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Exercices 16 — Applications de la dérivation — Corrigé

Révisions

Exercice 1. — Sur quelles parties de R les fonctions suivantes sont-elles continues ? Dérivables ?

1) la fonction f définie par : f (x) =

 x sin (1/x) si x 6= 0

0 sinon
2) la fonction g définie par : g (x) =

 x2 sin (1/x) si x 6= 0

0 sinon

1) Selon les théorèmes généraux, la fonction f est de classe C∞ sur R∗. En particulier, elle est dérivable, et a fortiori
continue sur R∗.

De plus, on a : lim
x→0

f(x) = 0 (par encadrement). Donc : lim
x→0

f(x) = f(0). La fonction f est donc continue en 0.

Enfin, pour tout réel x non nul, on a :

f(x)− f(0)

x
= sin (1/x)

Or sin (1/x) n’admet pas de limite lorsque x tend vers 0. Donc f n’est pas dérivable en 0.

Conclusion. La fonction f est continue sur R, dérivable sur R∗ et non dérivable en 0.

2) Selon les théorèmes généraux, la fonction g est de classe C∞ sur R∗. En particulier, elle est dérivable, et a fortiori
continue sur R∗.

De plus, on a : lim
x→0

g(x) = 0 (par encadrement). Donc : lim
x→0

g(x) = g(0). La fonction g est donc continue en 0.

Enfin, pour tout réel x non nul, on a :

g(x)− g(0)

x
= x sin (1/x)

D’où : lim
x→0

g(x)− g(0)

x
= 0 (par encadrement). Il s’ensuit que g est dérivable en 0 (et que g′(0) = 0).

Conclusion. La fonction g est dérivable sur R. A fortiori, elle est continue sur R.

Exercice 2. — Soit f une fonction dérivable sur R. Que peut-on dire de f ′ si f est paire ? Si f est impaire ?

Supposons que f est paire. On a alors pour tout réel x : f(−x) = f(x).

En dérivant terme à terme cette égalité, on obtient : −f ′(−x) = f ′(x).

Ainsi : ∀x ∈ R, f ′(−x) = −f ′(x). D’où f ′ est impaire.

Raisonnement analogue en supposant f impaire.

Conclusion. [f dérivable sur R et paire] =⇒ [f ′ impaire] et [f dérivable sur R et impaire] =⇒ [f ′ paire]

Exercice 3. — Soit f une fonction dérivable sur R telle que : ∀ (x, y) ∈ R2, |f (x)− f (y)| ⩽ |x− y|3. Prouver que
f est constante.

Soit a un réel quelconque. Pour tout réel h non nul, on a (selon l’hypothèse de l’énoncé) :∣∣∣∣f(a+ h)− f(a)

h

∣∣∣∣ ⩽ |h|2

Il s’ensuit que : lim
h→0

f(a+ h)− f(a)

h
= 0. D’où : f ′(a) = 0.

Le réel a étant arbitraire dans le raisonnement précédent, on en déduit que f ′ est identiquement nulle sur R.

Conclusion. La fonction f est constante sur R.
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Exercice 4. — Calculer la dérivée n-ième des fonctions f , g et h respectivement définies par :

f (x) =
1

1− x
g (x) =

1

1 + x
h (x) =

1

1− x2

Selon les théorèmes généraux, les fonctions f , g et h sont de classe C∞ sur R\ {1}, R\ {−1} et R\ {±1} respectivement.

Pour tout réel x 6= 1 et pour tout entier naturel n on a : f (n)(x) =
n!

(1− x)
n+1 (récurrence sur n).

Pour tout réel x 6= −1 et pour tout entier naturel n on a : g(n)(x) =
(−1)nn!

(1 + x)
n+1 (récurrence sur n).

Enfin, pour tout réel x 6= ±1, on a :

h(x) =
1

1− x2
=

1

2

(
1

1− x
+

1

1 + x

)
=

1

2
(f(x) + g(x))

Par linéarité de la dérivation, on en déduit que pour tout réel x 6= ±1 et pour tout entier naturel n on a :

h(n)(x) =
1

2

(
f (n)(x) + g(n)(x)

)
=

1

2

(
n!

(1− x)
n+1 +

(−1)nn!

(1 + x)
n+1

)

Exercice 5. — Sauriez-vous redémontrer les propriétés ci-dessous ?
n∑

k=0

(
n

k

)
= 2n ;

n∑
k=1

k

(
n

k

)
= n2n−1 ;

n∑
k=0

(
n

k

)2

=

(
2n

n

)

Pour les deux premières, on introduit la fonction f en posant : ∀x ∈ R, f(x) = (1 + x)n =

n∑
k=0

(
n

k

)
xk.

On a donc : f(1) = 2n =

n∑
k=0

(
n

k

)
.

La fonction f est dérivable sur R, et pour tout réel x on a : f ′(x) = n(1 + x)n−1 =

n∑
k=1

k

(
n

k

)
xk−1.

On a donc : f ′(1) = n2n−1 =

n∑
k=1

k

(
n

k

)
.

Pour la troisième, on introduit la fonction g en posant : ∀x ∈ R, g(x) = x2n.

On calcule ensuite la dérivée n-ème de g de deux manières différentes : directement, ou en écrivant g(x) = xn × xn et en
appliquant la formule de Leibniz.

Théorèmes de Rolle et des accroissements finis

Exercice 6. — Etablir les inégalités suivantes :

1) ∀ x ∈ R, |sinx| ⩽ |x|.

2) ∀ (x, y) ∈ R2, |cosx− cos y| ⩽ |x− y|.

3) ∀ x ∈ ] 0; 1 [ ,
√
1− x2 arcsin (x) < x.

4) ∀ x > 0, arctanx >
x

1 + x2
.

1/ Pour x = 0 l’inégalité est triviale.

Considérons x un réel strictement positif. La fonction sin est continue sur [0, x], et dérivable sur ]0, x[ : on peut donc lui
appliquer le théorème des accroissements finis pour affirmer que :

∃ c ∈ ]0, x[,
sin(x)

x
= cos(c)

On en déduit que :
∣∣∣∣ sin(x)x

∣∣∣∣ ⩽ 1. D’où : |sin(x)| ⩽ |x|.

En résumé, on a établi jusqu’à présent que : ∀x ∈ R+, |sin(x)| ⩽ |x|.
On étend l’inégalité à R tout entier en utilisant l’imparité de la fonction sin.

Conclusion. ∀ x ∈ R, |sinx| ⩽ |x|
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2/ Pour x = y l’inégalité est triviale.

Considérons x et y deux réels distincts. La fonction cos étant dérivable (donc continue) sur R, on peut lui appliquer le
théorème des accroissements finis entre x et y. Il existe donc un réel c strictement compris entre x et y tel que :

cosx− cos y

x− y
= sin(c)

On en déduit que :
∣∣∣∣cosx− cos y

x− y

∣∣∣∣ ⩽ 1. D’où : |cosx− cos y| ⩽ |x− y|.

Conclusion. ∀ (x, y) ∈ R2, |cosx− cos y| ⩽ |x− y|

3/ Soit x un réel tel que 0 < x < 1. La fonction arcsin est continue sur [0, x], et dérivable sur ]0, x[ : on peut donc lui
appliquer le théorème des accroissements finis pour affirmer que :

∃ c ∈ ]0, x[,
arcsin(x)

x
=

1√
1− c2

D’où : ∃ c ∈ ]0, x[,
√
1− c2 arcsin(x) = x. Or :

√
1− c2 >

√
1− x2 (puisque 0 < c < x).

Conclusion. ∀ x ∈ ]0, 1[,
√
1− x2 arcsin(x) < x

4/ Soit x un réel strictement positif. La fonction arctan est continue sur [0, x], et dérivable sur ]0, x[ : on peut donc lui
appliquer le théorème des accroissements finis pour affirmer que :

∃ c > 0,
arctan(x)

x
=

1

1 + c2

D’où : ∃ c > 0, arctan(x) =
x

1 + c2
. Or : 1 + c2 < 1 + x2 (puisque 0 < c < x).

Conclusion. ∀ x > 0, arctanx >
x

1 + x2
.

Exercice 7. — (Théorème de Rolle et fonctions à valeurs complexes : attention !)
On considère la fonction f : [0; 2π] −→ C telle que : ∀ t ∈ [0; 2π] , f (t) = eit.

1) Calculer f (0) et f (2π). ∗ 2) Calculer f ′ (t) pour tout t ∈ [0; 2π]. † 3) Justifier que f ′ ne s’annule pas sur [0; 2π].

1/ f (0) = f (2π) = 1. 2/ ∀ t ∈ [0; 2π] , f ′(t) = ieit. 3/ ∀ t ∈ [0; 2π] , |f ′(t)| = 1. Donc f ′ ne s’annule pas sur [0, 2π].

Ce mini-exo donne donc un exemple de fonction à valeurs complexes satisfaisant les hypothèses du théorème de Rolle (f
est continue sur [0, 2π], dérivable sur ]0, 2π[, et f(0) = f(2π)) ; mais, n’étant pas à valeurs réelles, le théorème de Rolle
ne peut lui être appliquée (et de fait la dérivée f ′ ne s’annule pas sur [0, 2π]).

Exercice 8. — (Suite récurrente définie via une fonction contractante). Soit f la fonction définie sur R∗

par f : x 7−→ 4− 1

4
ln |x|.

1) Etudier la fonction f , et vérifier que f ([3; 4]) ⊂ [3; 4]. Prouver que si x appartient à [3; 4], alors |f ′ (x)| ⩽ 1

12
.

ä La fonction f étant paire, il suffit de l’étudier sur R∗
+. Sur R∗

+, f est dérivable (TG) et on a :

∀x > 0, f ′(x) = − 1

4x

La fonction f est donc strictement décroissante sur R∗
+. Par parité, elle est strictement croissante sur R∗

−.

ä Puisque f est continue sur [3, 4], on a : f ([3; 4]) = [f(4), f(3)].

Or : f(4) = 4− 1

4
ln 4 < 4. Et f(3) = 4− 1

4
ln 3 > 3 (puisque ln(3) < 4). D’où : 3 < f(3) < f(4) < 4.

Il s’ensuit que : f ([3; 4]) ⊂ [3; 4].

∗. Il n’y a pas de piège.
†. Il n’y a pas de piège ici non plus.
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ä Enfin, pour tout réel x > 0, on a : ∀x > 0, |f ′(x)| = 1

4x
.

On en déduit que : ∀x ∈ [3, 4], |f ′(x)| ⩽ |f ′(3)| ⩽ 1

12
.

Conclusion. f ([3; 4]) ⊂ [3; 4] et ∀x ∈ [3, 4], |f ′(x)| ⩽ 1

12

2) Démontrer qu’il existe un unique réel ℓ ∈ [3; 4] tel que f (ℓ) = ℓ.

Pour tout réel x ∈ [3, 4], on pose : g(x) = f(x)− x. On a g(3) ⩾ 0 (puisque f(3) ⩾ 3) et g(4) ⩽ 0 (puisque f(4) ⩾ 4).
La fonction g étant continue sur [3, 4], le TVI permet d’affirmer qu’il existe un réel ℓ ∈ [3, 4] tel que g(ℓ) = 0, càd tel
que f (ℓ) = ℓ.

Montrons l’unicité de ce réel. Supposons qu’il existe deux réels distincts ℓ et ℓ′ dans [3, 4] tels que f(ℓ) = ℓ et f(ℓ′) = ℓ′.
SNALG, on peut supposer que ℓ < ℓ′. On peut alors appliquer le TAF à f sur [ℓ, ℓ′] pour affirmer que :

∃ c ∈ ]ℓ, ℓ′[, f(ℓ′)− f(ℓ) = f ′(c) (ℓ′ − ℓ)

D’où : ℓ′ − ℓ = f ′(c) (ℓ′ − ℓ). D’où : |ℓ′ − ℓ| = |f ′(c)| × |ℓ′ − ℓ|.

D’après la question précédente, on en déduit que : |ℓ′ − ℓ| ⩽ 1

12
× |ℓ′ − ℓ|.

Donc : 1 ⩽ 1

12
. . . Absurde. Il s’ensuit que ℓ = ℓ′, ce qui fournit l’unicité désirée.

Conclusion. ∃! ℓ ∈ [3, 4], f(ℓ) = ℓ

3) On considère la suite (un) définie par u0 = 3, et ∀ n ∈ N, un+1 = f (un).

a) Justifier que pour tout entier naturel n, un ∈ [3; 4].

Récurrence immédiate en utilisant la question 1 (f ([3; 4]) ⊂ [3; 4]).

b) Montrer que pour tout entier naturel n, |un+1 − ℓ| ⩽ 1

12
|un − ℓ|.

Soit n un entier naturel. Si un = ℓ, alors un+1 = ℓ et l’inégalité est vérifiée.

Sinon, on peut appliquer le TAF à la fonction f entre un et ℓ pour affirmer qu’il existe un réel c entre un et ℓ tel
que :

f(un)− f(ℓ)

un − ℓ
= f ′(c) ⇐⇒ un+1 − ℓ

un − ℓ
= f ′(c) =⇒

∣∣∣∣un+1 − ℓ

un − ℓ

∣∣∣∣ = |f ′(c)|

Or d’après la question 1, on a : |f ′(c)| ⩽ 1

12
. Il s’ensuit que :

∣∣∣∣un+1 − ℓ

un − ℓ

∣∣∣∣ ⩽ 1

12
.

Conclusion. |un+1 − ℓ| ⩽ 1

12
|un − ℓ|

c) En déduire que pour tout entier naturel n, |un − ℓ| ⩽
(

1

12

)n

.

Récurrence immédiate sur n (hérédité fournie par la question précédente, l’initialisation provenant de |u0 − ℓ| ⩽ 1
puisque u0 et ℓ sont dans [3, 4].

Conclusion. ∀n ∈ N, |un − ℓ| ⩽
(

1

12

)n

Or : lim
n→+∞

(
1

12

)n

= 0. On en déduit que : lim
n→+∞

|un − ℓ| = 0.

Par conséquent, la suite (un) converge vers ℓ.
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Exercice 9. — Soit f : R −→ R une fonction dérivable. On suppose que f ′ ne s’annule pas sur R. Montrer que f
n’est pas périodique.

Soit f : R −→ R une fonction dérivable, telle que f ′ ne s’annule pas sur R.

Par l’absurde, supposons que f est périodique. Il existe un réel T > 0 tel que f est T -périodique. Sur l’intervalle [0, T ],
la fonction f vérifie les hypothèses du théorème de Rolle. Il existe donc un réel c ∈ ]0, T [ tel que f ′(c) = 0 : contradiction
(puisque f ′ ne s’annule pas sur R).

Conclusion. Soit f : R −→ R une fonction dérivable. Si f ′ ne s’annule pas sur R, alors f n’est pas périodique.

Exercice 10. — (Règle de l’Hospital) ‡. Soient f et g deux fonctions vérifiant les hypothèses des accroissements
finis sur [a; b]. On suppose de plus que g′ ne s’annule pas sur ] a; b [ .

Montrer qu’il existe un réel c dans ] a; b [ tel que :
f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)

Pour tout réel x ∈ [a, b], on pose :

h(x) = g(x) (f(b)− f(a))− f(x)(g(b)− g(a))

Conclusion. La fonction h est continue sur [a, b] et dérivable sur ]a, b[ (hypothèses + TG). En outre :

h(a) = g(a) (f(b)− f(a))− f(a)(g(b)− g(a)) = g(a)f(b)− f(a)g(b)

et h(b) = g(b) (f(b)− f(a))− f(b)(g(b)− g(a)) = g(a)f(b)− f(a)g(b)

Ainsi : h(a) = h(b). La fonction h satisfait donc les hypothèses du théorème de Rolle. Par suite :

∃ c ∈ ] a; b [ , h′(c) = 0

Donc : ∃ c ∈ ] a; b [ , g′(c) (f(b)− f(a))− f ′(c)(g(b)− g(a)) = 0.

Puisque g′ ne s’annule pas sur [a, b], on peut conclure : ∃ c ∈ ] a; b [ ,
f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)

Exercice 11. — Déterminer : lim
x−→+∞

[
(x+ 1) e

1
x+1 − xe

1
x

]
Pour tout réel u > 0, notons : f(u) = ue

1
u .

Soit x un réel strictement positif. La fonction f est continue sur [x, x + 1] et dérivable sur ]x, x + 1[ (car f est de classe
C∞ sur R∗

+ selon les théorèmes généraux).

On peut donc lui appliquer le TAF et affirmer que :

∃ c ∈ ]x, x+ 1[, f(x+ 1)− f(x) = f ′(c) (♠)

Or : f ′(c) = e
1
c

(
1− 1

c

)
. D’où : lim

c→+∞
f ′(c) = 1 (♣).

Conclusion. D’après (♠) et (♣) : lim
x−→+∞

[
(x+ 1) e

1
x+1 − xe

1
x

]
= 1.

‡. Du nom du marquis de l’Hospital (1661-1704), qui fut un élève de Jean Bernoulli (1667-1748), mathématicien suisse.
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Exercice 12. — (Convergence des séries de Riemann). Soit α ∈ R. On définit une suite (uN )N∈N∗ en posant :

∀ N ∈ N∗, uN =

N∑
n=1

1

nα

Le but de l’exercice est d’étudier la limite de la suite (uN ) en fonction des valeurs de α.

1) (Le cas α = 1) — A l’aide du théorème des accroissements finis, établir que : ∀ N ∈ N∗,
1

N
⩾ ln (N + 1) − ln (N).

En déduire la limite de la suite (uN ) dans le cas où α = 1.

2) (Le cas α ⩽ 0) — La suite (uN )N étant (positive) et croissante, elle admet une limite finie ou tend vers +∞.

a) On suppose que (uN )N admet une limite finie ℓ. Montrer que : uN+1 − uN tend vers 0 quand N tend vers +∞.

b) En déduire une condition nécessaire sur α pour que (uN )N converge.

3) (Le cas α > 0, α 6= 1) — Sans vouloir tuer tout suspense, la condition nécessaire de la question précédente n’est pas
suffisante. Et c’est l’objet de cette question de préciser cette affirmation.
On suppose donc α > 0 et α 6= 1.

a) On considère la fonction f définie sur R∗
+ en posant : ∀ x ∈ R∗

+, f (x) = x1−α.
Justifier brièvement que f est dérivable sur R∗

+, calculer sa dérivée, et donner son sens de variation.

b) Soit n un entier naturel non nul. Etablir que : ∃ c ∈ ]n;n+ 1 [ ,
1

cα
=

(n+ 1)
1−α − n1−α

1− α

c) Dans cette question, on suppose 0 < α < 1.

i) Soit n un entier naturel non nul. Déduire de la question précédente que :
1

nα
⩾ (n+ 1)

1−α − n1−α

1− α

ii) Etablir alors que :
N∑

n=1

1

nα
⩾ 1

1− α

[
(N + 1)

1−α − 1
]

iii) En déduire la limite de (uN ) dans le cas où 0 < α < 1.

d) Dans cette question, on suppose que α > 1. Prouver que (uN ) est convergente.

Pour la correction de ce problème, voir épilogue du chapitre 17 (dans le pdf, page 440).

Exercice 13. — Dans cet exercice, I désigne un intervalle de R ouvert et non-vide.

1) Enoncer le théorème de Rolle.

Voir cours.

2) Soit h une fonction de I vers R, dérivable sur I, et p un entier naturel, p ⩾ 2. On suppose que h s’annule p fois sur I,
démontrer que h′ s’annule au moins p− 1 fois sur I.

Notons x1,. . ., xp les valeurs d’annulation de h. Quitte à renuméroter ces réels, on peut supposer : x1 < . . . < xp.

Sur chacun des intervalles [xk, xk+1] (avec k ∈ [[ 1, p − 1 ]]), la fonction h vérifie les hypothèses du théorème de Rolle.
On peut donc affirmer que :

∀ k ∈ [[ 1, p− 1 ]], ∃ ck ∈ ]xk, xk+1[, h′(ck) = 0

Les réels c1,. . ., cp−1 sont p− 1 valeurs d’annulation de h′.

Conclusion. Si h est dérivable sur I et à valeurs réelles, et si h s’annule p fois sur I, alors h′ s’annule au moins p− 1
fois sur I.
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3) On considère les fonctions a et b de ] 0; +∞ [ vers R définies en posant pour tout réel x > 0 :

a (x) = 3x−20 + x−10 + 4x10 + 2x20 + 11x30 et b (x) = −150x−51 − 40x−41 − 80x−21 − 20x−11

On suppose que b s’annule au plus 3 fois dans ] 0; +∞ [ . Montrer que a s’annule au plus 4 fois dans ] 0; +∞ [ .

Soit x > 0. Posons : h(x) =
a(x)

x30
. On a : h (x) = 3x−50 + x−40 + 4x−20 + 2x−10 + 11.

La fonction h est dérivable sur R∗
+ et :

∀x > 0, h′(x) = −150x−51 − 40x−41 − 80x−21 − 20x−11 = b(x) (quelle chance !)

Supposons que a s’annule 5 fois (au moins) sur R∗
+. Alors h s’annule 5 fois (au moins) sur R∗

+, et d’après la question
précédente, h′ = b s’annule 4 fois (au moins) sur R∗

+ : ce qui contredit l’hypothèse faite sur b.

Conclusion. La fonction a s’annule au plus 4 fois dans ] 0; +∞ [ .

Exercice 14. — (DS9 mars 2018). On considère la fonction f définie par : f (x) =
√
2− ln(x).

1) Préciser l’ensemble de définition D de f , puis dresser le tableau de variation de f .

2) Montrer que l’intervalle [1; e] est stable par f . En déduire l’existence d’un unique point fixe a pour f dans [1; e].

3) On considère la suite (un)n définie par u0 = 1 et ∀ n ∈ N, un+1 = f (un). Montrer que :

∀ n ∈ N, |un+1 − a| ⩽ 1

2
|un − a|

4) En déduire que : ∀ n ∈ N, |un − a| ⩽
(
1

2

)n

(e − 1) puis en déduire la limite de la suite u.

1) Le réel
√
2− ln(x) est défini SSI ln(x) est défini et 2 − ln(x) ⩾ 0, càd SSI 0 < x ⩽ e2. L’ensemble de définition de f

est donc D = ] 0, e2
]

.

La fonction f est continue sur D et dérivable sur D\
{
e2
}

d’après les théorèmes généraux,
et on a :

∀x ∈ ] 0, e2 [ , f ′(x) = − 1

2x
√
2− ln(x)

On en déduit que f est strictement décroissante sur D. En outre f(e2) = 0 et lim
x→0+

f(x) =

+∞.

x

f(x)

0
+∞

0

e2

2) La fonction f est continue et strictement décroissante sur D, donc en particulier sur [1, e]. A ce titre, elle réalise une
bijection de [1, e] sur [f(e), f(1)], càd sur l’intervalle

[
1,
√
2
]
. Puisque

√
2 ∈ [1, e], on en déduit que : [1, e] est stable par f .

Puisque la fonction f est continue sur [1, e] et qu’elle laisse stable ce segment, le théorème du point fixe permet d’affimer
qu’il existe un réel a tel que f(a) = a. Comme en outre la fonction x 7−→ f(x)− x est strictement décroissante sur [1, e],
a est l’unique point fixe de la fonction f .

3) Puisque u0 appartient à l’intervalle stable [1, e], tous les termes de la suite u appartiennent à [1, e] ; ce qui justifie en
particulier que la suite u est bien définie.

Soit n un entier naturel quelconque. Puisque un et a appartiennent à l’intervalle [1, e], et que f est continue (resp.dérivable)
sur [1, e] (resp.sur ]1, e[), on peut appliquer le théorème des accroissements finis à la fonction f entre a et un :

il existe un réel cn compris entre a et un tel que : f ′(cn) =
f(un)− f(a)

un − a

=⇒ il existe un réel cn compris entre a et un tel que : f ′(cn) =
un+1 − a

un − a

=⇒ il existe un réel cn compris entre a et un tel que : un+1 − a = f ′(cn)× (un − a)

=⇒ il existe un réel cn compris entre a et un tel que : |un+1 − a| = |f ′(cn)| × |un − a| (♠)
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Par ailleurs, pour tout réel x ∈ ] 1, e [ on a :

|f ′(x)| =

∣∣∣∣∣ 1

2x
√
2− ln(x)

∣∣∣∣∣ ⩽
∣∣∣∣∣ 1

2
√
2− ln(x)

∣∣∣∣∣ ⩽ 1

2
(♣)

la première majoration provenant du fait que x ⩾ 1, et la seconde du fait que
√

2− ln(x) ⩾ 1 sur [1, e].

On déduit de (♠) et de (♣) que : ∀ n ∈ N, |un+1 − a| ⩽ 1

2
|un − a| .

4) L’assertion “∀ n ∈ N, |un − a| ⩽
(
1

2

)n

(e − 1)” se déduit de la question précédente par une récurrence immédiate.

Puisque par ailleurs lim
n→+∞

(
1

2

)n

= 0, on a : lim
n→+∞

|un − a| = 0, ce qui signifie que : lim
n→+∞

un = a .


