
Lycée Jean Bart – MPSI – 23 janvier 2026

Exercices 14 – Limites et Continuité –

Corrigés

Exercice 1. — Déterminer si les limites des fonctions suivantes existent en a :

1) x 7−→ x ln x (en a = 0)

lim
x→0+

x ln x = 0 (croissances comparées) ; pas de limite à gauche de 0.

2) x 7−→ ln (1 + x)

x
(en a = 0)

lim
x→0

ln (1 + x)

x
= 1 (DL1)

3) x 7−→ x2 sin (1/x3) (en a = 0)

lim
x→0

x2 sin
(
1/x3

)
= 0 (gendarmes)

4) x 7−→
(

1

x2

)
e−1/x (en a = 0)

lim
x→0+

(
1

x2

)
e−1/x = 0 (croissances comparées) ; lim

x→0−

(
1

x2

)
e−1/x = +∞ (usuel)

5) x 7−→ e−1/x (en a = 0)

lim
x→0+

e−1/x = 0 (usuel) ; lim
x→0−

e−1/x = +∞ (usuel)

6) t 7−→ t3

et − 1
en (a = 0 et a = +∞)

lim
t→0

t3

et − 1
= 0 (DL1) ; lim

t→+∞

t3

et − 1
= 0 (croissances comparées)

7) t 7−→ t

sin (αt)
(en a = 0, avec α ∈ R∗)

lim
t→0

t

sin (αt)
=

1

α
(DL1)
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8) x 7−→ x

⌊
1

x

⌋
(en a = 0 et a = +∞)

Pour x > 1, on a : x
⌊
1

x

⌋
= 0. En particulier : lim

x→+∞
x

⌊
1

x

⌋
= 0.

Pour tout réel x non nul, on a :
1

x
⩽

⌊
1

x

⌋
<

1

x
+ 1.

Il s’ensuit que pour tout réel x non nul, x
⌊
1

x

⌋
est compris entre 1 et 1+x, quantités ayant pour limite

0 lorsque x tend vers 0. Le théorème d’encadrement permet donc de conclure :

lim
x→0

x

⌊
1

x

⌋
= 1

Exercice 2. — Soit f la fonction définie sur R∗ par f (t) =
t2

et − 1
. Comment choisir f (0) pour que

f soit continue en 0 ?

On a : lim
t→0

t2

et − 1
= 1 (DL1). On doit donc poser f(0) = 1 pour que f soit continue en 0.

Exercice 3. — Même question avec la fonction f définie sur R∗ par f(t) =
arctan t

t
.

On a : lim
t→0

arctan t

t
= 1 (DL1). On doit donc poser f(0) = 1 pour que f soit continue en 0.

Exercice 4. — Même question avec la fonction f définie sur ]− π/2; π/2 [ \ {0} par f(t) =
tan t√

|t|
.

On a : lim
t→0

tan t√
|t|

= 0 (DL1). On doit donc poser f(0) = 0 pour que f soit continue en 0.

Exercice 5. — Montrer que l’équation x3+x2+x− 1 = 0 admet une solution unique dans [0; +∞ [ .

La fonction f : x ∈ R+ 7−→ x3 + x2 + x − 1 est strictement croissante sur R+ et continue sur R+. En
outre, f(0) = 1 et f a pour limite +∞ en +∞.

On en déduit que la fonction f s’annule en un unique réel positif, càd que l’équation x3 + x2 + x− 1 = 0

admet une solution unique dans R+.

Exercice 6. — Montrer que l’équation (E) : x − e−x = 0 admet une solution unique α dans R.
Démontrer que α ∈ [1/2; 1].

La fonction f : x ∈ R 7−→ x− e−x est strictement croissante sur R et continue sur R. En outre, f a pour
limites −∞ et +∞ en −∞ et +∞ respectivement.
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On en déduit déjà que la fonction f s’annule en un unique réel, càd que l’équation x− e−x = 0 admet une
solution unique α dans R.

De plus, puisque f(1/2)f(1) ⩽ 0, on peut affirmer que : α ∈ [1/2; 1].

Exercice 7. — Pour tout entier naturel n ⩾ 2, on note (En) l’équation : tan x = nx.

1/ Montrer que l’équation (En) admet une unique solution xn dans I = ] 0; π/2 [ .

Soit n un entier ⩾ 2. La fonction f : x 7−→ tan x− nx est de classe C ∞ sur I et :

∀ x ∈ I, f ′(x) = 1 + tan2(x)− n et f ′′(x) = 2 tan(x) (1 + tan2(x))

Sur I, f ′′ est strictement positive, donc f ′ est strictement croissante. Or f ′ a pour limite 1 − n en 0

(et 1− n < 0), et +∞ à gauche de π/2.

On en déduit que f ′ est strictement négative puis strictement positive sur I, et qu’elle ne s’annule
qu’une seule fois dans I, en un réel que nous noterons βn.

D’après ce qui précède, f est strictement décroissante sur ]0, βn[, et strictement croissante sur ]βn, π/2[.

Puisqu’en outre f(0) = 0, et lim
x→π/2−

f(x) = +∞, on peut affirmer que f est stictement négative sur

]0, π/2[, et que f s’annule exactement une fois dans ]βn, π/2[.

Conclusion. La fonction f s’annule exactement une fois dans I ; càd que l’équation (En) admet une
unique solution xn dans I = ] 0; π/2 [ .

2/ Que peut-on dire de la suite (xn) ?

Soit n un entier naturel. Par définition du réel xn, on a xn > 0 et tan(xn) = nxn. La suite (xn) est
croissante et majorée par π/2 ; d’après le théorème de la limite monotone, elle est donc convergente,
vers une limite ℓ strictement positive. On en déduit que nxn tend vers +∞, donc tan(xn) tend vers
+∞.

Conclusion. lim
n→+∞

xn =
π

2

Exercice 8. — Soit f une fonction continue sur R telle que : ∀ (x, y) ∈ R2, f(x+ y) = f(x)× f(y).

1) Etablir que f(0) = 0 ou f(0) = 1. Puis établir que si f(0) = 0, alors f est identiquement nulle sur R.

Par hypothèse : f(0+0) = f(0)×f(0). D’où : f(0) (f(0)− 1) = 0. Il s’ensuit que f(0) = 0 ou f(0) = 1.

Si f(0) = 0, alors pour tout réel x, on a : f(x) = f(x+ 0) = f(x)× f(0) = 0.
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Conclusion. On a : f(0) = 0 ou f(0) = 1. Dans le cas où f(0) = 0, f est identiquement nulle sur R.

2) A partir de maintenant, on suppose f(0) = 1.

a) Etablir que f est strictement positive sur R.

Pour tout réel x, on a : f(x) = f(x/2)× f(x/2) ⩾ 0.

Etablissons l’inégalité stricte. S’il existait un réel x tel que f(x) = 0, alors on aurait : f(0) =

f(x)× f(−x) = 0 ; ce qui contredirait l’hypothèse suivant laquelle f(0) = 1.

Conclusion. f est strictement positive sur R.

b) Etablir que pour tout entier naturel n non nul, on a : f(n) = [f(1)]n, et f(−n) =
1

f(n)
.

Une récurrence évidente donne : ∀n ∈ N, f(n) = [f(1)]n.

Pour la seconde assertion, on utilise le fait que : f(0) = f(n−n) = f(n)×f(−n). Puisque f(n) 6= 0

selon la question précédente, on peut conclure.

Conclusion. ∀n ∈ N, f(n) = [f(1)]n et f(−n) =
1

f(n)

c) Etablir que pour tout réel x, f(x) = ex ln(f(1)).

Soit x = p/q un rationnel quelconque (avec p ∈ Z et q ∈ N∗). On a :

[
f

(
p

q

)]q
= f(p) = f(1)p

Par suite : f
(
p

q

)
= f(1)p/q, càd : f

(
p

q

)
= e

p
q
ln(f(1)).

En d’autres termes :

∀ x ∈ Q, f(x) = ex ln(f(1))

On “transforme Q en R” en utilisant la densité de Q dans R et la propriété de continuité séquentielle.

Conclusion. Pour tout réel x, f(x) = ex ln(f(1)).
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Exercice 9. — Soit f : R −→ R une fonction. On suppose que f admet une limite finie en 0, et que
pour tout réel x on a : f (x) = f

(x
2

)
. Prouver que f est constante.

Par hypothèse, f admet une limite finie en 0. Notons : ℓ = lim
x→0

f(x).

Pour tout réel x : f (x) = f
(x
2

)
.

Par récurrence, pour tout réel x et pour tout entier naturel n : f (x) = f
( x

2n

)
.

Soit x un réel quelconque. On a : lim
x→0

x

2n
= 0. D’après la propriété de limite séquentielle : lim

x→0
f
( x

2n

)
= ℓ.

Puisque par ailleurs la suite de terme général f
( x

2n

)
est constante égale à f(x), on a : f(x) = ℓ.

Le raisonnement précédent étant valide pour un réel x arbitraire, on a : ∀ x ∈ R, f(x) = ℓ.

Conclusion. La fonction f est constante sur R.

Exercice 10. — Soit f : R −→ R telle que : f(x) =


1 si x ∈ Q

0 si x ∈ R−Q
La fonction f n’est autre que la fonction indicatrice des rationnels (on pourrait la noter 1Q).

Montrer que f n’admet de limite en aucun réel.

On utilise la densité de Q dans R, et la propriété de limite séquentielle pour conclure que f n’admet de
limite en aucun irrationnel.

On utilise la densité de R\Q dans R, et la propriété de limite séquentielle pour conclure que f n’admet
de limite en aucun rationnel.

Exercice 11. — Soit f une fonction continue sur R. Si la fonction f vérifie :

∀ x ∈ R, f 2 (x) = f (x)

alors f est identiquement nulle ou bien f est constante égale à 1.

D’après l’énoncé : ∀ x ∈ R, f(x) = 0 ou f(x) = 1.

Si f n’est pas constante, alors le TVI assure qu’elle prendra au moins une fois la valeur 1/2 : contradiction.

Il s’ensuit que f est constante égale à 0 ou 1.

Conclusion. La fonction f est identiquement nulle, ou constante égale à 1.
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Exercice 12. — Montrer que les seules applications continues de R dans Z sont les fonctions
constantes.

Même argument que dans l’exercice précédent.

Exercice 13. — Soit f : [0; 1] −→ [0; 1] une fonction continue. On suppose que f est k-lipschitzienne ∗

avec k ∈ ] 0; 1 [ . Montrer que f admet un unique point fixe.

On introduit la fonction g en posant : ∀ x ∈ [0, 1], g(x) = f(x)− x.

Alors : g(0) = f(0)− 0 ⩾ 0 (puisque f est à valeurs dans [0, 1] par hypothèse).

Et : g(1) = f(1)− 1 ⩽ 0 (puisque f est à valeurs dans [0, 1] de nouveau).

De plus, g est continue sur [0, 1].

Le TVI permet d’affirmer qu’il existe un réel c ∈ [0, 1] tel que g(c) = 0, càd tel que : f(c) = c.

La fonction f admet donc un point fixe c dans [0, 1]. Montrons son unicité : on suppose qu’il existe un
réel c′ ∈ [0, 1] tel que f(c′) = c′.

Alors : |f(c′)− f(c)| ⩽ k |c′ − c| (avec k ∈ ]0, 1[, par hypothèse).

D’où, c et c′ étant points fixes de f : |c′ − c| ⩽ k |c′ − c| (avec k ∈ ]0, 1[, par hypothèse).

Si c′ 6= c, cette inégalité implique : |c′ − c| < |c′ − c|. Absurde !

Conclusion. La fonction f admet un unique point fixe dans l’intervalle [0, 1].

Exercice 14. — Soient p et q deux réels strictement positifs, et f : [0; 1] −→ R une fonction continue.
Montrer qu’il existe un réel x0 ∈ [0; 1] tel que : pf (0) + qf (1) = (p+ q) f (x0).

On introduit la fonction g en posant : ∀ x ∈ [0, 1], g(x) = (p+ q)f(x)− pf (0)− qf (1).

Alors : g(0) = q(f(0)− f(1)) et g(1) = p(f(1)− f(0)).
Ainsi, g est continue sur [0, 1], et g(0)g(1) ⩽ 0.

Le TVI permet donc d’affirmer qu’il existe un réel x0 ∈ [0, 1] tel que g(x0) = 0, càd tel que : pf (0) +

qf (1) = (p+ q) f (x0).

∗. C’est-à-dire : ∀ (x, y) ∈ [0; 1]× [0; 1] , |f(x)− f(y)| ⩽ k × |x− y|.
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Exercice 15. — Soient f et g deux fonctions continues définies sur [a; b] (avec a, b ∈ R). On suppose
que : ∀ x ∈ [a; b] , f (x) < g (x).
Montrer qu’il existe un réel c strictement positif tel que : ∀ x ∈ R, f (x) + c < g (x).

La fonction h = g − f est continue et strictement positive sur le segment [a, b]. D’après le théorème des
bornes atteintes, elle admet en particulier un minimum m (qui est strictement positif) sur [a, b].

Donc : ∀ x ∈ [a, b], g(x)− f(x) ⩾ m.

En posant judicieusement c = m/2, on a :

c > 0 et ∀ x ∈ [a, b], g(x)− f(x) > c

Conclusion. ∃ c > 0, ∀ x ∈ [a, b], f(x) + c < g(x)

Complément : ce résultat reste t-il vrai si l’on remplace [a; b] par [0; +∞ [ ?

Non, puisque le théorème des bornes atteintes s’applique sur un segment et pas sur R+.

Plus explicitement, la fonction g : x ∈ R+ 7−→ e−x est continue sur R+, et : ∀ x ∈ R+, g(x) > 0.

Mais il n’existe aucun réel c > 0 tel que : ∀ x ∈ R+, g(x) > c. . .

Exercice 16. — Soit f : R −→ R une fonction continue telle que :

∀ (x, y) ∈ R2, f (x+ y) = f (x) + f (y)

1) Calculer f (0).

2) Montrer que pour tout réel x on a : f (−x) = −f (x).

3) Justifier que pour tout n ∈ Z et pour tout x ∈ R on a : f (nx) = nf (x).

4) Montrer que pour tout r ∈ Q on a : f (r) = rf (1).

5) Conclure que pour tout réel x on a : f (x) = xf (1).

A voir en classe.

Exercice 17. — Montrer que toute fonction continue et périodique sur R est bornée sur R.

En notant T la période de f , il suffit de prouver que f(R) = f [0, T ], puis d’appliquer le théorème des
bornes atteintes.
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Exercice 18. — Soient f et g deux fonctions de R dans R respectivement continue et bornée. Montrer
que g ◦ f et f ◦ g sont bornées sur R.

Il est immédiat que g ◦ f est bornée sur R.

Pour f ◦ g, on exploite le fait que l’image de R par g est contenue dans un segment (g étant bornée sur
R), puis on applique le théorème des bornes atteintes à la fonction continue f .

Suites récurrentes (“un+1 = f (un)”)

Exercice 19. — Etudier la suite (en particulier, on déterminera l’éventuelle limite) u définie en
posant :

u0 ∈ R+ et ∀n ∈ N, un+1 =
2

1 + un

On peut commencer par observer que la suite u est bien définie, puisque : ∀n ∈ N, un ⩾ 0 (par une
récurrence immédiate).

ä Pour tout réel x, on a : f(f(x))−x =
2

1 +
2

1 + x

−x =
2x+ 2

x+ 3
−x =

−x2 − x+ 2

x+ 3
= −(x− 1) (x+ 2)

x+ 3
.

On en déduit que sur [0, 1] : [f(f(x))− x ⩾ 0] ⇐⇒ [x ⩽ 1] (♠).

ä On peut également noter que la fonction x 7−→ 2

1 + un

est décroissante sur R+. On en déduit que les

suites (u2n) et (u2n+1) sont monotones, de monotonie opposée.

ä Si u0 ∈ [0, 1], alors pour tout entier naturel n, u2n ∈ [0, 1] (récurrence).

En outre : u2 = f(f(u0)) ⩾ u0 (d’après (♠)). On en déduit que (u2n) est croissante, et (u2n+1) est
décroissante.

Il reste à observer que (u2n) est majorée par 1, et (u2n+1) est minorée par 1 pour conclure que ces deux
suites convergent, nécessairement vers 1 (qui est l’unique solution de l’équation f(f(x)) = x dans [0, 1]).

Puisque (u2n) et (u2n+1) convergent vers une limite commune (qui est 1), on peut affirmer que (un)

converge vers 1.

ä Si u0 > 1, alors le raisonnement précédent reste valide, en permutant les rôles de (u2n) et (u2n+1), ce
qui ne modifie pas la conclusion : (un) converge vers 1.

Conclusion. Pour tout u0 ∈ R+, on a : lim
n→+∞

un = 1
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Exercice 20. — Etudier la suite u définie en posant : u0 ⩾ −2 et ∀n ∈ N, un+1 =
√
un + 2.

Réponse non détaillée : la suite (un) est monotone (croissante si u0 ⩽ 2, décroissante sinon) puisque la
fonction x 7−→

√
2 + x est croissante sur [−2 +∞[.

Pour toute valeur de u0, on a : lim
n→+∞

un = 2.

Exercice 21. — Etudier la suite u définie en posant : u0 ∈ R+ et ∀n ∈ N, un+1 = u2
n.

Réponse non détaillée : Si u0 = 1, alors : lim
n→+∞

un = 1 ;

Si u0 > 1, alors : lim
n→+∞

un = +∞ ;

Si u0 < 1, alors : lim
n→+∞

un = 0 ;

Exercice 22. — Etudier la suite u définie en posant : u0 ∈ R+ et ∀n ∈ N, un+1 = u2
n + 1.

Pour toute valeur de u0, on a : lim
n→+∞

un = +∞.

Exercice 23. — Etudier la suite u définie en posant : u0 ⩾ 1 et ∀n ∈ N, un+1 = 1 + ln (un).

ä On peut commencer par observer que la suite u est bien définie, puisque : ∀n ∈ N, un ⩾ 1 (par
une récurrence immédiate).

ä On peut également noter que la fonction x 7−→ 1 + ln(x) est croissante sur [1,+∞ [ . La suite u est
donc monotone.

ä Enfin, il est bien connu † que : ∀ x ∈ R∗
+, ln(x) ⩽ x − 1. Donc : ∀ x ∈ R∗

+, 1 + ln(x) ⩽ x, d’où en
particulier : 1 + ln(u0) ⩽ u0, c’est-à-dire que u1 ⩽ u0. On en déduit que u est décroissante.

†. C’est un résultat de référence, traduisant le fait que la courbe représentative de la fonction ln est située en-dessous de
sa tangente au point d’abscisse 1, qui a précisément pour équation y = x− 1.
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ä Puisque u est décroissante et minorée (par 1), elle converge (théorème de la limite monotone). Reste
à résoudre l’équation f(x) = x, qui n’a qu’une seule solution (x = 1) puisque la courbe représentative de
la fonction ln et sa tangente au point d’abscisse 1 ont un unique point d’intersection.

Conclusion. u converge vers 1.


