Lycée Jean Bart — MPSI - 6 février 2026

COLLE 17 — QUESTIONS DE COURS

QUESTION DE COURS N1 — Propriété. Soient A et B deux parties d’'un méme ensemble fini E.
Alors : Card(E\A) = Card(F) — Card(A), et Card (AU B) = Card (A) + Card (B) — Card(A N B)

Observons que : E = (E\A) U A. Cette union étant disjointe, on a : Card(E) = Card(E\A) 4+ Card(A). On en déduit la
premiére égalité.

Dans le méme registre : AU B = (A\B) U B.

Cette union étant disjointe, on a : Card(4 U B) = Card (A\B) + Card(B) (M).

Par ailleurs : A = (A\B)U (AN B).

Cette nouvelle union étant disjointe, on a : Card(A) = Card (A\B) + Card(A N B).

Par suite : Card (A\B) = Card(A) — Card(A N B) ().

D’aprés (#) et (&) : Card (AU B) = Card (A) + Card (B) — Card(AN B).

QUESTION DE COURS N’2 — Propriété. Soient E et F deux ensembles finis, et f : E — F une application. On
suppose Card (F) = Card (F'). LASSE (les assertions suivantes sont équivalentes) :

1/ f est bijective 2/ f est injective 3/ f est surjective

Montrons 1) = 2) = 3) = 1) ; la boucle sera ainsi bouclée!
Supposons E et F' finis de méme cardinal n € N*.

o 1) = 2) : trivial.

e 2) =—> 3) : supposons [ injective. On peut commencer par noter que f(F) est une partie de F. En outre, puisque f
est injective, f(E) est un ensemble fini, de cardinal égal a celui de E (cours). Or Card (E) = Card (F) (par hypothése).
Donc I'ensemble f(E) est une partie de F, de cardinal égal & celui de F'; il s’ensuit que f(F) = F (cours). Donc f est

surjective, ce qui prouve 'implication.

e 3) => 1) : supposons & présent f surjective. Alors f(E) = F, donc Card (f(F)) = Card (F), et par conséquent
Card (f(F)) = Card (E) (puisque Card (F) = Card (F') par hypothese). On en déduit (cours) que f est injective, et donc
bijective. Ce qui prouve I'implication, et achéve la preuve de la propriété.

QUESTION DE COURS N’3 — Théoréme. Si E est un ensemble fini de cardinal n, alors (Sg,o) est un groupe fini de
cardinal n!.

Un élément de Sg est une bijection de F dans E. En vertu de la question de cours 2, il existe autant de bijections de F
|

dans E que d’injections de E dans E (puisque F est fini). Or le nombre d’injections de E dans F est : % =nl*
n—mn)!

Par suite, il existe n! bijections de E dans F, ce qui assure déja que : ‘ Card (Sg) = n! ‘

En outre, la loi de composition (“0”) est une loi de composition interne dans Sg (la composée de deux bijections est une
bijection). Cette lci est associative car plus généralement la composition des applications l'est. Elle posséde un élément
neutre qui est I'identité de E. Enfin, tout élément f de Sg est inversible (pour la loi “0”) dans Sg, car si f est bijective
de E dans E, sa réciproque f~! est elle aussi une bijection de E dans E.

‘ Ce qui prouve que (Sg, o) est un groupe, de cardinal n!.

‘ QUESTION DE COURS N4 — Propriété. Pour tout entier n > 3, le groupe (S, ) est non-abélien.

Soit n un entier > 3. Les transpositions (12) et (13) appartiennent & S,,, puisque n > 3...

Il reste & observer que (12)(13) = (132) tandis que (13)(12) = (123) pour conclure.

‘ Conclusion. Pour tout entier n > 3, le groupe (S, 0) est non-abélien. ‘

Remarque : de fait, le groupe (S, 0) est abélien SSI n < 3, d’aprés ce qui précéde, et car les groupes S (groupe trivial)
et S = {id, (12)} sont commutatifs.

*. Plus généralement, le nombre d’applications injectives de E dans F' est

si Card(E) = p < n = Card(F).
n—p)!
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QUESTION DE COURS N5 — Propriété. Deux permutations & supports disjoints commutent. ‘

» On commence par prouver que si un entier k appartient au support d’une permutation o, alors o(k) appartient
également au support de o.

Considérons donc un entier k € supp(c). Par 'absurde, supposons que o(k) n’appartienne pas au support de o. Alors :
o(o(k)) = o(k) d’ou (o étant injective) : o(k) = k

Ce qui contredit I'hypotheése “k € supp(c)”. Donc o(k) € supp(o).

En résumé : Vo € S, Vk € N,,, [k € supp(o)] = [o(k) € supp(o)] (W)

» La preuve du lemme est & présent une formalité. Soient ¢ et p deux éléments de S,,, & supports disjoints.

Soit k un entier de N,,. Puisque supp(yp) Nsupp(p) =@ (&), on peut distinguer 3 cas :

(> ]E:a)r;n‘er cas : k € supp(p). Alors on a : k ¢ supp(p) (selon (b)), et (k) € supp(yp) (selon (M)), donc ¢(k) ¢ supp(p)

On en déduit que :  ¢(p(k)) = @(k) et p(p(k)) = @(k). Donc : @(p(k)) = p(p(k)).
> Second cas : k € supp(p). D’apreés le premier cas : p(p(k)) = p(p(k)).

> Troisiéme cas : k ¢ (supp(p) Usupp(p)). Alors : p(p(k)) = p(p(k)) = k.
> Conclusion : Vk € Ny, o(p(k)) = p(p(k)) =k. Ainsi: pop=pop.

Conclusion. Deux permutations & supports disjoints commutent. ‘

QUESTION DE COURS N6 — (sur le principe du volontariat) Théoréme. Les transpositions engendrent S,,. ‘

PREUVE. Raisonnons par récurrence sur l’entier naturel n en posant pour tout n € N\ {0,1} :
k
Z(n) : “Pour toute permutation o € S, il existe un entier k et k transpositions 7,. .., 7, de S, tels que : o = H 7"
i=1
w Initialisation (n = 2) : les permutations de Sy sont l'identité (produit de 0 transposition) et (12) (produit d’une
transposition), ce qui assure que &?(2) est vraie.

w Heérédité : supposons la propriété établie jusqu’a un certain entier naturel n, et montrons que &(n + 1) est vraie.

Soit o € Sp4+1. On peut distinguer deux cas: o (n+1)=n+1leto(n+1) #n+1.

Premier cas — Si o (n+1) =n+1 : dans ce cas, la restriction oy, est une permutation de N,,. Par hypothése de
k

récurrence, il existe un entier k et k transpositions 7i,..., 7, de S, tels que : o)y, = H T
=1

Il reste a voir qu’une transposition dans S,, est aussi une transposition dans S, 1 ; en eﬁet, une transposition de S,, s’écrit
(ab) avec a et b deux entiers distincts dans N,, ; ce sont donc naturellement deux entiers distincts dans N,,11. Et puisque

k
c(n+1)=n+1,onadonc: o= H 7; (égalité dans S,4+1). Ainsi, sous 'hypothése o (n + 1) = n + 1, il existe un entier
i=1
' k
k et k transpositions 7y,..., 7, de S, tels que : 0 = HTZ'.
i=1

Second cas — Si o (n+ 1) # n+ 1 : dans ce cas, on introduit la permutation p = (o (n+1) n+1)o.7

p est un élément de S, 41, qui vérifie : p(n+ 1) = n+ 1. En vertu de ’étude faite dans le premier cas : il existe un entier
k k

k et k transpositions 71,. .., 7 de S,11 tels que : p = H 7;. Par suite,ona:oc=(c(n+1) n+1) H 7;. La permutation
i=1 1=1
o est ainsi écrite comme produit de k + 1 transpositions.
Synthése : dans les deux cas, on a montré que o € 5,41 peut s’écrire comme produit de transpositions. Ce qui assure
que & (n+ 1) est vraie, et achéve la preuve de I'hérédité.
Conclusion. Pour tout entier naturel n > 2, et pour toute permutation o € S, il existe un entier k et k transpositions
k
Ti,. .., Tk de S, tels que : 0 = H 7;. En d’autres termes, les transpositions engendrent le groupe symétrique.
i=1

t. La permutation p est le produit de o, et de la transposition échangeant o (n + 1) et n + 1.
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COMPLEMENTS DE COURS (POUR INFORMATION, DEMOS NON EXIGIBLES EN COLLE)

‘ LEMME — Soient E un ensemble fini de cardinal n € N*, et a € E. Alors E\ {a} est un ensemble fini de cardinal n — 1. ‘

PREUVE. Considérons E un ensemble fini de cardinal non nul, et ¢ un élément de E.

Puisque F est de cardinal n, il existe une bijection de f: E — N,,. Deux cas peuvent alors se présenter ; soit f (a) = n,
soit f (a) # n.

Premier cas — Si f (a) = n : on introduit alors la restriction de f a E\ {a}, que nous noterons g : F\ {a} — N,,.

L’application g est encore injective, puisque f 'est et que la restriction d’une application injective ’est encore.

Par ailleurs : soit k£ un élément de N,,_;. Puisqu’alors k appartient également & N,,, k¥ admet un unique antécédent x par
f dans E. Or cet unique antécédent ne peut étre a, puisque a est I'unique antécédent de n et que k # n. Il s’ensuit que :

VkeN,_1, Az e E\{a}, g(x)=k

Par suite, Papplication g induit une bijection de E\ {a} dans N,_;. D’ou : F\ {a} ~ N, _;.

Second cas — Si f (a) # n : on introduit alors application :

7:N, ——— =N,
n——f(a)
fla)b———>n

k——>ksik+#f(a)etk#n

L’application 7 est bijective, car c¢’est une involution (Toronto...)

Donc lapplication : F = 7o f : E — N,, est bijective (c’est la composée de deux bijections) et a le bon gott de satisfaire
la condition : F'(a) = n. On est ainsi ramenés au premier cas, et on peut donc conclure que E\ {a} ~ N,_;.

Dans les deux cas, on a établi que E\ {a} et N,,_; sont équipotents.

Conclusion. Si E est un ensemble fini de cardinal n € N*, et a € E, alors E\ {a} est un ensemble fini de cardinal n — 1.

LEMME — Soient F et F' deux ensembles finis, de cardinaux respectifs p et n. Le nombre d’injections de E dans F' est
I’entier :
n!
A= sipe[0,n], et AL =0sip>n.

" (n—p)

PREUVE. Commengons par observer que f(E) étant une partie de F, on a Card(f(E)) < n = Card(F). Par ailleurs, f
est injective si et seulement si Card(f(E)) = Card(E) = p. Il s’ensuit qu'il ne peut pas exister d’application injective de
E dans F si p > n, ce qui prouve déja la seconde partie de la proposition.

Supposons maintenant p < n, et notons E = {x1,...,x,}. Pour définir une application f, on peut choisir successivement
les valeurs de f(x1),..., f(zp). Sil'on souhaite que l'application f soit injective, on doit prendre ces éléments distincts
dans F. On a alors n choix pour f(z1), n — 1 choix pour f(z2),..., (n —p + 1) choix pour f(x,). Il existe donc :

n(n—1)---(n—p+1) injections de F dans F, d’ou : pour tout p €[ 0,n |, il existe ; injections de E dans F'.

n!
(n—p)!
PROPRIETE — Un p-cycle est une permutation. En outre, avec les notations usuelles :

(araz - ap)71 = (apap-1---a1)

PREUVE. Soit k un élément de N,,.

w Sik ¢ {a1,...,a,}alors [(apap—1---a1) (a1as- - ap)] (k) = k puisque k est laissé invariant par les p-cycles (apap—1 - - - a1)
et (arag---ap).
w Sike{a,...,ap_1} : il revient au méme de dire qu’il existe i € N,_; tel que k = a;. Alors :

[(apap—r---ar) (aras---ap)] (k) = (apap—1---ar) ((araz - - ap) (@) = (apap—1 -+~ a1) (aiy1) = a;
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= Si k=a,: Alors :

[(apap—1---a1)(araz -~ ap)] (ap) = (apap—1---a1) (a1) = ap
Conclusion intermédiaire : Vk € N,,,

[(apap—1---a1) (araz---ap)] (k) =k, soit : (apap—1---a1) (a1az---ap) =idy,, .

Dans l'autre sens :

w Sik ¢ {a,...,a,} : comme dans le cas précédent [(arasz---ap) (apap—1---a1)] (k) = k.

w Sik € {ag,...,ap} : il revient au méme de dire qu’il existe i €] 2,p ] tel que k = a;. Alors :

(@12 ap) (apap - an)] () = (a2 ay) (apay1 -+ a1) (@) = (@103 -+ ay) (@ -1) =

w Sik=ap: Alors:

[(aras -+ ap) (apap—1 -~ a1)] (k) = (a1az -+ - ap) (apap—1 - --a1) ((a1)) = (araz - - - ap) (ap) = a1
Conclusion intermédiaire bis : Vk € N,,,
[(a1a2---ap) (apap—1---a1)] (k) =k, soit : (ar1az---ap) (apap—1---a1) = idy,,.
Conclusion. D’aprés les calculs précédents : (apap—1---a1) (araz---ap) =idy, et (araz---ap) (apap—1---a1) = idy,, . Par

suite, 'application (ajas - --a,) est une bijection de N,, dans N,, ; c’est donc une permutation, d’inverse (apa,—1---a1)
dans S,,.

PROPRIETE — Avec les notations usuelles :

p—1
(araz---ap) = [T (aiais1)
i=1
PREUVE. Soit k£ un élément de N,,.
p—1
= Sik ¢ {a1,...,a,}:alors (araz---ap) (k) = k puisque k n’appartient pas au support du cycle, et [H (aiai+1)] (k)=k
i=1
puisque k n’appartient au support d’aucune transposition (a;a;4+1) du produit.
p—1
Dou: |VkeN,, k¢ {al,...,a,}, [H (aiaiﬂ)] (k) = (araz - --ap) (k)
i=1
w Sike{a,...,ap—2} : il revient au méme de dire qu’il existe m € N,_; tel que k = a,,. Alors d’une part :

(arag--- ap) (k) = (a1ag--- a’p) (am) = am1
Et d’autre part :

[H (aiam)] () = KH (aiam)) (i) ( I <aiai+1>)] o

i=1 i=1 i=m+1

- KH (aiaim) <amam+l>] (( II (aiam)) <am>>
=1 i=m-+1
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Puisque a,, n’appartient au support d’aucune transposition (a;a;41) pour i > m+ 1, on a :

( 1T (aia¢+1)> (am) = am

1=m-+1

Il s’ensuit que :

i=1 i=1 i=1

[H <aiaz-+1>] (am) = [( 11 <aiaz-+1>> (amamm] () = K 11 <aiai+1>>] ()

De nouveau, puisque a,,4+1 n’appartient au support d’aucune transposition (aiai_H) pour i <m—1,ona:

m—1 p—1
(H (aiai+1)> (@m+1) = Gm+1. D’ot finalement : [H (aiai+1)‘| (am) = my1-
i=1 i=1
p—1
Dou: Yk e {ar,...,ap—2}, lH (aiai+1)] (k) = (a1az2 -+ - ap) (k)
i=1

= Si k= ap_1 : Alors d’une part : (a1a2---ap) (ap—1) = ap
Et d’autre part :

[H (aiaz‘+1)] (ap—1) = [(H (az’ai+1)> (ap—lap)] (ap-1) = (H (az‘az‘+1)>] (ap) = ap

i=1 i=1 i=1

La derniére égalité provenant de ce que a, n’appartient au support d’aucune transposition (a;a;4+1) pour i < p — 2.

rp—1

Dot :| ] (aiai+1)] (ap-1) = (araz -~ ap) (ap-1)

i=1

= Si k = a, : Alors d'une part : (aras---ap) (ap) = a1
Et d’autre part :

p—1 p—2 p—2 p—3
11 (aiawl)} (ap) = KH (aiai+1)> (a,,lap)] (ap) = KH (az‘aiﬂ))] (ap—1) = KH (aiaiﬂ)ﬂ (ap—2)

i=1 i=1 i=1 i=1

== KH (az'ai+1)>] (a3) = (a1a2) (az) = a1 Dou: l (avzai+1)] (ap) = (araz - ap) (ap)
p—1 p—1
Conclusion. Vk € N,,, H (aiaHl)] (k) = (araz---ap) (k) soit : H (aiaiy1) = (ara2-- - ap)

Cette derniére propriété signifie que tout p-cycle s’écrit comme un produit d’exactement (p — 1) transpo-
sitions.

THEOREME — Toute permutation peut s’écrire comme un produit de cycles & supports disjoints.

PREUVE. Preuve par récurrence sur n € N, n > 2. On pose P(n) : “Dans S,,, toute permutation de S,, s’écrit comme
produit de cycles a supports disjoints”.

» Initialisation (pour n = 2). Les éléments de Sy sont idy, (produit de zéro cycle) et (12) (produit d’un cycle).
» Hérédité. Supposons P(n) vraie pour un entier naturel n > 2. Soit o € S,41; on distingue deux cas.

Premier cas : si 0 (n+4 1) = n + 1. Alors o)y, est une permutation de S,. Par hypothése de récurrence, il existe k cycles
k
€1,- -+, ¢ a supports disjoints tels que : oy, = Hci. Or ces k-cycles ¢; peuvent étre vus comme des éléments de Sj, 41,
i=1
k
et puisque o laisse (n + 1) invariant, I’égalité o = H ¢; est valide dans S, 41.
i=1
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Second cas : si 0 (n+ 1) # n+ 1. On considére alors la transposition 7 = ((n 4+ 1) ,0 (n + 1)). Alors 7o est un élément de
Spt1 tel que : 7o (n+1) =n+1.
k
D’aprés ’étude faite dans le premier cas, il existe k-cycles cy,. .., ¢y de S,41 tels que : 70 = H ;-
i=1
Par suitet : 0 = 7¢1 - - Cp.
k
Sio(n+1) ¢ U supp (¢;), alors 7, ¢1,. .., ¢; sont & supports disjoints, et c’est gagné.
i=1
Sinon:3Jje[Lk], ¢;=(c(n+1),z1,...,2p).
L’entier z,, est alors I'unique antécédent de n + 1 par o.
On pose alors : ¢; = (o (n+1),21,...,2p,n+1).
Les cycles c1,. .., ¢j,. .., ¢ sont & supports disjoints, et par construction : ¢ = ¢y -+ ¢ - - - cg.

On en déduit que dans les deux cas, tout élément de S, 1 est produit de cycles a supports disjoints, d’ott P(n + 1) est
vraie.

Conclusion. Pour tout entier n > 2, tout élément de S,, est produit de cycles a supports disjoints.

THEOREME — V (0,7) € S2, e(o7) =¢(0)e (1)

PREUVE. Soient ¢ et 7 deux éléments de .S,,.

Soit (4,7) un couple d’entiers de N,, avec : 1 < i < j < n.

La permutation o7 réalise une inversion si et seulement si :
w 7 réalise une inversion sur le couple (i, j), et o ne réalise pas d’inversion sur le couple (7 (¢),7 (5));
w 7 ne réalise pas d’inversion sur le couple (i, j), et o réalise une inversion sur le couple (7 (i), 7 (j))

En sommant U (o) et U (7), on compte les inversions décrites ci-dessus, ainsi que deux fois les cas ou 7 réalise une inversion
sur le couple (4, j) et o réalise une inversion sur le couple (7 (7) , 7 (5)).
Il s’ensuit que U (o7) et U (0) + U (1) ont méme parité. Donc :

(-7 = ()OO ()7 = ()Y (1) = e (o) = £ (0) 2 (7)]

Remarque. Le théoréme ci-dessus signifie que Papplication € : (S,,0) — ({£1}, x) est un morphisme de groupes :
Iimage par € de o o 7 est égal au produit des images ¢ () x € (7).

1. En multipliant a gauche par 7 les deux termes de 1’égalité précédente.
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BANQUE D’EXERCICES

EXERCICE 1. — Soit F fini de cardinal n. Etablir que Card(Z(FE)) = 2".

EXERCICE 2. — Soient n et p deux entiers naturels, avec p < n. Combien existe t-il d’applications f : N, — N,
strictement croissantes ?

EXERCICE 3. — Dans S5, combien existe t-il de transpositions ?

EXERCICE 4. — Dans S5, combien existe t-il de 3-cycles?

EXERCICE 5. — Dans S5, combien existe t-il de produits de 2 transpositions a supports disjoints 7
EXERCICE 6. — Soit n un entier > 2. On considére :

H={ce€ S,, oln)=n}

H est donc ’ensemble des permutations de N,, laissant n invariant.
Montrer que H est un sous-groupe de S,,. Quel est son cardinal 7

EXERCICE 7. — Soit n un entier > 2. Combien existe t-il d’éléments de S,, qui échangent 1 et 27

EXERCICE 8. — Dans Sg on considére le 6-cycle ¢; = (135246) et le 3-cycle ca = (154).

1

Existe t-il un élément o de Sg tel que : ¢ =07 "¢cy0?
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BANQUE D’EXERCICES - INDICATIONS (SEULEMENT POUR LE TD DE LUNDI 9/02)

EXERCICE 1. — Commencez par répondre aux 2 questions suivantes :

1/ Quelles sont les valeurs possibles pour le cardinal d’une partie de E'?

2/ Pour une valeur k possible, combien existe t-il de parties de cardinal k?

EXERCICE 2. — A la main, commencez par construire 2 ou 3 applications strictement croissantes de N3 dans N5. De
quoi avez-vous besoin pour construire ces exemples ?

EXERCICE 3. — Commencez par compter le nombre de supports possibles, puis, une fois le support choisi, comptez
le nombre de permutations ayant ce support qui répondent & la question.

EXERCICE 4. — Commencez par compter le nombre de supports possibles, puis, une fois le support choisi, comptez
le nombre de permutations ayant ce support qui répondent & la question.

EXERCICE 5. — Commencez par compter le nombre de supports possibles, puis, une fois le support choisi, comptez
le nombre de permutations ayant ce support qui répondent & la question.

EXERCICE 6. — Méthode des “(SGx)” pour montrer que H est un sous-groupe.
EXERCICE 7. —

EXERCICE 8. — Signature.
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BANQUE D’EXERCICES - CORRIGES

EXERCICE 1. — Soit E fini de cardinal n. Etablir que Card(Z(E)) = 2".
Pour tout entier k € [ 0,n |, notons : Z(E) = {A C E, Card(A) = k}.

n
Ona: 2(E) =] 2(E).
k=0
Puisque le cardinal d’une partie de E est unique, I'union ci-dessus est disjointe et :

Card (2(E)) = Y Card (Z4(E)) = Y (Z) = 9r

k=0 k=0

EXERCICE 2. — Soient n et p deux entiers naturels, avec p < n. Combien existe t-il d’applications f : N, — N,
strictement croissantes ?

Une application strictement croissante de N, dans N,, est entiérement déterminée par son image, cad par une partie a p
éléments de N,,.

n
Conclusion. Il existe ( > applications strictement croissantes N, dans N,,.
p

EXERCICE 3. — Dans S5, combien existe t-il de transpositions ?

Dans S5, une transposition est uniquement déterminée par son support (les transpositions (ij) et (ji) étant égales), qui
est une combinaison de 2 éléments parmi 5.

5
Conclusion. Il existe (2> = 10 transpositions dans Ss.

EXERCICE 4. — Dans S5, combien existe t-il de 3-cycles?

Dans S5, un 3-cycle est uniquement déterminé par son support, disons {a1,as,as}; et par 'image de a; (deux choix
possibles).

5
Conclusion. 1l existe 2 x (3) = 20 3-cycles dans Sj5.

EXERCICE 5. — Dans S5, combien existe t-il de produits de 2 transpositions a supports disjoints ?
Dans S5, une permutation qui est le produit de 2 transpositions a supports disjoints est uniquement déterminée par son

support, disons {a1,as,as, a4} ; et par 'image de a; (trois choix possibles).

5
Conclusion. Il existe 3 x (4) = 15 produits de 2 transpositions & supports disjoints dans Ss.

EXERCICE 6. — Soit n un entier > 2. On considére :
H={oce S, on)=n}

H est donc ’ensemble des permutations de N,, laissant n invariant.

Montrer que H est un sous-groupe de S,,. Quel est son cardinal 7

H est inclus dans S,, par définition (SG1); idy, appartient & H ; on vérifie aisément que si o et p sont deux éléments de
H, alors op et 0! appartiennent & H (SG3 et SG4).

On en déduit que H est un sous-groupe de S,,.

Par ailleurs, H est équipotent a l’ensemble des permutations de [ 1,n — 1 ], qui est de cardinal (n — 1)! selon le cours.

Conclusion. H est un sous-groupe de S,,, et Card(H) = (n — 1)
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EXERCICE 7. — Soit n un entier > 2. Combien existe t-il d’éléments de S,, qui échangent 1 et 27

Autant que de permutations de [ 3,n ].
Conclusion. Il existe (n — 2)! éléments de S,, qui échangent 1 et 2.

EXERCICE 8. — Dans Sg on considére le 6-cycle ¢; = (135246) et le 3-cycle co = (154).
Existe t-il un élément o de Sg tel que : ¢; =0 'cao ?
Supposons qu'il existe une permutation o telle que : ¢; = 0~ 0.
Alors on aurait : e(c;) = e(0 ™ Lea0).
Or, selon les propriétés de la signature :

e(0epo) = e(0 Ne(er)e(o) = (o7 e(o) e(ez) = e(c)

T/

Dot : g(c1) = e(cz). Or, selon le cours : g(c;) = (—=1)71 = —1 et e(cz) = (—1)>~! = 1. Contradiction.

Conclusion. Il n’existe aucune permutation o € Sg telle que : ¢; = o leg0.



