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Chapitre 14 — “L’essentiel” sur les limites
et la continuité

Préambule. Si on le parcourt superficiellement, ce chapitre contient peu de nouveauté par rapport à
vos connaissances de 1ère/Terminale. Mais si l’on y regarde de plus près, la grande nouveauté est que l’on
définit rigoureusement (avec des quantificateurs) la notion de limite, et celle de continuité. Ces définitions
sont les outils indispensables pour démontrer des résultats que vous aviez dû admettre jusqu’à présent (dont
le célèbre théorème des valeurs intermédiaires).

Par ailleurs, quelques nouvelles questions usuelles sont liées à ce chapitre, par exemple justifier qu’une
équation admet des solutions, montrer qu’une fonction n’admet pas de limite en +∞, montrer qu’une
fonction est discontinue en un point, résoudre une équation fonctionnelle. . .
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1. Limites

1.1. Généralités.

Notation. On note : R = R ∪ {+∞,−∞}.
Terminologie. Soit a un réel. On appelle voisinage de a un intervalle ouvert I contenant a.
Par exemple : ]− 1, 1 [ , ]− 2, 5 [ et R sont des voisinages de 0.

On appelle voisinage de +∞ un intervalle ouvert I “contenant +∞” :
Par exemple : ]− 1,+∞ [ , R∗

+ et R sont des voisinages de +∞.

Le premier pas pour démontrer les propriétés des limites (puis des fonctions continues) est de définir préci-
sément l’assertion “f a pour limite ℓ en a” pour une fonction f définie au voisinage de a. Le piment réside
dans le fait que ℓ et a sont des éléments de R, et sont donc réels, ou égaux à +∞ ou −∞. Il faudrait donc
donner 9 définitions pour l’assertion énoncée plus haut. . . On se restreint ici à 4 cas, suivant que ℓ et a sont
réels ou égaux +∞.

Définition. Soient a et ℓ dans R, et f une fonction à valeurs réelles définie au voisinage de a.
On dit que f a pour limite ℓ en a, et on note lim

x→a
f(x) = ℓ, si :

ä Premier cas — a ∈ R et ℓ ∈ R.

∀ ε > 0, ∃α > 0, (|x− a| < α) =⇒ (|f(x)− ℓ| < ε)

ä Deuxième cas — a = +∞ et ℓ ∈ R.

∀ ε > 0, ∃ x0 ∈ R, (x ⩾ x0) =⇒ (|f(x)− ℓ| < ε)

ä Troisième cas — a ∈ R et ℓ = +∞.

∀M ∈ R, ∃α > 0, (|x− a| < α) =⇒ (f(x) ⩾ M)

ä Quatrième cas — a = +∞ et ℓ = +∞.

∀M ∈ R, ∃ x0 ∈ R, (x ⩾ x0) =⇒ (f(x) ⩾ M)

Conséquences. Muni de ces définitions de limites, on peut adapter les preuves vues plus tôt dans l’année
(dans le chapitre sur les suites) aux limites de fonctions. Explicitement :

ã Les propriétés algébriques (faisant intervenir la somme, le produit, etc...) sur les limites de fonction
sont analogues à celles vues sur les suites.

ã De même, la plupart des énoncés du chapitre sur les suites sont encore valides dans ce chapitre (par
exemple : unicité de la limite, théorème de comparaison, théorème des gendarmes, théorème de la limite
monotone).

Remarque. En-dehors de la définition très formelle de limite, qui ne peut donner lieu qu’à des exercices
purement théoriques, ce paragraphe est l’occasion de vous faire réviser les calculs de limites (à l’aide des
limites de référence, ou des développements limités) : voir à ce sujet l’exo 1 de la feuille 14.
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1.2. Propriété de limite séquentielle.

La grande nouveauté de ce paragraphe est l’énoncé suivant.

Propriété (de limite séquentielle). Soient a et ℓ dans R, f une fonction à valeurs
réelles définie au voisinage de a, et (xn) une suite réelle.
On suppose que :

lim
n→+∞

xn = a et lim
x→a

f(x) = ℓ

Alors :
lim

n→+∞
f(xn) = ℓ

Un mot sur la preuve. La démonstration in extenso de cette propriété conduit à distinguer. . . 9 (neuf ! ! !)
cas suivant que avec a et ℓ sont réels, ou égaux à ±∞. Ces cas sont détaillés dans le pdf ; je vous encourage
à en faire deux ou trois (c’est un exo très formateur pour bien retenir les définitions de limite).

Applications directes. La première observation est que vous avez sans aucun doute utilisé cette propriété
sans connaître son nom (et encore moins sa démonstration). Par exemple pour obtenir les résultats suivants :

lim
n→+∞

ln

(
1 +

1

n

)
= 0 ; lim

n→+∞
e1/n = 1 ; lim

n→+∞

sin(n2 + 3n− 1)

n
= 0 ; lim

n→+∞
arctan(n) =

π

2

Remarque. Si ℓ désigne un réel et f une fonction définie au voisinage de +∞, alors selon la propriété de
limite séquentielle : [

lim
x−→+∞

f (x) = ℓ

]
=⇒

[
lim

n−→+∞
f (n) = ℓ

]
Attention : la réciproque est FAUSSE ! Considérer à cet effet la fonction x 7−→ sin (2πx).

Applications “indirectes” . La propriété de limite séquentielle permet de prouver qu’une fonction n’admet
pas de limite en un certain a ∈ R. 1

Pour illustrer cette affirmation, justifions que la fonction cos n’admet pas de limite en +∞.
On raisonne par l’absurde en supposant que cos admet une limite ℓ (avec ℓ ∈ R) en +∞.

On introduit les suites de termes généraux respectifs xn = 2nπ et yn = 2nπ+
π

2
. Evidemment : lim

n−→+∞
xn =

+∞ = lim
n−→+∞

yn.

D’après la propriété de limite séquentielle, on en déduit que :

lim
n−→+∞

cos(xn) = ℓ = lim
n−→+∞

cos(yn)

Or pour tout entier naturel n, on a : cos(xn) = 1 et cos(yn) = 0. Donc :

lim
n−→+∞

cos(xn) = 1 et lim
n−→+∞

cos(yn) = 0

Il s’ensuit que ℓ = 1 et ℓ = 0 : c’est absurde !

Conclusion. La fonction cos n’admet pas de limite en +∞.

1. Dans ce sens, elle joue un rôle analogue à la propriété fondamentale des suites extraites, dont on peut se servir pour
établir que la suite de terme général (−1)n ou sin(n) n’admet pas de limite.



4 MPSI — Limites et continuité

2. Continuité des fonctions à valeurs réelles

2.1. Généralités.

Définition. Soient a un réel, et f une fonction à valeurs réelles définie au voisinage de a.
On dit que f est continue en a si lim

x→a
f(x) = f(a), càd si :

∀ ε > 0, ∃α > 0, (|x− a| < α) =⇒ (|f(x)− f(a)| < ε)

Terminologie et notation. Si I est un intervalle de R, on dit que f est continue sur I si f est continue
en tout réel a de I. On note C 0(I,R) l’ensemble des fonctions continues sur R et à valeurs réelles.

Interprétation informelle de la continuité. Une fonction continue sur un intervalle est une fonction
dont “on peut tracer la courbe sans lever le stylo de la feuille” (ou la craie du tableau).

Exemples. L’écrasante majorité des fonctions usuelles (polynômes, trigonométriques, inverse, racine carrée,
puissances, exponentielle, logarithme, ch et sh, les fonctions trigonométriques réciproques) sont continues
sur leurs ensembles de définition respectifs.

La fonction partie entière est définie sur R, mais n’est pas continue sur R tout entier. En effet, elle est
discontinue en tout entier relatif k, puisque :

lim
x→k−

bxc = k − 1 tandis que lim
x→k+

bxc = k = bxc

Conséquence de la définition de continuité. Puisque la définition ci-dessus repose sur celle de limite,
les propriétés algébriques des limites s’étendent aux fonctions continues, dans le sens plus explicite suivant :

Théorème général. La somme, le produit, le quotient (sous réserve qu’il soit dé-
fini) et la composée (sous réserve qu’elle soit définie) de deux fonctions continues est
encore continue.

Le second théorème général a déjà été évoqué plus haut : c’est celui qui affirme que les fonctions usuelles
sont continues partout où elles sont définies.

Ces théorèmes généraux permettent par exemple de justifier en une ligne que la fonction f définie en posant

∀ x ∈ R, f(x) = arctan
(
cos2(x) + 2xe−x3+1

)
×

 ln

(√
2 + sin

(
3x− π

4

)
+ 5x6

)
e2x + 1 + |x|

− arccos

(
sin(x)

3 + ch(x)

)
est continue sur R, sans avoir à rédiger une très fastidieuse (quoique aisée) série de justifications.
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2.2. Propriétés des fonctions continues à valeurs réelles.

2.2.1. Propriété de continuité séquentielle.

En mettant ensemble la propriété de limite séquentielle et la définition de continuité, on obtient l’énoncé
ci-dessous.

Propriété (de continuité séquentielle). Soient a un réel, f une fonction à valeurs
réelles définie au voisinage de a, et (xn) une suite réelle.
On suppose que :

lim
n→+∞

xn = a et f continue en a

Alors :
lim

n→+∞
f(xn) = f(a)

Exemples d’application.

ä Application “naïve” . On a lim
n→+∞

e−n = 0 et sin est continue en 0. D’après la propriété de continuité
séquentielle on a :

lim
n→+∞

sin
(
e−n

)
= sin(0) = 0

ä Application à la non-continuité. On définit la fonction indicatrice des rationnels comme la
fonction f définie sur R en posant :

∀ x ∈ R, f(x) =

 1 si x ∈ Q

0 si x ∈ R\Q

Montrons que f n’est pas continue en 0. A cette fin, on introduit les suites de termes généraux respectifs

xn =
1

n
et yn =

π

n
.

On a évidemment :

lim
n→+∞

xn = 0 = lim
n→+∞

yn

Si f était continue en 0, la propriété de continuité séquentielle permettrait alors d’affirmer que :

lim
n→+∞

f(xn) = f(0) = lim
n→+∞

f(yn) (♠)

Or pour tout entier naturel n non nul, le réel xn est un rationnel (trivial), et le réel yn est un irrationnel
(facile). Il s’ensuit que :

∀n ∈ N∗, f(xn) = 1 ∧ f(yn) = 0

On en déduit, avec (♠), que. . . 1=0 : c’est absurde. Donc la fonction f n’est pas continue en 0.

Plus généralement, on peut adapter le raisonnement précédent pour établir que la fonction indicatrice n’est
continue en aucun point (autrement dit, qu’elle est discontinue en tout réel).

ä Application aux équations fonctionnelles. Cette propriété est un outil essentiel pour déterminer
toutes les fonctions continues solutions d’une équation fonctionnelle, par exemple pour trouver toutes les
fonctions continues transformant sommes en produits (exo 9 de la feuille 14), ou celles transformant sommes
en sommes (ex 17 de la feuille 14).
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2.2.2. Théorème des valeurs intermédiaires.

On commence par donner deux énoncés (logiquement équivalents).

Théorème des valeurs intermédiaires “avec zéro” . Soit f une fonction à valeurs
réelles définie sur [a, b].
On suppose que :

f est continue sur [a, b] et f(a)f(b) ⩽ 0

Alors :
∃ c ∈ [a, b], f(c) = 0

Remarques. La condition “f(a)f(b) ⩽ 0” signifie que f(a) et f(b) sont de signes opposés. La seconde
observation sur l’énoncé est que le réel c n’est pas unique en général (la fonction f peut s’annuler plusieurs
fois sur le segment [a, b]). En pratique, l’unicité (si elle doit être établie) est justifiée par la stricte monotonie
de la fonction f .

Théorème des valeurs intermédiaires. Soit f une fonction à valeurs réelles définie sur [a, b].
On suppose que f est continue sur [a, b].

Alors pour tout réel k compris entre f(a) et f(b) :

∃ c ∈ [a, b], f(c) = k

Remarque et conseil. La condition “k compris entre f(a) et f(b)” doit être écrite en toutes lettres, car
elle signifie que k ∈ [f(a), f(b)] si f(a) ⩽ f(b), ou que k ∈ [f(b), f(a)] si f(b) ⩽ f(a). . .

Un conseil (très subjectif) est donc d’utiliser préférentiellement le premier énoncé, qui est (à mon avis) plus
pratique, et auquel on peut toujours se ramener.

Exemples d’application.

ä Montrer qu’une équation possède une solution. Exos 6 et 7 de la feuille 14.

ä Variante — Montrer qu’il existe un réel x0 tel que g(x0) = . . .. Exo 15 de la feuille 14.

ä Théorème du point fixe. Le théorème des valeurs intermédiaires a pour corollaire un résultat appelé
théorème du point fixe ; ce dernier n’est pas au programme officiel, et c’est donc une question classique
(plutôt qu’une propriété). Voici son énoncé.

Exercice classique - Théorème du point fixe. Soit f une fonction à valeurs réelles définie
sur [a, b].
On suppose que :

f est continue sur [a, b] et f ([a, b]) ⊂ [a, b]

Alors :
∃ c ∈ [a, b], f(c) = c
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La preuve de ce résultat repose sur l’application du théorème des valeurs intermédiaires à la fonction
(continue) g : x ∈ [a, b] 7−→ f(x)− x. 2

2.2.3. Théorème des bornes atteintes.

L’énoncé présenté dans ce paragraphe présente deux intérêts du point de vue théorique : le premier, anecdo-
tique, est que sa preuve est la première application du théorème de Bolzano-Weierstrass ! Le second est que
ce théorème est un ingrédient indispensable pour établir le théorème des accroissements finis, qui est sans
doute l’énoncé d’Analyse ayant les plus nombreuses applications dans le cours de cette année (au moins).

Théorème des bornes atteintes. Toute fonction à valeurs réelles définie sur un segment est
bornée et atteint ses bornes.
En d’autres termes : si f ∈ C 0([a, b],R), alors f admet un minimum et un maximum sur [a, b].

Applications.

ä Théorème des accroissements finis. A venir, dans le chapitre consacréé aux propriétés des fonctions
dérivables (chapitre 17 sans doute).

ä Montrer qu’une fonction est bornée. Exos 18 et 19 de la feuille 14.

3. Continuité des fonctions à valeurs complexes

Définition. Soient a un réel, et f une fonction à valeurs complexes définie au voisinage de a.
On dit que f est continue en a si lim

x→a
f(x) = f(a), càd si :

∀ ε > 0, ∃α > 0, (|x− a| < α) =⇒ (|f(x)− f(a)| < ε)

Terminologie et notation. Si I est un intervalle de R, on dit que f est continue sur I si f est continue
en tout réel a de I. On note C 0(I,C) l’ensemble des fonctions continues sur R et à valeurs complexes.

Remarque. On pourra observer que cette définition est analogue à celle donnée dans le cadre des fonctions
à valeurs réelles ; encore une fois, seule la lecture des barres verticales est différente (module au lieu de valeur
absolue).

Par ailleurs, comme lors du passage des suites réelles aux suites complexes, certaines définitions et pro-
priétés concernant les limites et la continuité s’adaptent aussi bien aux fonctions à valeurs dans R que dans
C. C’est le cas notamment des énoncés concernant les propriétés algébriques des limites et des fonctions
continues, ainsi que les propriétés séquentielles (limite et continuité).

Mais bien évidemment, toutes les propriétés faisant intervenir de près ou de loin la relation d’ordre (en
particulier le sens de variation) ne pourront s’étendre aux fonctions à valeurs complexes. En particulier, on
doit faire une croix sur le théorème des valeurs intermédiaires, qui n’est plus valide pour les fonctions à
valeurs dans C.

Il reste néanmoins un moyen permettant d’utiliser une partie des résultats précédents, dont l’énoncé est
donné ci-dessous.

(“Pont R←→ C” pour les fonctions continues) Soit f ∈ CI . Alors :

[f ∈ C 0 (I,C)] ⇐⇒ [((Re f) ∈ C 0 (I,R)) ∧ ((Im f) ∈ C 0 (I,R))]

2. Démo détaillée en classe.
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En d’autres termes, une fonction à valeurs complexes est continue SSI sa partie réelle et sa partie imaginaire
sont des fonctions continues (à valeurs réelles).

Exemple. La fonction f : t ∈ R 7−→ eit est continue sur R (donc : f ∈ C 0(R,C)) car ses parties réelle
(Re(f) = cos) et imaginaire (Im(f) = sin) sont des fonctions continues sur R et à valeurs réelles.

4. Suites récurrentes (non-linéaires) “un+1 = f (un)”

Définition. Une suite récurrente d’ordre 1 est une suite u satisfaisant une relation de récurrence :
∀ n ∈ N, un+1 = f (un) (♠).

Les outils essentiels pour étudier une telle suite sont les suivants :

Propriété. Soit u une suite vérifiant (♠). Si u converge vers ℓ et si f est continue en ℓ, alors f (ℓ) = ℓ.

Propriété. Soit u une suite vérifiant (♠). Si f est croissante, alors u est monotone.

Propriété. Soit u une suite vérifiant (♠). Si f est décroissante, alors (u2n) et (u2n+1) sont monotones,
de monotonies opposées.


