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Colle 17 – Questions de cours

Question de cours n01 — Propriété. Soient A et B deux parties d’un même ensemble fini E.

Alors : Card(E\A) = Card(E)− Card(A), et Card (A ∪B) = Card (A) + Card (B)− Card(A ∩B)

Observons que : E = (E\A) ∪ A. Cette union étant disjointe, on a : Card(E) = Card(E\A) + Card(A). On en déduit la
première égalité.

Dans le même registre : A ∪B = (A\B) ∪B.

Cette union étant disjointe, on a : Card(A ∪B) = Card (A\B) + Card(B) (♠).

Par ailleurs : A = (A\B) ∪ (A ∩B).

Cette nouvelle union étant disjointe, on a : Card(A) = Card (A\B) + Card(A ∩B).

Par suite : Card (A\B) = Card(A)− Card(A ∩B) (♣).

D’après (♠) et (♣) : Card (A ∪B) = Card (A) + Card (B)− Card(A ∩B).

Question de cours n02 — Propriété. Soient E et F deux ensembles finis, et f : E −→ F une application. On
suppose Card (E) = Card (F ). LASSE (les assertions suivantes sont équivalentes) :

1/ f est bijective 2/ f est injective 3/ f est surjective

Montrons 1) =⇒ 2) =⇒ 3) =⇒ 1) ; la boucle sera ainsi bouclée !

Supposons E et F finis de même cardinal n ∈ N∗.

• 1) =⇒ 2) : trivial.

• 2) =⇒ 3) : supposons f injective. On peut commencer par noter que f(E) est une partie de F . En outre, puisque f

est injective, f(E) est un ensemble fini, de cardinal égal à celui de E (cours). Or Card (E) = Card (F ) (par hypothèse).
Donc l’ensemble f(E) est une partie de F , de cardinal égal à celui de F ; il s’ensuit que f(E) = F (cours). Donc f est
surjective, ce qui prouve l’implication.

• 3) =⇒ 1) : supposons à présent f surjective. Alors f(E) = F , donc Card (f(E)) = Card (F ), et par conséquent
Card (f(E)) = Card (E) (puisque Card (E) = Card (F ) par hypothèse). On en déduit (cours) que f est injective, et donc
bijective. Ce qui prouve l’implication, et achève la preuve de la propriété.

Question de cours n03 — Théorème. Si E est un ensemble fini de cardinal n, alors (SE , ◦) est un groupe fini de
cardinal n!.
Un élément de SE est une bijection de E dans E. En vertu de la question de cours 2, il existe autant de bijections de E

dans E que d’injections de E dans E (puisque E est fini). Or le nombre d’injections de E dans E est :
n!

(n− n)!
= n!. ∗

Par suite, il existe n! bijections de E dans E, ce qui assure déjà que : Card (SE) = n!

En outre, la loi de composition (“o”) est une loi de composition interne dans SE (la composée de deux bijections est une
bijection). Cette lci est associative car plus généralement la composition des applications l’est. Elle possède un élément
neutre qui est l’identité de E. Enfin, tout élément f de SE est inversible (pour la loi “o”) dans SE , car si f est bijective
de E dans E, sa réciproque f−1 est elle aussi une bijection de E dans E.

Ce qui prouve que (SE , ◦) est un groupe, de cardinal n!.

Question de cours n04 — Propriété. Pour tout entier n ⩾ 3, le groupe (Sn, ◦) est non-abélien.

Soit n un entier ⩾ 3. Les transpositions (12) et (13) appartiennent à Sn, puisque n ⩾ 3. . .

Il reste à observer que (12)(13) = (132) tandis que (13)(12) = (123) pour conclure.

Conclusion. Pour tout entier n ⩾ 3, le groupe (Sn, ◦) est non-abélien.

Remarque : de fait, le groupe (Sn, ◦) est abélien SSI n < 3, d’après ce qui précède, et car les groupes S1 (groupe trivial)
et S2 = {id, (12)} sont commutatifs.

∗. Plus généralement, le nombre d’applications injectives de E dans F est
n!

(n− p)!
si Card(E) = p ⩽ n = Card(F ).
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Question de cours n05 — Propriété. Deux permutations à supports disjoints commutent.

ä On commence par prouver que si un entier k appartient au support d’une permutation σ, alors σ(k) appartient
également au support de σ.

Considérons donc un entier k ∈ supp(σ). Par l’absurde, supposons que σ(k) n’appartienne pas au support de σ. Alors :

σ(σ(k)) = σ(k) d’où (σ étant injective) : σ(k) = k

Ce qui contredit l’hypothèse “k ∈ supp(σ)”. Donc σ(k) ∈ supp(σ).

En résumé : ∀σ ∈ Sn, ∀ k ∈ Nn, [k ∈ supp(σ)] =⇒ [σ(k) ∈ supp(σ)] (♠)

ä La preuve du lemme est à présent une formalité. Soient φ et ρ deux éléments de Sn, à supports disjoints.

Soit k un entier de Nn. Puisque supp(φ) ∩ supp(ρ) = ∅ (♣), on peut distinguer 3 cas :

ã Premier cas : k ∈ supp(φ). Alors on a : k /∈ supp(ρ) (selon (♣)), et φ(k) ∈ supp(φ) (selon (♠)), donc φ(k) /∈ supp(ρ)
(re-(♣)).

On en déduit que : φ(ρ(k)) = φ(k) et ρ(φ(k)) = φ(k). Donc : φ(ρ(k)) = ρ(φ(k)).

ã Second cas : k ∈ supp(ρ). D’après le premier cas : φ(ρ(k)) = ρ(φ(k)).

ã Troisième cas : k /∈ (supp(ρ) ∪ supp(φ)). Alors : φ(ρ(k)) = ρ(φ(k)) = k.

ã Conclusion : ∀ k ∈ Nn, φ(ρ(k)) = ρ(φ(k)) = k. Ainsi : φ ◦ ρ = ρ ◦ φ.

Conclusion. Deux permutations à supports disjoints commutent.

Question de cours n06 — (sur le principe du volontariat) Théorème. Les transpositions engendrent Sn.

Preuve. Raisonnons par récurrence sur l’entier naturel n en posant pour tout n ∈ N\ {0, 1} :

P(n) : “Pour toute permutation σ ∈ Sn il existe un entier k et k transpositions τ1,. . ., τk de Sn tels que : σ =

k∏
i=1

τi”

å Initialisation (n = 2) : les permutations de S2 sont l’identité (produit de 0 transposition) et (12) (produit d’une
transposition), ce qui assure que P(2) est vraie.

å Hérédité : supposons la propriété établie jusqu’à un certain entier naturel n, et montrons que P(n+ 1) est vraie.

Soit σ ∈ Sn+1. On peut distinguer deux cas : σ (n+ 1) = n+ 1 et σ (n+ 1) ̸= n+ 1.

Premier cas — Si σ (n+ 1) = n+ 1 : dans ce cas, la restriction σ|Nn
est une permutation de Nn. Par hypothèse de

récurrence, il existe un entier k et k transpositions τ1,. . ., τk de Sn tels que : σ|Nn
=

k∏
i=1

τi.

Il reste à voir qu’une transposition dans Sn est aussi une transposition dans Sn+1 ; en effet, une transposition de Sn s’écrit
(ab) avec a et b deux entiers distincts dans Nn ; ce sont donc naturellement deux entiers distincts dans Nn+1. Et puisque

σ (n+ 1) = n+ 1, on a donc : σ =

k∏
i=1

τi (égalité dans Sn+1). Ainsi, sous l’hypothèse σ (n+ 1) = n+ 1, il existe un entier

k et k transpositions τ1,. . ., τk de Sn+1 tels que : σ =

k∏
i=1

τi.

Second cas — Si σ (n+ 1) ̸= n+ 1 : dans ce cas, on introduit la permutation ρ = (σ (n+ 1) n+ 1)σ. †

ρ est un élément de Sn+1, qui vérifie : ρ (n+ 1) = n+ 1. En vertu de l’étude faite dans le premier cas : il existe un entier

k et k transpositions τ1,. . ., τk de Sn+1 tels que : ρ =

k∏
i=1

τi. Par suite, on a : σ = (σ (n+ 1) n+ 1)

k∏
i=1

τi. La permutation

σ est ainsi écrite comme produit de k + 1 transpositions.

Synthèse : dans les deux cas, on a montré que σ ∈ Sn+1 peut s’écrire comme produit de transpositions. Ce qui assure
que P (n+ 1) est vraie, et achève la preuve de l’hérédité.

Conclusion. Pour tout entier naturel n ⩾ 2, et pour toute permutation σ ∈ Sn il existe un entier k et k transpositions

τ1,. . ., τk de Sn tels que : σ =

k∏
i=1

τi. En d’autres termes, les transpositions engendrent le groupe symétrique.

†. La permutation ρ est le produit de σ, et de la transposition échangeant σ (n+ 1) et n+ 1.
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Compléments de cours (pour information, démos non exigibles en colle)

Lemme — Soient E un ensemble fini de cardinal n ∈ N∗, et a ∈ E. Alors E\ {a} est un ensemble fini de cardinal n− 1.

Preuve. Considérons E un ensemble fini de cardinal non nul, et a un élément de E.

Puisque E est de cardinal n, il existe une bijection de f : E −→ Nn. Deux cas peuvent alors se présenter ; soit f (a) = n,
soit f (a) ̸= n.

Premier cas — Si f (a) = n : on introduit alors la restriction de f à E\ {a}, que nous noterons g : E\ {a} −→ Nn.

L’application g est encore injective, puisque f l’est et que la restriction d’une application injective l’est encore.

Par ailleurs : soit k un élément de Nn−1. Puisqu’alors k appartient également à Nn, k admet un unique antécédent x par
f dans E. Or cet unique antécédent ne peut être a, puisque a est l’unique antécédent de n et que k ̸= n. Il s’ensuit que :

∀ k ∈ Nn−1, ∃!x ∈ E\ {a} , g (x) = k

Par suite, l’application g induit une bijection de E\ {a} dans Nn−1. D’où : E\ {a} ∼ Nn−1.

Second cas — Si f (a) ̸= n : on introduit alors l’application :

τ : Nn
// Nn

n
� // f (a)

f (a)
� // n

k � // k si k ̸= f (a) et k ̸= n

L’application τ est bijective, car c’est une involution (Toronto. . .)

Donc l’application : F = τ ◦ f : E −→ Nn est bijective (c’est la composée de deux bijections) et a le bon goût de satisfaire
la condition : F (a) = n. On est ainsi ramenés au premier cas, et on peut donc conclure que E\ {a} ∼ Nn−1.

Dans les deux cas, on a établi que E\ {a} et Nn−1 sont équipotents.

Conclusion. Si E est un ensemble fini de cardinal n ∈ N∗, et a ∈ E, alors E\ {a} est un ensemble fini de cardinal n− 1.

Lemme — Soient E et F deux ensembles finis, de cardinaux respectifs p et n. Le nombre d’injections de E dans F est
l’entier :

Ap
n =

n!

(n− p)!
si p ∈[[ 0, n ]], et Ap

n = 0 si p > n.

Preuve. Commençons par observer que f(E) étant une partie de F , on a Card(f(E)) ⩽ n = Card(F ). Par ailleurs, f
est injective si et seulement si Card(f(E)) = Card(E) = p. Il s’ensuit qu’il ne peut pas exister d’application injective de
E dans F si p > n, ce qui prouve déjà la seconde partie de la proposition.

Supposons maintenant p ⩽ n, et notons E = {x1, . . . , xp}. Pour définir une application f , on peut choisir successivement
les valeurs de f(x1),. . ., f(xp). Si l’on souhaite que l’application f soit injective, on doit prendre ces éléments distincts
dans F . On a alors n choix pour f(x1), n − 1 choix pour f(x2),. . ., (n − p + 1) choix pour f(xp). Il existe donc :

n (n− 1) · · · (n− p+ 1) injections de E dans F , d’où : pour tout p ∈[[ 0, n ]], il existe
n!

(n− p)!
injections de E dans F .

Propriété — Un p-cycle est une permutation. En outre, avec les notations usuelles :
(a1a2 · · · ap)−1

= (apap−1 · · · a1)

Preuve. Soit k un élément de Nn.

å Si k /∈ {a1, . . . , ap} : alors [(apap−1 · · · a1) (a1a2 · · · ap)] (k) = k puisque k est laissé invariant par les p-cycles (apap−1 · · · a1)
et (a1a2 · · · ap).
å Si k ∈ {a1, . . . , ap−1} : il revient au même de dire qu’il existe i ∈ Np−1 tel que k = ai. Alors :

[(apap−1 · · · a1) (a1a2 · · · ap)] (k) = (apap−1 · · · a1) ((a1a2 · · · ap) (ai)) = (apap−1 · · · a1) (ai+1) = ai
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å Si k = ap : Alors :

[(apap−1 · · · a1) (a1a2 · · · ap)] (ap) = (apap−1 · · · a1) (a1) = ap

Conclusion intermédiaire : ∀ k ∈ Nn,

[(apap−1 · · · a1) (a1a2 · · · ap)] (k) = k, soit : (apap−1 · · · a1) (a1a2 · · · ap) = idNn
.

Dans l’autre sens :

å Si k /∈ {a1, . . . , ap} : comme dans le cas précédent [(a1a2 · · · ap) (apap−1 · · · a1)] (k) = k.

å Si k ∈ {a2, . . . , ap} : il revient au même de dire qu’il existe i ∈[[ 2, p ]] tel que k = ai. Alors :

[(a1a2 · · · ap) (apap−1 · · · a1)] (k) = (a1a2 · · · ap) (apap−1 · · · a1) ((ai)) = (a1a2 · · · ap) (ai−1) = ai

å Si k = a1 : Alors :

[(a1a2 · · · ap) (apap−1 · · · a1)] (k) = (a1a2 · · · ap) (apap−1 · · · a1) ((a1)) = (a1a2 · · · ap) (ap) = a1

Conclusion intermédiaire bis : ∀ k ∈ Nn,

[(a1a2 · · · ap) (apap−1 · · · a1)] (k) = k, soit : (a1a2 · · · ap) (apap−1 · · · a1) = idNn
.

Conclusion. D’après les calculs précédents : (apap−1 · · · a1) (a1a2 · · · ap) = idNn et (a1a2 · · · ap) (apap−1 · · · a1) = idNn . Par
suite, l’application (a1a2 · · · ap) est une bijection de Nn dans Nn ; c’est donc une permutation, d’inverse (apap−1 · · · a1)
dans Sn.

Propriété — Avec les notations usuelles :

(a1a2 · · · ap) =
p−1∏
i=1

(aiai+1)

Preuve. Soit k un élément de Nn.

å Si k /∈ {a1, . . . , ap} : alors (a1a2 · · · ap) (k) = k puisque k n’appartient pas au support du cycle, et

[
p−1∏
i=1

(aiai+1)

]
(k) = k

puisque k n’appartient au support d’aucune transposition (aiai+1) du produit.

D’où : ∀ k ∈ Nn, k /∈ {a1, . . . , ap} ,

[
p−1∏
i=1

(aiai+1)

]
(k) = (a1a2 · · · ap) (k)

å Si k ∈ {a1, . . . , ap−2} : il revient au même de dire qu’il existe m ∈ Np−1 tel que k = am. Alors d’une part :

(a1a2 · · · ap) (k) = (a1a2 · · · ap) (am) = am+1

Et d’autre part :[
p−1∏
i=1

(aiai+1)

]
(am) =

[(
m−1∏
i=1

(aiai+1)

)
(amam+1)

(
p−1∏

i=m+1

(aiai+1)

)]
(am)

=

[(
m−1∏
i=1

(aiai+1)

)
(amam+1)

]((
p−1∏

i=m+1

(aiai+1)

)
(am)

)
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Puisque am n’appartient au support d’aucune transposition (aiai+1) pour i ⩾ m+ 1, on a :(
p−1∏

i=m+1

(aiai+1)

)
(am) = am

Il s’ensuit que : [
p−1∏
i=1

(aiai+1)

]
(am) =

[(
m−1∏
i=1

(aiai+1)

)
(amam+1)

]
(am) =

[(
m−1∏
i=1

(aiai+1)

)]
(am+1)

De nouveau, puisque am+1 n’appartient au support d’aucune transposition (aiai+1) pour i ⩽ m− 1, on a :(
m−1∏
i=1

(aiai+1)

)
(am+1) = am+1. D’où finalement :

[
p−1∏
i=1

(aiai+1)

]
(am) = am+1.

D’où : ∀ k ∈ {a1, . . . , ap−2} ,

[
p−1∏
i=1

(aiai+1)

]
(k) = (a1a2 · · · ap) (k)

å Si k = ap−1 : Alors d’une part : (a1a2 · · · ap) (ap−1) = ap
Et d’autre part :[

p−1∏
i=1

(aiai+1)

]
(ap−1) =

[(
p−2∏
i=1

(aiai+1)

)
(ap−1ap)

]
(ap−1) =

[(
p−2∏
i=1

(aiai+1)

)]
(ap) = ap

La dernière égalité provenant de ce que ap n’appartient au support d’aucune transposition (aiai+1) pour i ⩽ p− 2.

D’où :

[
p−1∏
i=1

(aiai+1)

]
(ap−1) = (a1a2 · · · ap) (ap−1)

å Si k = ap : Alors d’une part : (a1a2 · · · ap) (ap) = a1
Et d’autre part :[
p−1∏
i=1

(aiai+1)

]
(ap) =

[(
p−2∏
i=1

(aiai+1)

)
(ap−1ap)

]
(ap) =

[(
p−2∏
i=1

(aiai+1)

)]
(ap−1) =

[(
p−3∏
i=1

(aiai+1)

)]
(ap−2)

= · · · =

[(
2∏

i=1

(aiai+1)

)]
(a3) = (a1a2) (a2) = a1 D’où :

[
p−1∏
i=1

(aiai+1)

]
(ap) = (a1a2 · · · ap) (ap)

Conclusion. ∀ k ∈ Nn,

[
p−1∏
i=1

(aiai+1)

]
(k) = (a1a2 · · · ap) (k) soit :

p−1∏
i=1

(aiai+1) = (a1a2 · · · ap)

Cette dernière propriété signifie que tout p-cycle s’écrit comme un produit d’exactement (p− 1) transpo-
sitions.

Théorème — Toute permutation peut s’écrire comme un produit de cycles à supports disjoints.

Preuve. Preuve par récurrence sur n ∈ N, n ⩾ 2. On pose P (n) : “Dans Sn, toute permutation de Sn s’écrit comme
produit de cycles à supports disjoints”.

ä Initialisation (pour n = 2). Les éléments de S2 sont idN2
(produit de zéro cycle) et (12) (produit d’un cycle).

ä Hérédité. Supposons P (n) vraie pour un entier naturel n ⩾ 2. Soit σ ∈ Sn+1 ; on distingue deux cas.

Premier cas : si σ (n+ 1) = n+ 1. Alors σ|Nn
est une permutation de Sn. Par hypothèse de récurrence, il existe k cycles

c1,. . ., ck à supports disjoints tels que : σ|Nn
=

k∏
i=1

ci. Or ces k-cycles ci peuvent être vus comme des éléments de Sn+1,

et puisque σ laisse (n+ 1) invariant, l’égalité σ =

k∏
i=1

ci est valide dans Sn+1.
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Second cas : si σ (n+ 1) ̸= n+1. On considère alors la transposition τ = ((n+ 1) , σ (n+ 1)). Alors τσ est un élément de
Sn+1 tel que : τσ (n+ 1) = n+ 1.

D’après l’étude faite dans le premier cas, il existe k-cycles c1,. . ., ck de Sn+1 tels que : τσ =

k∏
i=1

ci.

Par suite ‡ : σ = τc1 · · · ck.

Si σ(n+ 1) /∈
k⋃

i=1

supp (ci), alors τ , c1,. . ., ck sont à supports disjoints, et c’est gagné.

Sinon : ∃! j ∈ [[ 1, k ]], cj = (σ (n+ 1) , x1, . . . , xp).

L’entier xp est alors l’unique antécédent de n+ 1 par σ.

On pose alors : ĉj = (σ (n+ 1) , x1, . . . , xp, n+ 1).

Les cycles c1,. . ., ĉj ,. . ., ck sont à supports disjoints, et par construction : σ = c1 · · · ĉj · · · ck.
On en déduit que dans les deux cas, tout élément de Sn+1 est produit de cycles à supports disjoints, d’où P (n + 1) est
vraie.

Conclusion. Pour tout entier n ⩾ 2, tout élément de Sn est produit de cycles à supports disjoints.

Théorème — ∀ (σ, τ) ∈ S2
n, ε (στ) = ε (σ) ε (τ)

Preuve. Soient σ et τ deux éléments de Sn.

Soit (i, j) un couple d’entiers de Nn avec : 1 ⩽ i < j ⩽ n.

La permutation στ réalise une inversion si et seulement si :

å τ réalise une inversion sur le couple (i, j), et σ ne réalise pas d’inversion sur le couple (τ (i) , τ (j)) ;

å τ ne réalise pas d’inversion sur le couple (i, j), et σ réalise une inversion sur le couple (τ (i) , τ (j))

En sommant U (σ) et U (τ), on compte les inversions décrites ci-dessus, ainsi que deux fois les cas où τ réalise une inversion
sur le couple (i, j) et σ réalise une inversion sur le couple (τ (i) , τ (j)).
Il s’ensuit que U (στ) et U (σ) + U (τ) ont même parité. Donc :

(−1)
U(στ)

= (−1)
U(σ)+U(τ) ⇐⇒ (−1)

U(στ)
= (−1)

U(σ)
(−1)

U(τ) ⇐⇒ ε (στ) = ε (σ) ε (τ)

Remarque. Le théorème ci-dessus signifie que l’application ε : (Sn, ◦) −→ ({±1} ,×) est un morphisme de groupes :
l’image par ε de σ ◦ τ est égal au produit des images ε (σ)× ε (τ).

‡. En multipliant à gauche par τ les deux termes de l’égalité précédente.
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Banque d’exercices

Exercice 1. — Soit E fini de cardinal n. Etablir que Card(P(E)) = 2n.

Exercice 2. — Soient n et p deux entiers naturels, avec p ⩽ n. Combien existe t-il d’applications f : Np −→ Nn

strictement croissantes ?

Exercice 3. — Dans S5, combien existe t-il de transpositions ?

Exercice 4. — Dans S5, combien existe t-il de 3-cycles ?

Exercice 5. — Dans S5, combien existe t-il de produits de 2 transpositions à supports disjoints ?

Exercice 6. — Soit n un entier ⩾ 2. On considère :

H = {σ ∈ Sn, σ(n) = n}

H est donc l’ensemble des permutations de Nn laissant n invariant.
Montrer que H est un sous-groupe de Sn. Quel est son cardinal ?

Exercice 7. — Soit n un entier ⩾ 2. Combien existe t-il d’éléments de Sn qui échangent 1 et 2 ?

Exercice 8. — Dans S8 on considère le 6-cycle c1 = (135246) et le 3-cycle c2 = (154).

Existe t-il un élément σ de S8 tel que : c1 = σ−1c2σ ?
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Banque d’exercices - Indications (seulement pour le TD de lundi 9/02)

Exercice 1. — Commencez par répondre aux 2 questions suivantes :

1/ Quelles sont les valeurs possibles pour le cardinal d’une partie de E ?
2/ Pour une valeur k possible, combien existe t-il de parties de cardinal k ?

Exercice 2. — A la main, commencez par construire 2 ou 3 applications strictement croissantes de N3 dans N5. De
quoi avez-vous besoin pour construire ces exemples ?

Exercice 3. — Commencez par compter le nombre de supports possibles, puis, une fois le support choisi, comptez
le nombre de permutations ayant ce support qui répondent à la question.

Exercice 4. — Commencez par compter le nombre de supports possibles, puis, une fois le support choisi, comptez
le nombre de permutations ayant ce support qui répondent à la question.

Exercice 5. — Commencez par compter le nombre de supports possibles, puis, une fois le support choisi, comptez
le nombre de permutations ayant ce support qui répondent à la question.

Exercice 6. — Méthode des “(SGx)” pour montrer que H est un sous-groupe.

Exercice 7. — . . .

Exercice 8. — Signature.
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Banque d’exercices - Corrigés

Exercice 1. — Soit E fini de cardinal n. Etablir que Card(P(E)) = 2n.

Pour tout entier k ∈ [[ 0, n ]], notons : Pk(E) = {A ⊂ E, Card(A) = k}.

On a : P(E) =

n⋃
k=0

Pk(E).

Puisque le cardinal d’une partie de E est unique, l’union ci-dessus est disjointe et :

Card (P(E)) =

n∑
k=0

Card (Pk(E)) =

n∑
k=0

(
n

k

)
= 2n

Exercice 2. — Soient n et p deux entiers naturels, avec p ⩽ n. Combien existe t-il d’applications f : Np −→ Nn

strictement croissantes ?

Une application strictement croissante de Np dans Nn est entièrement déterminée par son image, càd par une partie à p
éléments de Nn.

Conclusion. Il existe
(
n

p

)
applications strictement croissantes Np dans Nn.

Exercice 3. — Dans S5, combien existe t-il de transpositions ?

Dans S5, une transposition est uniquement déterminée par son support (les transpositions (ij) et (ji) étant égales), qui
est une combinaison de 2 éléments parmi 5.

Conclusion. Il existe
(
5

2

)
= 10 transpositions dans S5.

Exercice 4. — Dans S5, combien existe t-il de 3-cycles ?

Dans S5, un 3-cycle est uniquement déterminé par son support, disons {a1, a2, a3} ; et par l’image de a1 (deux choix
possibles).

Conclusion. Il existe 2×
(
5

3

)
= 20 3-cycles dans S5.

Exercice 5. — Dans S5, combien existe t-il de produits de 2 transpositions à supports disjoints ?

Dans S5, une permutation qui est le produit de 2 transpositions à supports disjoints est uniquement déterminée par son
support, disons {a1, a2, a3, a4} ; et par l’image de a1 (trois choix possibles).

Conclusion. Il existe 3×
(
5

4

)
= 15 produits de 2 transpositions à supports disjoints dans S5.

Exercice 6. — Soit n un entier ⩾ 2. On considère :

H = {σ ∈ Sn, σ(n) = n}

H est donc l’ensemble des permutations de Nn laissant n invariant.
Montrer que H est un sous-groupe de Sn. Quel est son cardinal ?

H est inclus dans Sn par définition (SG1) ; idNn appartient à H ; on vérifie aisément que si σ et ρ sont deux éléments de
H, alors σρ et σ−1 appartiennent à H (SG3 et SG4).
On en déduit que H est un sous-groupe de Sn.
Par ailleurs, H est équipotent à l’ensemble des permutations de [[ 1, n− 1 ]], qui est de cardinal (n− 1)! selon le cours.
Conclusion. H est un sous-groupe de Sn, et Card(H) = (n− 1)!.
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Exercice 7. — Soit n un entier ⩾ 2. Combien existe t-il d’éléments de Sn qui échangent 1 et 2 ?

Autant que de permutations de [[ 3, n ]].
Conclusion. Il existe (n− 2)! éléments de Sn qui échangent 1 et 2.

Exercice 8. — Dans S8 on considère le 6-cycle c1 = (135246) et le 3-cycle c2 = (154).

Existe t-il un élément σ de S8 tel que : c1 = σ−1c2σ ?

Supposons qu’il existe une permutation σ telle que : c1 = σ−1c2σ.
Alors on aurait : ε(c1) = ε(σ−1c2σ).

Or, selon les propriétés de la signature :

ε(σ−1c2σ) = ε(σ−1)ε(c2)ε(σ) = ε(σ−1)ε(σ)︸ ︷︷ ︸
=1

ε(c2) = ε(c2)

D’où : ε(c1) = ε(c2). Or, selon le cours : ε(c1) = (−1)6−1 = −1 et ε(c2) = (−1)3−1 = 1. Contradiction.

Conclusion. Il n’existe aucune permutation σ ∈ S8 telle que : c1 = σ−1c2σ.


