MA+ NA =AM + AN = A(M + N). Do : (M + N) € COM(A)
Enfin, COM(A) est stable par passage a 'opposé (SG4) :

Si M € COM(A), alors : (—M)A=—(MA)=—(AM)=Ax (—M).Dou: (—M) € COM(A)
Conclusion. COM(A) est une partie de M,, (K), contenant Oy, (k) (I'élément neutre pour I'addition dans M, (K)), stable
par somme et par passage a 'opposé. Il s’ensuit que (COM(A), +) est un sous-groupe de (M,, (K),+).

En particulier, (COM(A), +) est un groupe (abélien).



