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I. Les ensembles de matrices

I.1. Généralités.

Définition. Une matrice à n lignes et p colonnes à coefficients dans K est une famille
(aij)i∈ [[1,n]]; j∈ [[1,p]] d’éléments de K.

L’ensemble de ces matrices est noté Mnp (K).

On peut se représenter une matrice A = (aij)i∈ [[1,n]]; j∈ [[1,p]] de Mnp (K) comme un tableau de scalaires à n

lignes et p colonnes :

A =


a11 a12 · · · a1p
a21 a22 · · · a2p
...

... . . . ...
an1 an2 · · · anp


Exemples et cas particuliers :

1/ A =

(
1 2 4
3 5 6

)
∈ M23 (K) ; B =


1 2
3 4
5 6
7 8

 ∈ M42 (K) ; et C =

 1 2 3
5 6 7
7 8 9

 ∈ M3 (K). 1

2/ La matrice nulle de Mnp (K) est celle dont tous les coefficients sont nuls ; pour éviter les confusions,
elle est notée 0Mnp(K).

1. Lorsque n et p sont égaux, on notera Mn (K) plutôt que Mnn (K).
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3/ La matrice
(

1 0
0 1

)
est appelée matrice identité de M2 (K), et est notée I2. La matrice

 1 0 0
0 1 0
0 0 1


est appelée matrice identité de M3 (K), et est notée I3. Plus généralement, la matrice identité de
Mn (K), notée In, est une matrice carrée à n lignes et n colonnes dont les coefficients diagonaux sont
égaux à 1, et les autres sont nuls.

4/ Une matrice colonne (resp. ligne) est un élément de Mn,1 (K) (resp. M1,p (K)).

I.2. Opérations sur les matrices.

Remarque. Jusqu’à la fin de ce chapitre, pour une matrice A ∈ Mnp (K), on notera A = (aij) plutôt que
A = (aij)i∈ [[1,n]], j∈ [[1,p]].

I.2.1. Somme de deux matrices de Mnp (K).

Définition. Soient A = (aij) et B = (bij) deux matrices de Mnp (K). On définit la somme des
matrices A et B et on note A+B la matrice de Mnp (K) telle que :

∀ (i, j) ∈ [[ 1, n ]] × [[ 1, p ]], (A+B)ij = aij + bij

Exemple :
(

1 2 4
3 5 6

)
+

(
0 3 −1
2 1 −2

)
=

(
1 5 3
5 6 4

)
Propriétés. Soient A, B et C trois matrices quelconques de Mnp (K).

1/ LCI : A+B ∈ Mnp (K)

2/ Associativité : (A+B) + C = A+ (B + C)

3/ Elément neutre : A+ 0Mnp(K) = A = 0Mnp(K) + A

4/ Inverse : A+ (−A) = 0Mnp(K) = (−A) + A (en ayant noté (−A) = (−aij) ∈ Mnp (K))

5/ Commutativité : A+B = B + A

En d’autres termes : (Mnp (K) ,+) est un groupe abélien.

Remarque : pour A ∈ Mnp (K), la matrice (−A) est appelée matrice opposée de A.

I.2.2. Multiplication par un scalaire dans Mnp (K). .

Définition. Soient A = (aij) et λ ∈ K. On définit la matrice λA comme la matrice de Mnp (K) telle
que :

∀ (i, j) ∈ [[ 1, n ]] × [[ 1, p ]], (λA)ij = λaij

Exemple : 3
(

1 2 4
3 5 6

)
=

(
3 6 12
9 15 18

)
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ã Un mot sur les combinaisons linéaires. Si (Ak)k∈[[1;m]] est une famille d’éléments de Mnp (K), une

combinaison linéaire de ces matrices s’écrit
m∑
k=1

λkAk, les λk étant des scalaires quelconques. Par exemple,

toute matrice de M2,2 (K) s’écrit comme combinaison linéaire de quatre matrices (appelées matrices élémen-
taires), explicitement :(

a b
c d

)
= a

(
1 0
0 0

)
︸ ︷︷ ︸

E11

+ b

(
0 1
0 0

)
︸ ︷︷ ︸

E12

+ c

(
0 0
1 0

)
︸ ︷︷ ︸

E21

+ d

(
0 0
0 1

)
︸ ︷︷ ︸

E22

Dans cette situation, nous dirons un peu plus tard que la famille {E11, E12, E21, E22} est une base du K-espace
vectoriel M2 (K). 2

I.2.3. Produit matriciel.

Définition. Soient A ∈ Mnp (K) et B ∈ Mpq (K).
On définit la matrice produit A× B (ou AB) comme la matrice de Mnq (K) telle que :

∀ (i, j) ∈ [[ 1, n ]] × [[ 1, q ]], (AB)ij =

p∑
k=1

aikbkj

Remarque 1. Dans un sens qui sera rendu plus précis au second semestre, le coefficient (AB)ij est le
produit scalaire de la i-ème ligne de A et de la j-ème colonne de B.

Remarque 2. Le produit de deux matrices A×B est défini si et seulement si le nombres de colonnes de A
est égal au nombre de lignes de B. Explicitement, en posant :

A =

(
1 2 4
3 5 6

)
et B =

 1 1 0
0 −1 1
1 0 0


le produit AB est défini tandis que le produit BA ne l’est pas !

Au passage d’ailleurs, on a : AB =

(
5 −1 2
9 −2 5

)
.

Il se peut encore que les produits AB et BA soient simultanément définis, mais ne soient pas de même
format. Pour illustrer cette affirmation, considérons les matrices :

A =
(
1 2 4

)
et B =

 1
0
1


Dans cette situation, les produits AB et BA existent, mais : AB ∈ M1(K) tandis que BA ∈ M3 (K).
Explicitement :

AB =
(
5
)

et BA =

 1 2 4
0 0 0
1 2 4


2. Pour vous donner des exemples plus familiers,

{−→
i ,

−→
j
}

est une base de R2 ;
{−→
i ,

−→
j ,

−→
k
}

est une base de R3.
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En résumé, dans un produit matriciel, il faut faire très attention à l’ordre !

Remarque 3. Lorsque le produit AB est défini, la matrice AB hérite du nombre de lignes de A et
du nombre de colonnes de B.

(Propriétés du produit matriciel). Sous réserve que les produits suivants soient définis, on a :

1/ A (BC) = (AB)C (associativité)

2/ A (B + C) = AB + AC (distributivité par rapport à la somme)

3/ (λA)B = λ (AB) = A (λB) (compatibilité avec la multiplication par un scalaire)

Remarque. Attention ! ! ! Le produit matriciel n’est pas commutatif.

Un exemple pour illustrer cette affirmation : on pose

A =

(
1 0
0 2

)
et B =

(
0 1
0 0

)

On a alors :

AB =

(
0 1
0 0

)
tandis que BA =

(
0 2
0 0

)

I.2.4. Transposée d’une matrice.

Définition. Soit A ∈ Mnp (K). La transposée de A, notée tA est la matrice de Mpn (K) définie en
posant : ∀ i ∈[[ 1; p ]], ∀ j ∈[[ 1;n ]], (tA)ij = Aji.

Informellement, la transposée de A est obtenue en “écrivant en colonnes les lignes de A”.

Exemple. En posant A =

(
1 2 4
3 5 6

)
, on a : tA =

 1 3
2 5
4 6

.

Propriétés de la transposée.

1/ ∀ (λ, µ) ∈ K2, ∀ (A,B) ∈ Mnp (K)2 , t (λA+ µB) = λ tA+ µ tB (linéarité)

2/ ∀A ∈ Mnp (K) , t (tA) = A

3/ ∀A ∈ Mnp (K) , ∀B ∈ Mpq (K) (K) , t (AB) = tB tA.
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II. Matrices carrées

II.1. L’anneau Mn (K).

Une matrice est carrée lorsqu’elle a autant de lignes que de colonnes (“n = p′′).

Le groupe abélien des matrices carrées à n lignes et n colonnes (de taille n) à coefficients dans K est noté
Mn (K) (plutôt que Mn,n (K)).

La matrice identité de Mn (K), notée In, est la matrice n’ayant que des 1 sur sa diagonale, des 0 partout
ailleurs. Plus précisément :

∀ (i, j) ∈ ([[ 1;n ]])2 , (In)ij = 1 si i = j, et 0 sinon.

Notation. Pour faire plus court, on peut réécrire la définition précédente en utilisant le symbole de
Kronecker :

∀ (i, j) ∈ ([[ 1;n ]])2 , (In)ij = δij

le symbole de Kronecker δij étant défini comme l’entier égal à 1 lorsque i = j, nul sinon.

La matrice In est l’élément neutre pour la multiplication dans Mn (K), càd :

∀ A ∈ Mn (K) , AIn = InA = A

Conséquence. La matrice In, et plus généralement la matrice λIn (λ ∈ K) commutent avec toute matrice
de Mn (K), dans le sens où :

∀λ ∈ K, ∀ A ∈ Mn (K) , A (λIn) = (λIn)A = λA

Propriété. (Mn (K) ,+,×) est un anneau (non commutatif et non intègre pour n ⩾ 2).
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Pour illustrer le fait que l’anneau Mn (K) n’est ni commutatif, ni intègre, considérons les matrices suivantes :

A =

(
1 0
0 0

)
et B =

(
0 1
0 0

)
On a alors :

A ̸= 0M2(K) ; B ̸= 0M2(K) ; AB =

(
0 1
0 0

)
; BA =

(
0 0
0 0

)
On peut en conclure que M2 (K) n’est ni commutatif (AB ̸= BA), ni intègre (BA = 0M2(K) avec A et B non
nulles). Cet exemple se généralise à Mn (K) avec n ⩾ 2 (il suffit de rajouter suffisamment de zéros !).

II.2. Sous-anneaux remarquables de Mn (K).

Définitions. Une matrice carrée est :

ä diagonale lorsque tous ses coefficients sont nuls en dehors de la diagonale.
Explicitement, une matrice diagonale est une matrice D ∈ Mn (K) telle que :

∀ (i, j) ∈ [[ 1, n ]]2, [i ̸= j] =⇒ [dij = 0]

ä triangulaire supérieure lorsque :

∀ (i, j) ∈ [[ 1;n ]]2, (i > j) ⇒ (aij) = 0

ä triangulaire inférieure lorsque :

∀ (i, j) ∈ [[ 1;n ]]2, (i < j) ⇒ (aij) = 0

Informellement, une matrice triangulaire supérieure (resp. inférieure) est une matrice carrée dont tous les
coefficients situés strictement en-dessous (resp. au-dessus) de la diagonale sont nuls.

Exemples.

Dans M3 (K), les matrices :

 2 0 0
0 −1 0
0 0 3

,

 2 1 4
0 −1 2
0 0 3

,

 0 1 0
0 0 1
0 0 0

 sont triangulaires supérieures.

Dans M3 (K), les matrices :

 2 0 0
0 −1 0
0 0 3

,

 2 0 0
4 −1 0
7 2 3

,

 0 0 0
−1 0 0
0 1 0

 sont triangulaires inférieures.

La matrice identité In et la matrice nulle 0Mn(K) sont des matrices triangulaires supérieures et inférieures.

Plus généralement, toute matrice diagonale est une matrice triangulaire supérieure et inférieure.

Enfin, en général, une matrice triangulaire supérieure s’écrit :


a11 a12 · · · a1n
0 a22 · · · a2n
...

... . . . ...
0 0 · · · ann



Tandis qu’une matrice triangulaire inférieure s’écrit :


a11 0 · · · 0
a21 a22 · · · 0
...

... . . . ...
an1 an2 · · · an


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Notations : notons Dn (K), T+
n (K) et T−

n (K) les ensembles des matrices diagonales, triangulaires supé-
rieures et triangulaires inférieures de Mn (K) respectivement.

On peut observer que : T+
n (K) ∩ T−

n (K) = Dn (K) .

Propriété. (Dn (K) ,+,×),
(
T+

n (K) ,+,×
)

et
(
T−

n (K) ,+,×
)

sont des sous-anneaux de
(Mn (K) ,+,×).
En outre, l’anneau (Dn (K) ,+,×) est commutatif pour tout n ∈ N∗.
Enfin, pour n ⩾ 2, aucun de ces anneaux n’est intègre, et les anneaux T+

n (K) et T−
n (K) ne sont pas

commutatifs.

Remarque. On a déjà évoqué de nombreuses fois la non-commutativité du produit matriciel. Pour ne pas
radoter, l’essentiel à retenir de la propriété ci-dessus est que :

ä le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure ;

ä le produit de deux matrices diagonales est particulièrement simple à effectuer :

diag (λ1, . . . , λn)× diag (µ1, . . . , µn) = diag (λ1µ1, . . . , λnµn)

II.3. Calcul de AN .

Soit A ∈ Mn (K), et soit N un entier naturel. On définit la matrice AN en posant :

A0 = In, et pour tout N ∈ N∗, AN = A× AN−1

II.3.1. Cas triviaux.

Il existe quelques cas où le calcul de AN est particulièrement simple :

ä ∀N ∈ N, INn = In

ä ∀ N ∈ N, [diag (λ1, . . . , λn)]
N = diag

(
λN
1 , . . . , λ

N
n

)
ä Lorsque A est nilpotente, AN et nulle à partir d’un certain entier naturel. Par exemple, si :

A =

 0 1 2
0 0 3
0 0 0

, alors A3 = 0M3(K)

D’où : AN = 0M3(K) pour tout entier N ⩾ 3.

Plus généralement, toute matrice triangulaire stricte (càd triangulaire avec des coefficients diagonaux tous
nuls) est nilpotente.
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II.3.2. Par récurrence.

En-dehors des cas évidents du paragraphe précédent, une autre méthode pour calculer AN consiste à prouver
une formule (donnée dans l’énoncé ou conjecturée) par récurrence sur N .

Exemple 1. ∀n ∈ N,
(

1 α
0 1

)n

=

(
1 nα
0 1

)
.

Exemple 2. ∀n ∈ N,
(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)
=

(
cos (nθ) − sin (nθ)
sin (nθ) cos (nθ)

)
.

La preuve de l’hérédité dans ce cas est fournie par le fait que :(
cos (θ) − sin (θ)
sin (θ) cos (θ)

)(
cos (φ) − sin (φ)
sin (φ) cos (φ)

)
=

(
cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)

Exemple 3. ∀n ∈ N∗,

(
1 1
1 1

)n

= 2n−1

(
1 1
1 1

)
.

Exemple 4. ∀n ∈ N∗,

 1 1 1
1 1 1
1 1 1

n

= 3n−1

 1 1 1
1 1 1
1 1 1

.

II.3.3. Avec le binôme de Newton.

Lorsque le calcul de AN n’est pas aisé à faire par récurrence (en cas de conjecture “compliquée”), on peut
tenter d’utiliser la formule du binôme de Newton, en n’oubliant pas de vérifier l’hypothèse nécessaire à son
application.

Formule du binôme de Newton dans Mn (K). Soient A et B dans Mn (K), telles que AB = BA,
et soit N ∈ N. Alors :

(A+B)N =
N∑
k=0

(
N

k

)
AkBN−k =

N∑
k=0

(
N

k

)
AN−kBk

Exemple d’application. Posons : A =

 2 1 1
0 2 1
0 0 2

.

Observons que : A = 2I3 +B avec B =

 0 1 1
0 0 1
0 0 0

.

ä On a : B2 =

 0 0 1
0 0 0
0 0 0

 et B3 = 0M3(K). Ainsi : ∀ k ∈ N, (k ⩾ 3) =⇒
(
Bk = 0M3(K)

)
(♠). 3

ä On a : (2I3) × B = B × (2I3) (♣). En effet, toute matrice de la forme (λ I3) 4 commute avec toute
matrice de M3 (K).

3. Ainsi la matrice B est nilpotente.
4. Une telle matrice est appelée matrice scalaire.
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ä Soit N un entier naturel. On a : AN = (2I3 +B)N . Grâce à (♣), on peut utiliser la formule du binôme
de Newton pour écrire :

AN =
N∑
k=0

(
N

k

)
Bk (2I3)

n−k =
N∑
k=0

(
N

k

)
2N−kBk

D’après (♠), on a encore :

AN =
2∑

k=0

(
N

k

)
2N−kBk = 2N B0︸︷︷︸

=I3

+N2N−1B +
N(N − 1)

2
2N−2B2

Explicitement :

AN =

 2N 0 0
0 2N 0
0 0 2N

+

 0 N2N−1 N2N−1

0 0 N2N−1

0 0 0

+

 0 0 N(N − 1)2N−3

0 0 0
0 0 0


D’où finalement :

∀N ∈ N, AN =

 2N N2N−1 N (N + 3) 2N−3

0 2N N2N−1

0 0 2N


II.3.4. Et après ?

Les méthodes évoquées précédemment ne sont pas les seules permettant de calculer AN : au programme de
cette année, il en existe deux autres, que nous rencontrerons cette année dans le chapitre sur les polynômes
(au printemps), puis dans un chapitre d’algèbre linéaire (sans doute au mois de mai).

II.4. Matrices symétriques et antisymétriques.

Définition. Une matrice carrée A de Mn (K) est symétrique (resp. antisymétrique) lorsque
tA = A (resp. tA = −A)

Notations. Dans ce chapitre, nous conviendrons de noter Sn (K) et An (K) les ensembles des matrices de
Mn (K) symétriques et antisymétriques respectivement, càd :

Sn (K) = {A ∈ Mn (K) / tA = A} et An (K) = {A ∈ Mn (K) / tA = −A}

Exemples.

1/ La matrice nulle 0Mn(K) est symétrique et antisymétrique.

2/ La matrice identité In est symétrique, mais pas antisymétrique.

3/ La matrice

 1 2 3
2 0 4
3 4 5

 est symétrique mais pas antisymétrique.

4/ La matrice

 0 2 3
−2 0 4
−3 −4 0

 est antisymétrique mais pas symétrique.

5/ La matrice

 1 2 3
−2 0 4
−3 −4 5

 n’est ni symétrique ni antisymétrique.
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6/ La matrice
(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)
est symétrique (resp. antisymétrique) si θ = 0 [π] (resp. θ =

π

2
[π]) ;

ni symétrique ni antisymétrique lorsque θ ̸= 0
[π
2

]
.

Propriétés.
1/ (Sn (K) ,+) et (An (K) ,+) sont des sous-groupes de (Mn (K) ,+).

2/ Sn (K) est stable par combinaison linéaire, càd :

∀ (λ, µ) ∈ K2, ∀ (A,B) ∈ Sn (K)2 , (λA+ µB) ∈ Sn (K)

3/ An (K) est stable par combinaison linéaire, càd :

∀ (λ, µ) ∈ K2, ∀ (A,B) ∈ An (K)2 , (λA+ µB) ∈ An (K)

4/ Une matrice antisymétrique ne comporte que des zéros sur sa diagonale.

5/ La matrice nulle 0Mn(K) est la seule matrice de Mn (K) simultanément symétrique et antisymétrique,
càd :

Sn (K) ∩ An (K) =
{
0Mn(K)

}
Remarque. Attention, il n’est pas vrai en général que le produit de deux matrices symétriques est encore
une matrice symétrique. Considérons par exemple les matrices :

A =

(
1 0
0 2

)
et B =

(
0 1
1 0

)
Il est clair que A et B sont symétriques. En revanche :

AB =

(
1 0
0 2

)(
0 1
1 0

)
=

(
0 1
2 0

)
AB n’est donc pas symétrique.

D’une certaine manière, les matrices symétriques et antisymétriques jouent pour les matrices carrées le
même rôle que les fonctions paires et impaires pour les fonctions définies sur R. Cette analogie est rendue
plus explicite par l’énoncé ci-dessous, qui vous rappellera sans doute un théorème vu à l’issue du premier
chapitre du cours de cette année.

Théorème (décomposition “Symétrique + Antisymétrique”).
Toute matrice de Mn (K) s’écrit de manière unique (à l’ordre des facteurs près) comme somme d’une
matrice symétrique et d’une matrice antisymétrique.
Avec des quantificateurs :

∀ M ∈ Mn (K) , ∃! (S,A) ∈ Sn (K)× An (K) , M = S + A

Explicitement : S =
1

2

(
M + tM

)
et A =

1

2

(
M − tM

)
.
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III. Matrices inversibles

Dans ce paragraphe, on ne considère que des matrices carrées, la définition de matrice inversible nécessitant
que l’on travaille dans un anneau de matrices. 5

III.1. Généralités.

Définition. Une matrice A ∈ Mn (K) est inversible si elle est inversible pour la multipli-
cation dans Mn (K).
En d’autres termes, A ∈ Mn (K) est inversible s’il existe une matrice B ∈ Mn (K) telle que :

A× B = In et B × A = In

Notations. On a établi au chapitre 12 que lorsque A est inversible, la matrice B de la définition ci-dessus
est unique ; elle est alors appelée inverse de A, et elle est notée A−1.
Par ailleurs, on note GLn (K) l’ensemble des matrices inversibles de Mn (K).

Remarque. Avec les notations du chapitre précédent, on a : GLn (K) = Mn (K)∗. 6 l’ensemble des matrices
inversibles de Mn (K).

En particulier, on déduit de résultats généraux démontrés au chapitre 12 l’énoncé ci-dessous.

Propriétés. (GLn (K) ,×) est un groupe.
En outre, si A et B appartiennent à GLn (K), alors :

ä (A× B) ∈ GLn (K) et (A× B)−1 = B−1 × A−1

ä A−1 ∈ GLn (K) et (A−1)
−1

= A

Remarque et terminologie. Le groupe GLn (K) est appelé groupe linéaire. Il est (évidemment) non
abélien pour tout n ⩾ 2.

Par exemple, la matrice A = diag(1,−1) est inversible, et A−1 = A.

La matrice B =

(
1 1
0 1

)
est inversible, et B−1 =

(
1 −1
0 1

)
.

On a :

AB =

(
1 1
0 −1

)
et BA =

(
1 −1
0 −1

)
Puisque AB ̸= BA, cet exemple illustre que le groupe GL2 (K) est non abélien.

5. Et, si vous avez bien suivi ce qui précède, Mn (K) est un anneau (non commutatif et non intègre) ; mais Mnp (K) n’en
est pas un si n ̸= p, puisque l’on ne peut alors pas multiplier deux matrices de Mnp (K) entre elles (“pas de seconde ℓci”).

6. Pour un anneau (A,+,×), la notation A∗ désigne en effet l’ensemble des éléments inversibles pour la loi “×”.
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Avant de donner les premières méthodes relatives à ce paragraphe, on donne un énoncé d’importance cruciale
en pratique (dont la preuve sera donnée dans le cours d’algèbre linéaire).

Propriété. Soit A ∈ Mn (K).
A ∈ Mn (K) est inversible s’il existe une matrice B ∈ Mn (K) telle que :

A× B = In ou B × A = In

III.2. Matrices “évidemment” inversibles, et “évidemment” non-inversibles.

ã In est inversible et I−1
n = In. Plus généralement, pour tout scalaire λ non nul, la matrice λIn est inversible,

et (λIn)
−1 =

1

λ
In.

ã 0Mn(K) est évidemment non inversible.

ã Plus généralement, la matrice diag (λ1, . . . , λn) est inversible SSI tous les λi sont non nuls.

Lorsque tel est le cas, on a :

[diag (λ1, . . . , λn)]
−1 = diag

(
1

λ1

, . . . ,
1

λn

)

ã Pour tout scalaire α, la matrice A =

(
1 α
0 1

)
est inversible et on a A−1 =

(
1 −α
0 1

)
.

ã La matrice nulle n’est pas inversible, mais il ne suffit pas qu’une matrice soit non nulle pour être

inversible : par exemple, les matrices
(

1 1
2 2

)
et

(
0 1
0 0

)
ne sont pas inversibles (bien que non nulles).

Pour généraliser ces 2 exemples, nous démontrerons qu’une matrice A n’est pas inversible si :
— une ligne ou une colonne de A est nulle ;
— A possède deux lignes ou deux colonnes égales ;
— A possède deux lignes ou deux colonnes proportionnelles ;
— une ligne (resp. colonne) de A est combinaison linéaire des autres lignes (resp. colonnes) de A.

Par exemple, les matrices 1 2 3
1 2 3
1 0 −1

,

 1 2 −1
3 6 0
−1 −2 4

,

 1 0 1
2 −1 1
1 1 2

, et

 1 2 3
4 5 6
7 8 9


ne sont pas inversibles.
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III.3. Matrices inversibles dans M2 (K).

Théorème (Description de GL2 (K)).

Dans M2 (K), la matrice A =

(
a b
c d

)
est inversible si et seulement si ad− bc ̸= 0.

Son inverse est alors : A−1 =
1

ad− bc

(
d −b
−c a

)
.

Terminologie. Mêmes notations que dans le théorème. Le scalaire ad − bc est appelé déterminant de la
matrice A et est noté detA.

En utilisant le déterminant, le théorème précédent devient :[
A =

(
a b
c d

)
∈ GL2 (K)

]
⇐⇒ [det(A) ̸= 0]

Et lorsque detA ̸= 0 on a : A−1 =
1

det(A)

(
d −b
−c a

)

1/ La matrice A =

(
1 2
3 4

)
est inversible puisque detA = −2, et A−1 = −1

2

(
4 −2
−3 1

)
.

2/ La matrice A =

(
1 2
3 6

)
n’est pas inversible puisque detA = 0.

Pour achever ce chapitre, et anticiper sur la suite du cours de cette année, on peut citer les propriétés
suivantes du déterminant dans M2 (K).

Propriétés du déterminant dans M2 (K).

1/ ∀ (A,B) ∈ M2 (K)2 , det(AB) = det(A) det(B)

2/ ∀A ∈ M2 (K) , ∀λ ∈ K, det(λA) = λ2 det(A)

3/ ∀A ∈ GL2 (K) , det (A−1) =
1

det(A)

4/ ∀A ∈ M2 (K) , det( tA) = det(A)

III.4. Matrices inversibles et systèmes linéaires.

“Il n’y a plus qu’à” étudier le cas des matrices inversibles dans Mn (K) pour tout entier naturel n ⩾ 3. . .

Ceci passe essentiellement par l’énoncé suivant, qui fait le lien entre l’inversibilité de A et la résolution d’un
système linéaire.

Théorème (Caractérisation des éléments de GLn (K)). Soit A ∈ Mn (K).
A est inversible si et seulement si pour tout B ∈ Kn, le système AX = B admet une
(unique) solution.
Lorsque tel est le cas, l’unique solution du système AX = B est A−1B (qui est en effet un
élément de Kn).
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Exemple 1. Soit la matrice A =

 1 −1 0
0 1 −1
0 0 1

.

On veut déterminer si A est inversible, et dans l’affirmative obtenir A−1.

A cette fin, on introduit un vecteur B =

 b1
b2
b3

 et on résout le système : AX = B où X =

 x1

x2

x3

 désigne

un vecteur inconnu.

Pratiquement :

AX = B ⇐⇒

 1 −1 0
0 1 −1
0 0 1

 x1

x2

x3

 =

 b1
b2
b3

 ⇐⇒

 x1 − x2 = b1
x2 − x3 = b2

x3 = b3

⇐⇒

 x1 = b1 + b2 + b3
x2 = b2 + b3
x3 = b3

Il s’ensuit que le système AX = B admet une unique solution (pour tout choix de B), puisque le triplet
(x1, x2, x3) est déterminé de manière unique en fonction de b1, b2 et b3. On en déduit déjà que A est
inversible.

Puisqu’en outre on sait que dans ce cas l’unique solution de AX = B est A−1B, la lecture des coefficients
intervenant devant b1, b2 et b3 dans les expressions de x1, x2 et x3 permet d’obtenir A−1, à savoir : A−1 = 1 1 1

0 1 1
0 0 1

.

Exemple 2. On considère la matrice : B =


1 −1 0 0
−1 1 −1 0
0 −1 1 −1
0 0 −1 1

 ∈ M4 (K).

On veut déterminer si B est inversible, et dans l’affirmative obtenir B−1.

On fixe donc C un vecteur arbitraire de K4, et on cherche X ∈ K4 tel que BX = C.

BX = C ⇐⇒


x1 − x2 = c1
−x1 + x2 − x3 = c2

− x2 + x3 − x4 = c3
− x3 + x4 = c4

⇐⇒


x2 = −c3 − c4
x1 = c1 − c3 − c4
x3 = −c1 − c2
x4 = −c1 − c2 + c4

Conclusion : B est inversible et B−1 =


1 0 −1 −1
0 0 −1 −1
−1 −1 0 0
−1 −1 0 1

 .
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Exemple 3. Considérons la matrice A =

 1 1 2
0 1 −1
0 0 0

.

On veut déterminer si A est inversible, et dans l’affirmative obtenir A−1.

A cette fin, on introduit un vecteur B =

 b1
b2
b3

 et on résout le système : AX = B où X =

 x1

x2

x3

 désigne

un vecteur inconnu.

Or : AX = B ⇐⇒

 1 1 2
0 1 −1
0 0 0

 x1

x2

x3

 =

 b1
b2
b3

 ⇐⇒

 x1 + x2 + 2x3 = b1
x2 − x3 = b2

0 = b3

Clairement, la dernière équation n’est vérifiée que lorsque b3 est nul, et le système AX = B n’admet donc
pas de solution pour tout B ∈ K3. Il s’ensuit que la matrice A n’est pas inversible.

IV. Matrices semblables

Définition. Deux matrices A et B de Mn (K) sont semblables s’il existe une matrice P ∈ GLn (K)
telle que : B = P−1AP .

Exemples.

1/ La matrice identité In n’est semblable qu’à elle-même.

2/ La matrice nulle 0Mn(K) n’est semblable qu’à elle-même.

3/ Considérons les matrices A =

(
0 3/4

−1/4 −1

)
et P =

(
−3 1
1 −1

)
. La matrice P est inversible (car

det(P ) ̸= 0) et : P−1 = −1

2

(
1 1
1 3

)
.

On a alors P−1AP = −1

2

(
1 1
1 3

)(
0 3/4

−1/4 −1

)(
−3 1
1 −1

)
= −1

2

(
1 1
1 3

)(
3/4 −3/4
−1/4 3/4

)

Soit : P−1AP = −1

2

(
1/2 0
0 3/2

)
d’où finalement : P−1AP =

(
−1/4 0
0 −3/4

)

Les matrices A =

(
0 3/4

−1/4 −1

)
et D =

(
−1/4 0
0 −3/4

)
sont donc semblables.

4/ Pour d’autres exemples, voir les 1974 exercices d’entraînement en ligne sur ce thème.



16 MPSI — Calcul matriciel

Propriétés des matrices semblables.

1/ La relation de similitude est une relation d’équivalence sur Mn (K), càd :

a/ Réflexivité : ∀A ∈ Mn (K) , A ≃ A

b/ Symétrie : ∀ (A,B) ∈ Mn (K)2 , [A ≃ B] ⇐⇒ [B ≃ A]

c/ Transitivité : ∀ (A,B,C) ∈ Mn (K)3 , [(A ≃ B) ∧ (B ≃ C)] =⇒ [A ≃ C]

2/ Deux matrices semblables ont même trace, càd :

∀ (A,B) ∈ Mn (K)2 , [A ≃ B] =⇒ [trace(A) = trace(B)]

Dans ce contexte, on dit que la trace est un invariant de similitude.

On achève ce chapitre par une “propriété” extrêmement utile en pratique. Le plus souvent, on vous deman-
dera de ne pas utiliser cette propriété telle quelle, mais de savoir la redémontrer. Dans le contexte
des Concours, il s’agit donc d’une “question classique”.

(Exercice classique). Soient A et D deux matrices de Mn (K).
Si A et D sont semblables, alors An et Dn sont semblables pour tout n ∈ N.
Plus précisément, s’il existe P ∈ GLn (K) telle que D = P−1AP , alors :

∀n ∈ N, Dn = P−1AnP ou, ce qui revient au même : ∀n ∈ N, An = PDnP−1

Cette propriété fournit donc une nouvelle méthode pour le calcul des puissances d’une matrice. L’exemple
ci-dessous illustre cette méthode.

Exemple. Calcul des puissances de A =

(
0 3/4

−1/4 −1

)
.

On peut vérifier que P−1AP = D avec P =

(
−3 1
1 −1

)
et D =

(
−1/4 0
0 −3/4

)
.

D’après ce qui précède, on a donc : ∀n ∈ N, An = PDnP−1.

Explicitement, pour tout entier naturel n on a :

An =

(
−3 1
1 −1

)(
(−1/4)n 0

0 (−3/4)n

)(
−1

2

(
1 1
1 3

))
⇔ An = −1

2

(
−3 1
1 −1

)(
(−1/4)n 0

0 (−3/4)n

)(
1 1
1 3

)
⇔ An = −1

2

(
−3 1
1 −1

)(
(−1/4)n (−1/4)n

(−3/4)n 3 (−3/4)n

)

⇔ An = −1

2

 −3

(
−1

4

)n

+

(
−3

4

)n

−3

(
−1

4

)n

+ 3

(
−3

4

)n

(
−1

4

)n

−
(
−3

4

)n (
−1

4

)n

− 3

(
−3

4

)n


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Conclusion : ∀n ∈ N, An =


3

2

(
−1

4

)n

− 1

2

(
−3

4

)n
3

2

(
−1

4

)n

− 3

2

(
−3

4

)n

−1

2

(
−1

4

)n

+
1

2

(
−3

4

)n

−1

2

(
−1

4

)n

+
3

2

(
−3

4

)n



V. Synthèse - A savoir, à savoir faire

En résumé, voici la liste des connaissances et des savoir-faire à acquérir dans la première partie ce chapitre :

ä Connaître TOUS les énoncés du chapitre présentés dans ce résumé, et savoir les appliquer.

ä Comme ce chapitre est très calculatoire, il faut vous entraîner (calculs de produits, de puissances,
d’inverses) pour gagner en efficacité sur le thème des matrices.

ä En particulier, il est important de s’entraîner au calcul de “P−1” et de “P−1AP ” (dernier paragraphe
de ce cours) ; les applications et interprétations de ces calculs seront vus en algèbre linéaire, cette
année et en Spé.


