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Colle 15 – Questions de cours

Remarque. En cours, on a affirmé “vite fait” que les propriétés usuelles concernant les limites de fonctions se dédui-
saient aisément des propriétés analogues sur les limites de suites. Les trois premières questions de cours illustrent cette
affirmation, en donnant les preuves dans le cadre des fonctions des théorèmes de comparaison, de la limite monotone, et
des gendarmes.

Question de cours 1. — Théorème de comparaison. Soient f et g deux fonctions définies sur un voisinage I
de +∞. On suppose que :

∀x ∈ I, f(x) ⩾ g(x) et lim
x→+∞

g(x) = +∞

Alors :
lim

x→+∞
f(x) = +∞

Preuve. On se place dans les hypothèses de l’énoncé. Soit M un réel. Puisque lim
x→+∞

g(x) = +∞ :

∃x0 ∈ I, ∀x ∈ I, x ⩾ x0 =⇒ g(x) ⩾ M (♠)

Or selon l’énoncé : ∀x ∈ I, f(x) ⩾ g(x) (♣)

On déduit de (♠) et (♣) que : ∀x ∈ I, x ⩾ x0 =⇒ f(x) ⩾ M

En résumé, on a établi que : ∀M ∈ R, ∃x0 ∈ I, ∀x ∈ I, x ⩾ x0 =⇒ f(x) ⩾ M

Ce qui signifie que lim
x→+∞

f(x) = +∞, et achève la preuve.

Question de cours 2. — Théorème (de la limite monotone) : soit f une fonction définie sur R. Si f est
croissante et majorée (ou décroissante et minorée) alors : ∃ ℓ ∈ R, lim

x→+∞
f(x) = ℓ.

Preuve. Soit f une fonction définie sur R, ∗ croissante et majorée : ∃M ∈ R, ∀x ∈ R, f(x) ⩽ M .
Notons E = {f(x) , x ∈ R} l’ensemble des valeurs de la fonction f . L’ensemble E est une partie de R, non vide (par
définition) et majorée (par hypothèse). D’après la propriété de la borne supérieure dans R, E admet une borne supérieure :
notons S = supE.

Soit ε > 0.
Par définition de borne supérieure, il existe un réel x0 tel que : S − ε < f(x0) ⩽ S.
La fonction f étant croissante (par hypothèse) et majorée par S, on en déduit que :

∀x ⩾ x0, S − ε < f(x0) ⩽ f(x) ⩽ S, d’où : ∀x ⩾ x0, S − ε < f(x) ⩽ S ce qui implique : ∀x ⩾ x0, |f(x)− S| < ε

En résumé, on a prouvé que : ∀ ε > 0, ∃x0 ∈ R, (x ⩾ x0 =⇒ |f(x)− S| < ε). Donc la fonction f a pour limite S en +∞.
Conclusion. Si f est croissante et majorée, alors f admet une limite finie en +∞.

Dans l’autre situation (celle où f est décroissante et minorée), il suffit d’observer que la fonction (−f) est croissante
et majorée pour se ramener au cas précédent, et conclure en observant que (−f) admet une limite finie en +∞ si et
seulement si il en va de même pour f .

Question de cours 3. — Théorème des gendarmes (ou d’encadrement). Soit ℓ un réel, et soient f , g et h
trois fonctions définies sur un voisinage I de +∞. On suppose que :

∀x ∈ I, f(x) ⩽ g(x) ⩽ h(x) et lim
x→+∞

f(x) = ℓ = lim
x→+∞

h(x)

Alors :
lim

x→+∞
g(x) = ℓ

Preuve. On se place dans les hypothèses de l’énoncé. Soit ε > 0.
Puisque lim

x→+∞
f(x) = ℓ par hypothèse : ∃x0 ∈ I, ∀x ∈ I, x ⩾ x0 =⇒ ℓ− ε < f(x) < ℓ+ ε (♠)

Puisque lim
x→+∞

h(x) = ℓ par hypothèse : ∃x1 ∈ I, ∀x ∈ I, x ⩾ x1 =⇒ ℓ− ε < h(x) < ℓ+ ε (♣)

Enfin, par hypothèse : ∀x ∈ I, f(x) ⩽ g(x) ⩽ h(x) (♥)

Posons x2 = max(x0, x1). On déduit de (♠), (♣) et (♥) que : ∀x ∈ I, x ⩾ x2 =⇒ ℓ− ε < f(x) ⩽ g(x) ⩽ h(x) < ℓ+ ε

On a ainsi établi que : ∀ ε > 0, ∃x2 ∈ I, ∀x ∈ I, x ⩾ x2 =⇒ ℓ− ε < g(x) < ℓ+ ε

Ce qui signifie que lim
x→+∞

f(x) = ℓ, et achève la preuve.

∗. Il suffit en fait de supposer que f est définie au voisinage de +∞.



2 MPSI — Questions de cours de la colle n015 — 22/01/26

Question de cours 4. — Propriété (de limite séquentielle) : soient (xn)n une suite réelle de limite +∞,
et f une fonction définie au voisinage de +∞. On suppose que lim

x−→+∞
f(x) = ℓ (avec ℓ ∈ R ou ℓ = +∞). Alors :

lim
n−→+∞

f (xn) = ℓ.

Preuve. A noter qu’il y a ici deux preuves à effectuer, suivant que ℓ ∈ R ou ℓ = +∞.
ä Cas n01 : ℓ ∈ R. On suppose donc lim

n−→+∞
xn = +∞ et lim

x−→+∞
f(x) = ℓ (avec ℓ réel). Fixons ε > 0.

Puisque : lim
x−→+∞

f(x) = ℓ, on peut affirmer que : ∃ x0 ∈ R, x > x0 =⇒ |f(x)− ℓ| < ε (♠).

Comme par ailleurs : lim
n−→+∞

xn = +∞, on peut affirmer que : ∃ n0 ∈ N, n ⩾ n0 =⇒ xn > x0 (♣).

D’après (♠) et (♣), et puisque ε est un réel strictement positif arbitraire dans ce qui précède, on a établi que :

∀ ε > 0, ∃ n0 ∈ N, n ⩾ n0 =⇒ |f (xn)− ℓ| < ε, c’est-à-dire : lim
n−→+∞

f (xn) = ℓ

ä Cas n02 : ℓ = +∞. On suppose donc lim
n−→+∞

xn = +∞ et lim
x−→+∞

f(x) = +∞. Fixons M ∈ R.

Puisque : lim
x−→+∞

f(x) = +∞, on peut affirmer que : ∃ x0 ∈ R, x > x0 =⇒ f(x) > M (♠).

Comme par ailleurs : lim
n−→+∞

xn = +∞, on peut affirmer que : ∃ n0 ∈ N, n ⩾ n0 =⇒ xn > x0 (♣).

D’après (♠) et (♣), et puisque M est un réel arbitraire dans ce qui précède, on a établi que :

∀ M ∈ R, ∃ n0 ∈ N, n ⩾ n0 =⇒ f (xn) > M , c’est-à-dire : lim
n−→+∞

f (xn) = +∞

Question de cours 5. — Propriété : la fonction sinus n’admet pas de limite en +∞.

Preuve. Commençons par observer que la fonction sinus étant bornée sur R, elle ne peut pas avoir de limite infinie en
+∞.

Montrons qu’elle n’a pas de limite finie en +∞. A cette fin, on raisonne par l’absurde et on suppose que :
∃ ℓ ∈ R, lim

x→+∞
sin(x) = ℓ (♠)

Considèrons les suites (xn) et (yn) définies en posant :

∀n ∈ N, xn = 2nπ et yn = 2nπ +
π

2
Il est immédiat que lim

n→+∞
xn = +∞ et lim

n→+∞
yn = +∞. De ce fait, de l’hypothèse (♠) et de la propriété de limite

séquentielle on déduit que :
lim

n→+∞
sin(xn) = ℓ et lim

n→+∞
sin(yn) = ℓ

Or, pour tout n ∈ N on a sin(xn) = 0 et sin(yn) = 1.

Il s’ensuit que ℓ = 0 et ℓ = 1 : c’est absurde !

On peut donc conclure que la fonction sinus n’admet pas de limite en +∞.
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Banque d’exercices

Exercice 1. — Soient λ1,. . ., λn n scalaires distincts. Le commutant de D = diag (λ1, . . . , λn) est l’ensemble des
matrices diagonales de Mn (K).

Exercice 2. — Montrer que deux matrices de Mn (K) semblables ont même trace. Puis donner un exemple de
matrices ayant même trace, qui ne sont pas semblables.

Exercice 3. — Soit f définie sur R∗ par f (t) =
t2

et − 1
. Calculer : lim

t→0
f(t).

Exercice 4. — Soient p et q deux réels strictement positifs, et f : [0; 1] −→ R une fonction continue. Montrer qu’il
existe un réel x0 ∈ [0; 1] tel que : pf (0) + qf (1) = (p+ q) f (x0).

Exercice 5. — Calculer lim
x→0

x2 sin

(
1

x3

)
et lim

x→+∞
x2 sin

(
1

x3

)
.

Exercice 6. — Soient f1,. . ., f4 les fonctions définies sur ]− 1, 1[ en posant :

f1(x) =
ln(1 + x)

x
; f2(x) =

sin(x)

x
; f3(x) =

arcsin(x)
x

; f4(x) =
tan(x)

x
Etablir que :

∀ k ∈ [[ 1, 4 ]], lim
x→0

fk(x) = 1
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Banque d’exercices - Corrigés

Exercice 1. — Soient λ1,. . ., λn n scalaires distincts. Le commutant de D = diag (λ1, . . . , λn) est l’ensemble des
matrices diagonales de Mn (K).
Soient λ1,. . ., λn n scalaires distincts. Notons D = diag (λ1, . . . , λn).
Une matrice M = (mij)1⩽i,j⩽n est dans le commutant de D si et seulement si MD = DM .
Or : MD = DM ⇐⇒ ∀ (i, j) ∈[[ 1, n ]]

2
, (MD)ij = (DM)ij

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]
2
,

n∑
k=1

mikdkj =

n∑
k=1

dikmkj

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]
2
, mijdjj = diimij

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]
2
, mijλj = λimij

⇐⇒ ∀ (i, j) ∈[[ 1, n ]]
2
, (λj − λi)mij = 0

D’où, puisque l’on a supposé les λi distincts : ∀ (i, j) ∈[[ 1, n ]]
2
, i 6= j =⇒ mij = 0

On en déduit que les matrices M commutant avec D sont exactement celles dont tous les coefficients situés en dehors de
la diagonale (i 6= j) sont nuls ; en d’autres termes, ce sont exactement les matrices diagonales de Mn (K).

Conclusion. Le commutant de D est l’ensemble des matrices diagonales de Mn (K)

Exercice 2. — Montrer que deux matrices de Mn (K) semblables ont même trace. Puis donner un exemple de
matrices ayant même trace, qui ne sont pas semblables.

Soient A et B deux matrices de Mn (K) semblables :
∃P ∈ GLn (K) , B = P−1AP

On a :
tr(B) = tr

(
P−1AP

)
= tr

((
P−1A

)
× P

)
= tr

(
P ×

(
P−1A

))
= tr

(
PP−1A

)
= tr(A)

Finalement : [ A et B semblables ] =⇒ tr(A) = tr(B)

L’implication réciproque est fausse : dans M2 (R), les matrices 0M2(R) et E12 ont même trace, mais ne sont pas semblables
(la matrice nulle n’étant semblable qu’à elle-même).

Exercice 3. — Soit f définie sur R∗ par f (t) =
t2

et − 1
. Calculer : lim

t→0
f(t).

Pour tout réel t, on a : et = 1 + t+ tε(t) avec lim
t→0

ε(t) = 0.

Il s’ensuit que pour tout réel t 6= 0, on a :

f (t) =
t2

t+ tε(t)
=

t

1 + ε(t)

Par suite : lim
t→0

f(t) = 0

Exercice 4. — Soient p et q deux réels strictement positifs, et f : [0; 1] −→ R une fonction continue. Montrer qu’il
existe un réel x0 ∈ [0; 1] tel que : pf (0) + qf (1) = (p+ q) f (x0).

Pour tout réel x ∈ [0, 1], posons : g(x) = pf (0) + qf (1)− (p+ q) f (x).

La fonction g est continue sur [0, 1] (H+TG).

En outre :

g(0) = q (f (1)− f (0)) et g(1) = p (f (0)− f (1)) = −p (f (1)− f (0))

Il s’ensuit que : g(0)g(1) = −pq (f (1)− f (0))
2.

En résumé :
g ∈ C 0([0, 1],R) et g(0)g(1) ⩽ 0
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Selon le théorème des valeurs intermédiaires : ∃x0 ∈ [0, 1], g(x0) = 0.

Conclusion. Il existe un réel x0 ∈ [0; 1] tel que : pf (0) + qf (1) = (p+ q) f (x0).

Exercice 5. — Calculer lim
x→0

x2 sin

(
1

x3

)
et lim

x→+∞
x2 sin

(
1

x3

)
.

• La fonction x 7−→ x2 tend vers 0 en 0, et la fonction x 7−→ sin

(
1

x3

)
est bornée. Il s’ensuit que : lim

x→0
x2 sin

(
1

x3

)
= 0.

• Au voisinage de +∞, on a :

sin

(
1

x3

)
=

1

x3
+

1

x3
ε

(
1

x3

)
avec : lim

x→+∞
ε

(
1

x3

)
= 0

Ainsi, pour x suffisamment grand on a :

x2 sin

(
1

x3

)
=

1

x
+

1

x
ε

(
1

x3

)
Puisque : lim

x→+∞

1

x
= 0 et lim

x→+∞
ε

(
1

x3

)
= 0, on en déduit que : lim

x→+∞
x2 sin

(
1

x3

)
= 0.

Exercice 6. — Soient f1,. . ., f4 les fonctions définies sur ]− 1, 1[ en posant :

f1(x) =
ln(1 + x)

x
; f2(x) =

sin(x)

x
; f3(x) =

arcsin(x)
x

; f4(x) =
tan(x)

x
;

Etablir que :
∀ k ∈ [[ 1, 4 ]], lim

x→0
fk(x) = 1

Selon le formulaire des DL1 en 0 usuels, on a pour tout réel x dans ]− 1, 1[ :

ln(1 + x) = x+ xε1(x) avec lim
x→0

ε1(x) = 0

sin(x) = x+ xε2(x) avec lim
x→0

ε2(x) = 0

arcsin(x) = x+ xε3(x) avec lim
x→0

ε3(x) = 0

tan(x) = x+ xε4(x) avec lim
x→0

ε4(x) = 0

Il s’ensuit que :

∀ k ∈ [[ 1, 4 ]], fk(x) =
x+ xεk(x)

x
= 1 + εk(x) avec lim

x→0
εk(x) = 0

Par suite : ∀ k ∈ [[ 1, 4 ]], lim
x→0

fk(x) = 1


