
Lycée Jean Bart – MPSI – 30 janvier 2026

Colle 16 – Questions de cours

Question de cours 1. — Propriété (de limite séquentielle) : soient (xn)n une suite réelle de limite +∞,
et f une fonction définie au voisinage de +∞. On suppose que lim

x−→+∞
f(x) = ℓ (avec ℓ ∈ R ou ℓ = +∞). Alors :

lim
n−→+∞

f (xn) = ℓ.

Preuve. A noter qu’il y a ici deux preuves à effectuer, suivant que ℓ ∈ R ou ℓ = +∞.

ä Cas n01 : ℓ ∈ R. On suppose donc lim
n−→+∞

xn = +∞ et lim
x−→+∞

f(x) = ℓ (avec ℓ réel). Fixons ε > 0.

Puisque : lim
x−→+∞

f(x) = ℓ, on peut affirmer que : ∃ x0 ∈ R, x > x0 =⇒ |f(x)− ℓ| < ε (♠).

Comme par ailleurs : lim
n−→+∞

xn = +∞, on peut affirmer que : ∃ n0 ∈ N, n ⩾ n0 =⇒ xn > x0 (♣).

D’après (♠) et (♣), et puisque ε est un réel strictement positif arbitraire dans ce qui précède, on a établi que :

∀ ε > 0, ∃ n0 ∈ N, n ⩾ n0 =⇒ |f (xn)− ℓ| < ε, c’est-à-dire : lim
n−→+∞

f (xn) = ℓ

ä Cas n02 : ℓ = +∞. On suppose donc lim
n−→+∞

xn = +∞ et lim
x−→+∞

f(x) = +∞. Fixons M ∈ R.

Puisque : lim
x−→+∞

f(x) = +∞, on peut affirmer que : ∃ x0 ∈ R, x > x0 =⇒ f(x) > M (♠).

Comme par ailleurs : lim
n−→+∞

xn = +∞, on peut affirmer que : ∃ n0 ∈ N, n ⩾ n0 =⇒ xn > x0 (♣).

D’après (♠) et (♣), et puisque M est un réel arbitraire dans ce qui précède, on a établi que :

∀ M ∈ R, ∃ n0 ∈ N, n ⩾ n0 =⇒ f (xn) > M , c’est-à-dire : lim
n−→+∞

f (xn) = +∞

Question de cours 2. — Propriété. Soit u une suite réelle telle que : ∀ n ∈ N, un+1 = f (un). Si f est croissante,
alors u est monotone. Si f est décroissante, alors les suites (u2n) et (u2n+1) sont monotones, de monotonies opposées.

Preuve. Soit f une fonction définie sur un intervalle I et à valeurs réelles, telle que f(I) ⊂ I.

ä Si f est croissante. On distingue deux cas : u0 ⩽ u1 et u0 > u1.

Une récurrence immédiate ∗ permet d’établir que pour tout entier naturel n, on a un+1 ⩽ un dans le premier cas, et
un+1 ⩾ un dans le second. En tous les cas, la suite u est monotone, ce qui prouve la première implication.

ä Si f est décroissante. Alors f ◦ f est croissante. On en déduit que les suites (u2n) et (u2n+1) sont monotones.

Si u0 ⩾ u2, alors la suite (u2n) est croissante. On a par ailleurs : f(u0) = u1 ⩽ f(u2) = u3 puisque f est décroissante. On
en déduit que la suite (u2n+1) est décroissante. Ainsi les suites (u2n) et (u2n+1) sont monotones, de monotonies opposées.

L’autre cas, où u0 ⩽ u2, se déduit trivialement du raisonnement précédent.

Question de cours 3. — Exercice classique - (théorème du point fixe).

∀ f ∈ C 0 ([a, b] , [a, b]) , ∃ c ∈ [a, b], f(c) = c.

Preuve. Par hypothèse, la fonction g : x 7−→ f(x)− x est continue sur [a, b].

Par ailleurs : g(a) = f(a) − a ⩾ 0, puisque par hypothèse encore, on a f(a) ∈ [a, b], d’où en particulier f(a) ⩾ a. De
manière analogue : g(b) = f(b)− b ⩽ 0.

La fonction g étant continue sur [a, b], et telle que g(a)g(b) ⩽ 0, le TVI permet d’affirmer qu’il existe un réel c ∈ [a, b] tel
que g(c) = 0, c’est à dire tel que f(c) = c, ce qu’il fallait démontrer.

∗. Détaillée dans le cours.
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Question de cours 4. — Formule de la moyenne. Soit f ∈ C 0([a, b],R) : ∃ c ∈ [a, b], f(c) =
1

b− a

∫ b

a

f .

Preuve. Puisque f est continue sur le segment [a, b], le théorème des bornes atteintes permet d’affirmer que :

∃ (t, u) ∈ [a, b]2, ∀x ∈ [a, b], f (t) ⩽ f(x) ⩽ f(u)

Par croissance de l’intégrale :
∫ b

a

f(t)dx ⩽
∫ b

a

f(x)dx ⩽
∫ b

a

f(u)dx

D’où : (b− a) f(t) ⩽
∫ b

a

f(x)dx ⩽ (b− a) f(u)

Soit encore : f(t) ⩽ 1

b− a

∫ b

a

f(x)dx ⩽ f(u)

Ce dernier encadrement fait apparaître le terme du milieu comme une valeur intermédiaire de la fonction f sur [a, b]. Le

théorème du même nom permet d’affirmer que : ∃ c ∈ [a; b], f (c) =
1

b− a

∫ b

a

f(x) dx, ce qui prouve la formule.

Question de cours 5. — Théorème (des bornes atteintes) : toute fonction à valeurs réelles continue sur un
segment est bornée et atteint ses bornes.

Preuve. Soit f une fonction continue sur le segment [a; b] (avec a et b réels, a < b), et à valeurs réelles.
On pose M = sup {f(x) / x ∈ [a, b]} ∈ R ∪ {+∞}.

D’après la caractérisation séquentielle de la borne supérieure (dans R) : ∃ (xn) ∈ [a, b]
N
, lim

n−→+∞
f (xn) = M .

La suite (xn) étant bornée †, le théorème de Bolzano-Weierstrass permet d’affirmer que l’on peut en extraire une sous-suite(
xφ(n)

)
convergente. Notons : c = lim

n−→+∞
xφ(n).

Puisque la suite
(
xφ(n)

)
est une suite d’éléments de [a, b], on a : c ∈ [a, b] (par stabilité des inégalités larges par passage

à la limite).

Il est alors légitime d’appliquer la propriété de continuité séquentielle à la fonction f , qui est continue en c car elle est en
particulier continue sur [a, b], pour obtenir : f(c) = lim

n−→+∞
f
(
xφ(n)

)
(♠).

Il reste à observer que la suite de terme général f
(
xφ(n)

)
est extraite de la suite de terme général f (xn) pour affimer

que : lim
n−→+∞

f
(
xφ(n)

)
= M (♣).

Par unicité de la limite, on déduit de (♠) et de (♣) que : M = f(c). Ainsi la fonction f admet un maximum sur [a, b],
égal à f(c).

On établit de façon analogue que f admet un minimum sur [a, b] (prendre l’image de la démonstration précédente par la
symétrie par rapport à zéro).

†. C’est une suite de réels de [a, b].
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Banque d’exercices

Exercice 1. — Soit f : R −→ R une fonction. On suppose que f admet une limite finie en 0, et que pour tout réel
x on a : f (x) = f

(x
2

)
.

Etablir que f est constante.

Exercice 2. — Soit f une fonction continue sur R. On suppose que :

∀ x ∈ R, f2 (x) = f (x)

Etablir que f est identiquement nulle ou bien f est constante égale à 1.

Exercice 3. — On suppose que f est une fonction de C 0(R,R), et qu’il existe un réel α tel que :
∀x ∈ Q, f(x) = eαx

Montrer que :
∀x ∈ R, f(x) = eαx

Exercice 4. — Montrer que toute fonction continue et périodique sur R est bornée sur R.

Exercice 5. — On définit une suite réelle (un) en posant :
u0 ∈ ]2,+∞[ et ∀n ∈ N, un+1 =

√
un + 2

Etablir que la suite (un) est décroissante, puis qu’elle est convergente, et préciser sa limite.
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Banque d’exercices - Corrigés

Exercice 1. — Soit f : R −→ R une fonction. On suppose que f admet une limite finie en 0, et que pour tout réel
x on a : f (x) = f

(x
2

)
.

Etablir que f est constante.

Par hypothèse, f admet une limite finie en 0. Notons : ℓ = lim
x→0

f(x).

Pour tout réel x : f (x) = f
(x
2

)
.

Par récurrence, pour tout réel x et pour tout entier naturel n : f (x) = f
( x

2n

)
.

Soit x un réel quelconque. On a : lim
x→0

x

2n
= 0. D’après la propriété de limite séquentielle : lim

x→0
f
( x

2n

)
= ℓ.

Puisque par ailleurs la suite de terme général f
( x

2n

)
est constante égale à f(x), on a : f(x) = ℓ.

Le raisonnement précédent étant valide pour un réel x arbitraire, on a : ∀x ∈ R, f(x) = ℓ.

Conclusion. La fonction f est constante sur R. Conclusion.

Exercice 2. — Soit f une fonction continue sur R. On suppose que :

∀ x ∈ R, f2 (x) = f (x)

Etablir que f est identiquement nulle ou bien f est constante égale à 1.

D’après l’énoncé : ∀x ∈ R, f(x) = 0 ou f(x) = 1.

Si f n’est pas constante, alors le TVI assure que la fonction f prend au moins une fois la valeur 1/2 : contradiction.

Il s’ensuit que f est constante égale à 0 ou 1.

Conclusion. Sous les hypothèses de l’énoncé, la fonction f est identiquement nulle, ou constante égale à 1.

Exercice 3. — On suppose que f est une fonction de C 0(R,R), et qu’il existe un réel α tel que :
∀x ∈ Q, f(x) = eαx

Montrer que :
∀x ∈ R, f(x) = eαx

Soit x un nombre réel. Puisque Q est dense dans R :
∃ ρn ∈ QN, lim

n→+∞
ρn = x

On en déduit déjà par opérations usuelles sur les limites que :
lim

n→+∞
eαρn = eαx (♠)

Par ailleurs, puisque la fonction f est continue en x, la propriété de continuité séquentielle permet d’affirmer que :
lim

n→+∞
f (ρn) = f(x) (♣)

Enfin, puisque la suite ρn est une suite de rationnels, on a :
∀n ∈ N, f (ρn) = eαρn

On en déduit, avec (♠) et (♣) que :
f(x) = eαx

Conclusion. ∀x ∈ R, f(x) = eαx
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Exercice 4. — Montrer que toute fonction continue et périodique sur R est bornée sur R.

En notant T la période de f , il suffit de prouver que f(R) = f([0, T ]), puis d’appliquer le théorème des bornes atteintes
à la fonction f sur le segment [0, T ].

Prouvons l’égalité f(R) = f([0, T ]).

Soit y ∈ f(R) : ∃x ∈ R, y = f(x).

Notons à présent k =
⌊ x
T

⌋
. Par définition de partie entière, on a :

k ⩽ x

T
< k + 1 d’où kT ⩽ x < (k + 1)T

Il s’ensuit que :
0 ⩽ x− kT < T

En outre, la fonction f étant T -périodique, on a : f(x− kT ) = f(x).
Donc : y = f(x− kT ), avec (x− kT ) ∈ [0, T ]. Il s’ensuit que y ∈ f([0, T ]).

Ce qui prouve l’inclusion : f(R) ⊂ f([0, T ]). L’inclusion réciproque est immédiate.

En résumé : f(R) = f([0, T ]). La fonction f étant continue sur le segment [0, T ], on peut conclure qu’elle est bornée sur
[0, T ] (th des bornes atteintes), et donc bornée sur R.

Exercice 5. — On définit une suite réelle (un) en posant :
u0 ∈ ]2,+∞[ et ∀n ∈ N, un+1 =

√
un + 2

Etablir que la suite (un) est décroissante, puis qu’elle est convergente, et préciser sa limite.

Réponse non détaillée : la suite (un) est monotone puisque la fonction x 7−→
√
2 + x est croissante sur son ensemble de

définition.

En outre, pour tout réel x ⩾ 2, on a : x ⩾
√
2 + x.

En effet, si x ⩾ 2, on a :

x ⩾
√
x+ 2 ⇐⇒ x2 ⩾ x+ 2 ⇐⇒ x2 − x− 2 ⩾ 0 ⇐⇒ (x− 2)(x+ 1) ⩾ 0

On en déduit en particulier que : u0 ⩾
√
2 + u0, soit u0 ⩾ u1. La suite (un) est donc décroissante.

On vérifie par une récurrence immédiate que : ∀n ∈ N, un ⩾ 2.

On déduit des deux lignes précédentes et du TLM que la suite (un) converge. Notons ℓ sa limite.

La fonction f étant continue sur son ensemble de définition, on a : f(ℓ) = ℓ, càd : ℓ =
√
2 + ℓ. On déduit des calculs faits

quelques lignes plus haut que ℓ = 2.

Conclusion. La suite (un) est décroissante, et lim
n→+∞

un = 2.


