
Lycée Jean Bart – MPSI – 10 janvier 2026

Exercices 13 – Calcul matriciel – Corrigé

Produits et puissances de matrices

Exercice 1. — Calculer tous les produits possibles de deux matrices parmi les suivantes :

A =

 2 0
−1 3
−2 1

 ; B =

(
4 0 −2
2 −1 1

)
; C =

 2 3 1
0 5 1
0 −3 2

 et D =

(
3 1
1 2

)
Le produit de deux matrices M × N est défini si et seulement si le nombre de colonnes de M est égal au
nombre de lignes de N .

Par conséquent, les produits :
AC, BD, CB, CD, DA, DC, A2 et B2

ne sont pas définis.

Pour les autres produits, on a :

AB =

 8 0 −4
2 −3 5
−6 −1 5


AD =

 6 2
0 5
−5 0


BA =

(
12 −2
3 −2

)

BC =

(
8 18 0
4 −2 3

)
CA =

 −1 10
−7 16
−1 −7


DB =

(
14 −1 −5
8 −2 0

)
C2 =

 4 18 7
0 22 7
0 −21 1


D2 =

(
10 5
5 5

)

Exercice 2. — Soit A la matrice
(

1 1
0 0

)
.

1/ Déterminer toutes les matrices B de M2 (R) telles que AB = 0M2(R).

Soit B =

(
x y
z t

)
∈ M2 (R). On a : AB =

(
x+ z y + t
0 0

)
.

Conclusion. Soit B ∈ M2 (R). On a : AB = 0M2(R) ⇐⇒ ∃ (x, y) ∈ R2, B =

(
x y
−x −y

)
.

2/ Déterminer toutes les matrices C de M2 (R) telles que AC = CA = 0M2(R).

Soit C =

(
x y
z t

)
∈ M2 (R). D’après la question précédente :

AC = 0M2(R) ⇐⇒ ∃ (x, y) ∈ R2, C =

(
x y
−x −y

)

Alors : CA =

(
x x
−x −x

)
.

Conclusion. Soit C ∈ M2 (R). On a :
[
AC = 0M2(R) ∧ CA = 0M2(R)

]
⇐⇒

[
∃ y ∈ R, C =

(
0 y
0 −y

)]
.
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Exercice 3. — (Commutant d’une matrice diagonale dans M2 (K)). Déterminer le commutant

de la matrice A =

(
a 0
0 b

)
(a et b réels distincts), c’est-à-dire l’ensemble des matrices M ∈ M2 (K) telles

que AM = MA.

Soit M =

(
x y
z t

)
∈ M2 (R). On a :

AM =

(
ax ay
bz bt

)
et MA =

(
ax by
az bt

)
On a : [AM = MA] ⇐⇒ [bz = az ∧ ay = by] ⇐⇒ [z = 0 ∧ y = 0]

Conclusion. Soit M ∈ M2 (R). On a : [AM = MA] ⇐⇒
[
∃ (x, t) ∈ R2, M =

(
x 0
0 t

)]
.

Exercice 4. — (Commutant d’une matrice). Soit A la matrice
(

0 1
1 0

)
. Déterminer toutes les

matrices de M2 (K) qui commutent avec A, c’est-à-dire l’ensemble des matrices M de M2 (K) telles que
AM = MA. ∗

Soit M =

(
x y
z t

)
∈ M2 (R). On a :

AM =

(
ax ay
bz bt

)
et MA =

(
ax by
az bt

)
On a : [AM = MA] ⇐⇒ [bz = az ∧ ay = by] ⇐⇒ [z = 0 ∧ y = 0]

Conclusion. Soit M ∈ M2 (R). On a : [AM = MA] ⇐⇒
[
∃ (x, t) ∈ R2, M =

(
x 0
0 t

)]
.

Exercice 5. — (Commutant d’une matrice diagonale, cas général). Soient λ1,. . ., λn n réels
distincts, et D la matrice diagonale diag(λ1, . . . , λn). Déterminer les matrices de Mn (R) qui commutent
avec D.

Soient λ1,. . ., λn n scalaires distincts. Notons D = diag (λ1, . . . , λn).
Une matrice M = (mij)1⩽i,j⩽n est dans le commutant de D si et seulement si MD = DM .

Or : MD = DM ⇐⇒ ∀ (i, j) ∈[[ 1, n ]]2, (MD)ij = (DM)ij

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]2,
n∑

k=1

mikdkj =
n∑

k=1

dikmkj

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]2, mijdjj = diimij

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]2, mijλj = λimij

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]2, (λj − λi)mij = 0

D’où, puisque l’on a supposé les λi distincts : ∀ (i, j) ∈[[ 1, n ]]2, i ̸= j =⇒ mij = 0

∗. L’ensemble de ces matrices est appelé le commutant de la matrice A.
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On en déduit que les matrices M commutant avec D sont celles dont tous les coefficients situés en dehors
de la diagonale (i ̸= j) sont nuls ; en d’autres termes, ce sont exactement les matrices diagonales de Mn (K).

Conclusion : le commutant de D est l’ensemble des matrices diagonales de Mn (K).

Exercice 6. — (Commutant d’une matrice, encore). Soient A ∈ Mn (K). On note COM(A) le
commutant de la matrice A, que l’on ne présente plus. Montrer que (COM(A),+) est un groupe.

Il suffit de vérifier les quatre axiomes assurant que (COM(A),+) est un sous-groupe de (Mn (K) ,+).

Les axiomes SG1 (COM(A) ⊂ Mn (K)) et SG2 (0Mn(K) ∈ COM(A)) sont évidemment réalisés.

Il est à peine moins évident de vérifier que COM(A) est stable par somme (SG3) :

Si M et N ∈ COM(A), alors : (M +N)A = MA+NA = AM + AN = A(M +N). D’où :
(M +N) ∈ COM(A)

Enfin, COM(A) est stable par passage à l’opposé (SG4) :

Si M ∈ COM(A), alors : (−M)A = −(MA) = −(AM) = A× (−M). D’où : (−M) ∈ COM(A)

Conclusion. COM(A) est une partie de Mn (K), contenant 0Mn(K) (l’élément neutre pour l’addition dans
Mn (K)), stable par somme et par passage à l’opposé. Il s’ensuit que (COM(A),+) est un sous-groupe de
(Mn (K) ,+).

En particulier, (COM(A),+) est un groupe (abélien).

Exercice 7. — Dans chacun des cas suivants, calculer An pour tout entier naturel n.

1/ Soit A =

(
0 b
0 0

)
. La matrice A est nilpotente puisque A2 = 0M2(K)

Conclusion. A0 = I2 ; A1 = A ; et An = 0M2(K) pour tout entier n ⩾ 2.

2/ Soit A =

(
a b
0 a

)
.

On a : A = aI2 +B, avec B =

(
0 b
0 0

)
matrice de la question précédente.

Puisque les matrices aI2 et B commutent, on peut utiliser la formule du binôme de Newton pour calculer
An.

Soit n un entier naturel, on a :

An =
n∑

k=0

(
n

k

)
Bk (aI2)

n−k =
n∑

k=0

(
n

k

)
an−kBk =

1∑
k=0

(
n

k

)
an−kBk = anI2 + nan−1B

Conclusion. ∀n ∈ N, An =

(
an nan−1b
0 an

)
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3/ Soit A =

(
4 1
1 4

)
.

On a : A = 3I2 +B, avec B =

(
1 1
1 1

)
.

On peut vérifier par récurrence que : ∀n ∈ N∗, Bn = 2n−1B.
Puisque les matrices 3I2 et B commutent, on peut utiliser la formule du binôme de Newton pour calculer
An.

Soit n un entier naturel, on a :

An =
n∑

k=0

(
n

k

)
Bk (3I2)

n−k =
n∑

k=0

(
n

k

)
3n−kBk = 3nI2 +

n∑
k=1

(
n

k

)
3n−k2k−1B = 3nI2 +

5n − 3n

2
B

Conclusion. ∀n ∈ N, An =
1

2

(
5n + 3n 5n − 3n

5n − 3n 5n + 3n

)

4/ Soit A =

 1 a b
0 1 c
0 0 1

.

On a : A = I3 +B, avec B =

 0 a b
0 0 c
0 0 0

.

On peut observer que B est nilpotente puisque :

B2 =

 0 0 ac
0 0 0
0 0 0

 et B3 = 0M3(R)

Puisque les matrices I3 et B commutent, on peut utiliser la formule du binôme de Newton pour calculer
An.

Soit n un entier naturel, on a :

An =
n∑

k=0

(
n

k

)
Bk (I3)

n−k =
n∑

k=0

(
n

k

)
Bk =

2∑
k=0

(
n

k

)
Bk = I3 + nB +

n(n− 1)

2
B2

Conclusion. ∀n ∈ N, An =

 1 na nb+ n(n− 1)ac/2
0 1 nc
0 0 1



5/ Soit A =

 1 1 0
0 1 0
0 0 2

.

On a : A = D +B, avec D = diag(1, 1, 2) et B =

 0 1 0
0 0 0
0 0 0

.

On peut observer que B est nilpotente puisque : B2 = 0M3(R).

En outre, on peut vérifier que BD = DB.

On peut donc utiliser la formule du binôme de Newton pour calculer An.
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Soit n un entier naturel, on a :

An =
n∑

k=0

(
n

k

)
BkDn−k =

n∑
k=0

(
n

k

)
Bkdiag

(
1, 1, 2n−k

)
=

1∑
k=0

(
n

k

)
Bkdiag

(
1, 1, 2n−k

)
= diag (1, 1, 2n) + nBdiag

(
1, 1, 2n−1

)︸ ︷︷ ︸
=B

Conclusion. ∀n ∈ N, An =

 1 n 0
0 1 0
0 0 2n


Exercice 8. — Pour θ ∈ R, on pose A (θ) =

(
cos (θ) −sin (θ)
sin (θ) cos (θ)

)
. Calculer A (θ)A (φ), puis en

déduire (A (θ))n pour tout entier naturel n.

En utilisant les formules d’addition pour le cos et le sin, on vérifie que : A (θ)A (φ) = A (θ + φ).

Par une récurrence immédiate, on en déduit que : ∀n ∈ N, (A (θ))n = A (nθ)

Exercice 9. — On considère les matrices B =

 1 1 1
1 1 1
1 1 1

 et C =

 3 1 1
1 3 1
1 1 3

. Calculer Bn puis

Cn pour tout entier naturel n.

Par une récurrence immédiate, on montre que : ∀n ∈ N∗, Bn = 3n−1B (et B0 = I3).

Par ailleurs, on a : C = 2I3 +B.

Puisque les matrices 2I3 et B commutent, on peut utiliser la formule du binôme de Newton pour calculer
Cn.

Soit n un entier naturel non nul, on a :

Cn =
n∑

k=0

(
n

k

)
Bk (2I3)

n−k =
n∑

k=0

(
n

k

)
2n−kBk = 2nI3 +

n∑
k=1

(
n

k

)
2n−k3k−1B = 2nI3 +

5n − 2n

3
B

Conclusion. ∀n ∈ N∗, Cn = 2nI3 +
5n − 2n

3
B (et C0 = I3).
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Exercice 10. — (Racines carrées de la matrice nulle).
Déterminer toutes les matrices M ∈ M2 (C) telles que : M2 = 0M2(C).

Soit M =

(
a b
c d

)
∈ M2 (C). On a : M2 =

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
.

Par suite :

M2 = 0M2(C) ⇐⇒


a2 + bc = 0
b(a+ d) = 0
c(a+ d) = 0
d2 + bc = 0

⇐⇒


a2 + bc = 0
b(a+ d) = 0
c(a+ d) = 0
a2 = d2

⇐⇒


a2 + bc = 0
b(a+ d) = 0
c(a+ d) = 0
d = ±a

Premier cas — b = 0. Alors a = 0 (L1), d = 0 (L4). Il n’y a aucune condition sur c.

On en déduit que les matrices :
(

0 0
c 0

)
(avec c ∈ C) ont un carré égal à 0M2(C).

Deuxième cas — b ̸= 0. Alors a+d = 0 (L2). D’où : M2 = 0M2(C) ⇐⇒
{

a2 + bc = 0
d = −a

⇐⇒
{

c = −a2/b
d = −a

On en déduit que les matrices :
(

a b
−a2/b −a

)
(avec a ∈ C et b ∈ C∗)ont un carré égal à 0M2(C).

Conclusion. Soit M ∈ M2 (C). On a :[
M2 = 0M2(C)

]
⇐⇒

[(
∃ c ∈ C, M =

(
0 0
c 0

))
ou

(
∃ (a, b) ∈ C× C∗, M =

(
a b

−a2/b −a

))]
Remarque. Ceci signifie en particulier que l’équation X2 = 0M2(C) admet dans M2 (C) une infinité de
solutions.

Exercice 11. — (Racines carrées de la matrice identité).
Déterminer toutes les matrices M ∈ M2 (C) telles que : M2 = I2.

Soit M =

(
a b
c d

)
∈ M2 (C). On a : M2 =

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
.

Par suite :

M2 = I2 ⇐⇒


a2 + bc = 1
b(a+ d) = 0
c(a+ d) = 0
d2 + bc = 1

⇐⇒


a2 + bc = 1
b(a+ d) = 0
c(a+ d) = 0
d = ±a

Premier cas — b = 0. Alors : M2 = I2 ⇐⇒

 a = ±1
c(a+ d) = 0
d = ±1

Premier sous-cas — c = 0. Alors : M2 = I2 ⇐⇒
{

a = ±1
d = ±1

On en déduit que : M =

(
±1 0
0 ±1

)
(quatre matrices solutions).
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Deuxième sous-cas — c ̸= 0. Alors : M2 = I2 ⇐⇒
{

a = ±1
d = ∓1

On en déduit que : M =

(
1 0
c −1

)
(avec c ∈ C), ou M =

(
−1 0
c 1

)
(avec c ∈ C).

Deuxième cas — b ̸= 0. Alors : M2 = I2 ⇐⇒
{

a2 + bc = 1
d = −a

⇐⇒
{

c = (1− a2) /b
d = −a

On en déduit que : M =

(
a b

(1− a2) /b −a

)
(avec a ∈ C et b ∈ C∗).

Conclusion. L’ensemble des matrices M ∈ M2 (C) telles que M2 = I2 est :

{I2,−I2, diag(1,−1), diag(−1, 1)} ∪
{(

1 0
c −1

)
, c ∈ C

}
∪
{(

−1 0
c 1

)
, c ∈ C

}
∪
{(

a b
(1− a2) /b −a

)
, (a, b) ∈ C× C∗

}
Remarque. Ceci signifie en particulier que l’équation X2 = I2 admet dans M2 (C) une infinité de solu-
tions. . .

Exercice 12. — (Racines carrées d’une matrice).

Déterminer toutes les matrices M ∈ M2 (R) telles que : M2 =

(
−5 −4
6 −5

)
. La réponse change t-elle si

l’on considère M ∈ M2 (C) ?

A venir !

Matrices inversibles

Exercice 13. — Lorsque c’est possible, calculer l’inverse de la matrice A dans chacun des cas suivants :

1/ A =

(
1 1
0 1

)
On a : detA = 1 ̸= 0. Donc A ∈ GL2 (K) et A−1 =

(
1 −1
0 1

)
.

2/ A =

(
1 1
1 1

)
On a : detA = 0. Donc A /∈ GL2 (K).

3/ A =

(
2 3
4 5

)
On a : detA = −2 ̸= 0. Donc A ∈ GL2 (K) et A−1 =

1

−2

(
5 −3
−4 2

)
.

4/ A =

(
1 −1
−2 2

)
On a : detA = 0. Donc A /∈ GL2 (K).
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5/ A =

(
1 0
0 0

)
On a : detA = 0. Donc A /∈ GL2 (K).

6/ A =

(
0 1
1 0

)
On a : detA = −1 ̸= 0. Donc A ∈ GL2 (K) et A−1 = A.

Exercice 14. — Calculer l’inverse (lorsque c’est possible) de la matrice A dans chacun des cas suivants :

1/ A =

 1 0 1
0 1 0
0 0 1


A ∈ GL3 (K) et A−1 =

 1 0 −1
0 1 0
0 0 1



2/ A =

 1 0 1
0 1 0
1 0 1


A /∈ GL3 (K) (A possède deux lignes égales)

3/ A =

 1 1 1
1 1 1
1 1 1


A /∈ GL3 (K) (A possède deux lignes égales)

4/ A =

(
ch(t) sh (t)
sh (t) ch(t)

)
(avec t réel quelconque)

On a : detA = 1 ̸= 0. † Donc A ∈ GL2 (K) et A−1 =

(
ch(−t) sh (−t)
sh (−t) ch(−t)

)
.

5/ A =

 1 2 −1
2 1 3
2 2 1


A ∈ GL3 (K) et A−1 =

 −5 −4 7
4 3 −5
2 2 −3


†. Selon la relation fondamentale de la trigonométrie hyperbolique : ch2 − sh 2 = 1.
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6/ A =

 1 3 12
−1 −1 16
0 −2 7



A ∈ GL3 (K) et A−1 =
1

70

 25 −45 60
7 7 −28
2 2 2



7/ A =

 1 2 3
1 −1 0
2 1 3


A /∈ GL3 (K) (la dernière colonne de A est la somme des deux premières).

8/ A =
1

3

 2 2 −1
−1 2 2
2 −1 2



A ∈ GL3 (K) et A−1 =
1

3

 2 −1 2
2 2 −1
−1 2 2



9/ A =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1



A ∈ GL5(K) et A−1 =


1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1



Exercice 15. — On considère la matrice de M4 (R) suivante : A =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

.

1) Montrer que A est inversible et calculer A−1 (en utilisant la méthode “AX=B”).

A est inversible et A−1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


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2) Une autre méthode pour le calcul de A−1.

a) Calculer A2, et vérifier que A2 = −I4.
RAS.

b) Déduire de la question précédente que A est inversible, et préciser A−1.

D’après la question précédente, on a : A4 = I4.

Conclusion. A est inversible, et A−1 = A3.

Exercice 16. — Soit A =

 2 −1 2
5 −3 3
−1 0 −2

.

1/ Calculer (A+ I)3.

On obtient : A+ I =

 3 −1 2
5 −2 3
−1 0 −1

, puis (A+ I)3 = 0M3(K).

2/ Déduire de la question précédente que A est inversible et calculer son inverse.

Les matrices A et I commutent. D’après la formule du binôme de Newton, on a :

(A+ I)3 = A3 + 3A2 + 3A+ I

On en déduit, avec la question précédente, que :

A3 + 3A2 + 3A+ I = 0M3(K) ⇐⇒ A3 + 3A2 + 3A = −I ⇐⇒ A× (−A2 − 3A− 3I) = I

Conclusion. A est inversible, et A−1 = −A2 − 3A− 3I.

Exercice 17. — Soit A une matrice de Mn (K) telle que : A4 +2A2 +5A− In = 0. Montrer que A est
inversible, et exprimer son inverse en fonction de A.

D’après l’énoncé :

A4 + 2A2 + 5A = In ⇐⇒ A (A3 + 2A+ 5In) = In

Conclusion. A est inversible, et A−1 = A3 + 2A+ 5In.

Exercice 18. — On considère la matrice M (a, b) =

 a b b
b a b
b b a

 où a et b sont deux réels.

1/ Calculer M2 (a, b).

2/ Montrer qu’il existe deux réels α et β tels M2 (a, b) = αI3 + βM (a, b).

3/ Déduire de la question précédente à quelle(s) condition(s) sur les réels a et b la matrice M (a, b) est
inversible. Et lorsque c’est possible, expliciter alors (M (a, b))−1.
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Exercice 19. — Soit M =

 −1 1 1
1 −1 0
−1 0 −1

.

1) Pour n entier naturel non-nul, calculer (M + I3)
n.

On a :

(M + I3)
0 = I3 ; (M + I3) =

 0 1 1
1 0 0
−1 0 0

 ; (M + I3)
2 =

 0 0 0
0 1 1
0 −1 −1

 ; (M + I3)
3 = 0M3(K)

On déduit du dernier calcul que (M + I3)
n = 0M3(K) pour tout entier naturel n ⩾ 3.

2) Déduire de la question précédente que M est inversible, et expliciter son inverse.

D’après la question précédente :

M3 + 3M2 + 3M + I = 0M3(K) ⇐⇒ M3 + 3M2 + 3M = −I ⇐⇒ M × (−M2 − 3M − 3I) = I

Conclusion. M est inversible, et M−1 = −M2 − 3M − 3I.

3) Déterminer Mn pour tout entier naturel n.

A voir plus tard, dans le chapitre sur les polynômes.
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Matrices semblables (“B = P−1AP ”)

Exercice 20. — On considère les matrices de M3 (R) suivantes :

A =

 1 2 −2
0 2 1
0 0 3

 ; P =

 1 2 0
0 1 1
0 0 1

 et Q =

 1 −2 2
0 1 −1
0 0 1


1) Calculer P−1.

2) Vérifier que P−1AP est une matrice diagonale.

3) Déterminer An pour tout entier naturel n.

Exercice 21. — (CB1, partie spécifique aux PCSI). Dans cette partie, on cherche à déterminer
le terme général de la suite réelle (un) satisfaisant la relation (⋆) suivante

(⋆) u0 = 3, u1 = 5, u2 = 8 et ∀n ∈ N, un+3 − 4un+2 + 5un+1 − 2un = 0.

On suppose que la suite (un) vérifie la relation (⋆). On pose pour tout entier naturel n : Xn =

un+2

un+1

un

.

1) Montrer qu’il existe une matrice A ∈ M3(R) que l’on explicitera telle que : ∀n ∈ N, Xn+1 = AXn.
2) Etablir par récurrence que : ∀n ∈ N, Xn = AnX0. Que vaut X0 ?

3) On pose P =

4 1 1
2 1 0
1 1 −1

. Montrer que P est inversible et déterminer son inverse.

4) Soit T = P−1AP . Vérifier que T = D +N où D =

2 0 0
0 1 0
0 0 1

 et N =

0 0 0
0 0 1
0 0 0

 .

5) Etablir que : ∀n ∈ N, An = PT nP−1.
6) En déduire l’expression de un en fonction de n.

Indication : vous avez montré précédemment que pour tout n ∈ N, Xn = AnX0 = PT nP−1X0. Com-
mencez par calculer P−1X0, puis multipliez à gauche par T n, puis multipliez à gauche par P . . .

Exercice 22. — On note : A =

 2 3 −1
3 6 −3
5 9 −4

 et P =

 1 1 1
0 1 −1
1 2 −1

.

1) Montrer que P est inversible et calculer P−1.
2) Calculer D = P−1AP , et vérifier que D est diagonale.
3) Etablir que : ∀n ∈ N, An = PDnP−1.
4) Etude du commutant de A. Dans cette question, on cherche à déterminer le commutant de la

matrice A, càd l’ensemble noté COM(A) des matrices M ∈ M3 (R) telles que AM = MA.
a) Soit M ∈ M3 (R) quelconque. On pose N = P−1MP . Montrer que : [AM = MA] ⇐⇒ [ND = DN ].
b) Déterminer COM (D). En déduire COM (A).
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Matrices symétriques et antisymétriques

Exercice 23. — Dans chacun des cas suivants, écrire M sous la forme S +A avec S symétrique et A
antisymétrique.

1) M =

(
1 3
1 4

)
2) M =

(
ch(t) ch(t)
sh (t) −sh (t)

)
3) M =

 1 2 −3
−4 2 0
1 −2 −2



Exercice 24. — (Généralisation – Matrices symétriques et antisymétriques dans Mn (R)).
Dans cet exercice, n désigne un entier supérieur ou égal à 2.

1/ Ecrire la forme générale d’une matrice symétrique dans Mn (R), puis celle d’une matrice antisymétrique
de Mn (R).

2/ A l’aide de ce qui précède, montrer que toute matrice symétrique (resp. antisymétrique) peut s’écrire
comme combinaison linéaire de sn (resp. an) matrices. Exprimer sn et an en fonction de n.

Divers

Exercice 25. — (Calcul matriciel et Python – Résolution de systèmes 2 × 2). Ecrire un

programme chargé de faire pour vous la résolution d’un système linéaire de la forme :
{

ax1 + bx2 = b1
cx1 + dx2 = b2

Concrètement, le programme devra demander à l’utilisateur les valeurs de a, b, c, d, b1 et b2 et renvoyer
un message du genre “Pas d’unicité de la solution” lorsque c’est le cas, et renvoyer l’unique couple solution
sinon.

Exercice 26. — Soit A une matrice nilpotente de Mn (K), c’est-à-dire telle que Am = 0 pour un
certain entier naturel m.

1) Montrer que In − A est inversible, et expliciter son inverse.

2) En déduire l’inverse de la matrice A =

 1 −1 −1
0 1 −1
0 0 1

.

Exercice 27. — Soit M ∈ M3 (R) telle que : M × tM ×M = I3.
Montrer que M est inversible. Puis montrer que M est symétrique.

Exercice 28. — Soit n un entier ⩾ 2, et soit ω ∈ Un, avec ω ̸= 1.
On définit une matrice A = (aij) ∈ Mn (C) en posant aij = ω(i−1)(j−1).

1/ Calculer AĀ (où Ā désigne la matrice conjuguée de C, définie en posant : Ā = (aij)).

2/ En déduire que A est inversible, et expliciter A−1.
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Exercice 29. — Etablir qu’il existe exactement 125 matrices M de M4(C), que l’on précisera, telles
que :

M5 =


32 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 1



Exercice 30. — Dans M9 (K), on considère l’ensemble F des matrices dont les sommes des coefficients
de chaque colonne sont égales.
Montrer qu’il existe 73 matrices de M9 (K) telle que toute matrice de F est combinaison linéaire de celles-ci.


