Lycée Jean Bart — MPSI — 10 février 2026

EXERCICES 16 — APPLICATIONS DE LA DERIVATION — CORRIGE

REVISIONS

EXERCICE 1. — Sur quelles parties de R les fonctions suivantes sont-elles continues ? Dérivables ?

xsin(l/x) siz#0 2?sin (1/z) siz #0
1) lafonction f définie par: f (z) = 2) lafonction g définie par: g (z) =

0 sinon 0 sinon

1) Selon les théorémes généraux, la fonction f est de classe ¥ sur R*. En particulier, elle est dérivable, et a fortiori
continue sur R*.

De plus, on a : lim0 f(z) = 0 (par encadrement). Donc : HI% f(x) = f(0). La fonction f est donc continue en 0.

Enfin, pour tout réel x non nul, on a :

f(x) — f(0)

=sin(1l/x

. (1/2)
Or sin (1/2) n’admet pas de limite lorsque x tend vers 0. Donc f n’est pas dérivable en 0.

Conclusion. La fonction f est continue sur R, dérivable sur R* et non dérivable en 0.

2) Selon les théorémes généraux, la fonction g est de classe €°° sur R*. En particulier, elle est dérivable, et a fortiori

continue sur R*.

De plus, on a : limO g(x) =0 (par encadrement). Donc : lir% g(x) = ¢(0). La fonction g est donc continue en 0.
= T—
Enfin, pour tout réel x non nul, on a :

g(x) —g(0)

. = zsin (1/2)

D’ou : lim 79@) —900)

L = 0 (par encadrement). Il s’ensuit que g est dérivable en 0 (et que ¢’(0) = 0).
xrT—r X

Conclusion. La fonction g est dérivable sur R. A fortiori, elle est continue sur R.

EXERCICE 2. — Soit f une fonction dérivable sur R. Que peut-on dire de f’ si f est paire? Si f est impaire ?
Supposons que f est paire. On a alors pour tout réel = : f(—z) = f(x).

En dérivant terme a terme cette égalité, on obtient : —f'(—x) = f'(z).

Ainsi : Va € R, f/(—x) = —f'(x). D’ou f’ est impaire.

Raisonnement analogue en supposant f impaire.

Conclusion. [f dérivable sur R et paire] = [f’ impaire] et [f dérivable sur R et impaire] = [f’ paire]
EXERCICE 3. — Soit f une fonction dérivable sur R telle que : V (z,y) € R2, |f (z) — f (y)| < |# — y|*>. Prouver que
f est constante.

Soit @ un réel quelconque. Pour tout réel h non nul, on a (selon I’hypothése de ’énoncé) :

fla+h) - f(a)
h

< |n)?

flath) = fla)
h

Le réel a étant arbitraire dans le raisonnement précédent, on en déduit que f’ est identiquement nulle sur R.

Il s’ensuit que : lim =0.Dou: f'(a) =0.
h—0

Conclusion. La fonction f est constante sur R.
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EXERCICE 4. — Calculer la dérivée n-iéme des fonctions f, g et h respectivement définies par :

1 1 1

fla)=1— (@) =1 h(@)=1—0

Selon les théorémes généraux, les fonctions f, g et h sont de classe € sur R\ {1}, R\ {—1} et R\ {£1} respectivement.

n!

Pour tout réel = # 1 et pour tout entier naturel n on a : (™ (z) = ———— (récurrence sur n).
(1 )TL—‘-l
-
. (=1)"n!
Pour tout réel z # —1 et pour tout entier naturel n on a: g™ (x) = W (récurrence sur n).
+x

Enfin, pour tout réel x # +1, on a :

h(m):1—1x2:;<1ix+l—|1—x> =%(f(a:)+g(ar))

Par linéarité de la dérivation, on en déduit que pour tout réel x # +1 et pour tout entier naturel n on a :

n @) = 3 (F @) + 90 (@) = 5 < i _’Z)nﬂ + (_1):2”1!1)

1+
EXERCICE 5. — Sauriez-vous redémontrer les propriétés ci-dessous ?
" /n = n " /n\? 2n
_o9n., _ n—1, —
()= 2= 20 -(0)
k=0 k=1 k=0

n
n
Pour les deux premiéres, on introduit la fonction f en posant : Va € R, f(z) = (14 x)" < )xk

On a donc : f(1) =2" = i <Z)

k=0

La fonction f est dérivable sur R, et pour tout réel = on a : f/'(x) = n(1+2)" ! = Z k<n> A

On a donc : f/(1) = n2"~! = k(”)
n a donc: /(1) =n ; )

Pour la troisiéme, on introduit la fonction g en posant : Vo € R, g(x) = z>".

On calcule ensuite la dérivée n-éme de g de deux maniéres différentes : directement, ou en écrivant g(z) = 2™ X =™ et en
appliquant la formule de Leibniz.

\THEOREMES DE ROLLE ET DES ACCROISSEMENTS FINIS‘

EXERCICE 6. — Etablir les inégalités suivantes :
1) Va € R, [sinz| < |z|. 3) Ve e ]0;1[, vV1— 22 arcsin (z) < z.
2) V (x,y) € R?, |cosz — cosy| < |z —yl. 4) Yx >0, arctanz > 71;0 5

x

1/ Pour x = 0 l'inégalité est triviale.

Considérons x un réel strictement positif. La fonction sin est continue sur [0, x], et dérivable sur |0, z[ : on peut donc lui
appliquer le théoréme des accroissements finis pour affirmer que :

sin(z)

Jce]0,z], = cos(c)

sin(z)

On en déduit que : < 1. Dou: [sin(z)| < |z

En résumé, on a établi jusqu’a présent que : Vx € Ry, [sin(z)| < |z|.
On étend 'inégalité a R tout entier en utilisant 'imparité de la fonction sin.

Conclusion. Vz € R, |sinz| < |z
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2/ Pour x = y l'inégalité est triviale.
Considérons z et y deux réels distincts. La fonction cos étant dérivable (donc continue) sur R, on peut lui appliquer le

théoréme des accroissements finis entre x et y. Il existe donc un réel ¢ strictement compris entre = et y tel que :

CcoST — COS Y .
——~ =sin(c)
rT—y
cosSx — COSY
=y

On en déduit que :

’ < 1. Dlou: |cosz —cosy| < |z —yl.
Conclusion. V (z,y) € R2, |cosz — cosy| < |z — y|

3/ Soit x un réel tel que 0 < < 1. La fonction arcsin est continue sur [0, ], et dérivable sur |0, z[ : on peut donc lui
appliquer le théoréme des accroissements finis pour affirmer que :

arcsin(x) 1
Feeloal, — ==

Dot : ¢ €]0,2[, V1 — c2arcsin(z) = z. Or : V1 —c2 > /1 — 22 (puisque 0 < ¢ < z).
Conclusion. Vz € 0,1[, V1 — z? arcsin(z) < x

4/ Soit z un réel strictement positif. La fonction arctan est continue sur [0, z], et dérivable sur |0, [ : on peut donc lui
appliquer le théoréme des accroissements finis pour affirmer que :

3¢ 0, arctan(x) _ 1
1+ ¢?
D’ou: 3¢ > 0, arctan(z) = 1f 5. Or: 14 ¢ <1+ 22 (puisque 0 < ¢ < ).
c
Conclusion. Vz > 0, arctanx > ——.
14 a2
EXERCICE 7. — (Théoréme de Rolle et fonctions & valeurs complexes : attention!)

On considére la fonction f : [0;27] — C telle que : V¢ € [0;27], f(t) = e
1) Calculer f(0) et f(27).* 2) Calculer f’(t) pour tout t € [0;27]. T 3) Justifier que f’ ne s’annule pas sur [0; 27].
1/ f(0)=f(2r)=1.2/Vte [0;2n], f/(t) =ie". 3/ Vte [0;2n], |f'(t)| = 1. Donc f’ ne s’annule pas sur [0, 27].
Ce mini-exo donne donc un exemple de fonction a valeurs complexes satisfaisant les hypothéses du théoréme de Rolle (f

est continue sur [0, 27], dérivable sur |0, 2x[, et f(0) = f(27)); mais, n’étant pas a valeurs réelles, le théoréme de Rolle
ne peut lui étre appliquée (et de fait la dérivée f’ ne s’annule pas sur [0, 27]).

EXERCICE 8. — (Suite récurrente définie via une fonction contractante). Soit f la fonction définie sur R*

1
parf:x»—>4—1 In |z|.

1) Etudier la fonction f, et vérifier que f ([3;4]) C [3;4]. Prouver que si x appartient a [3;4], alors |f’ (z)| < oL

» La fonction f étant paire, il suffit de I’étudier sur R* . Sur R, f est dérivable (TG) et on a :

1

Ve >0, f'(z) = I

La fonction f est donc strictement décroissante sur R* . Par parité, elle est strictement croissante sur R* .
» Puisque f est continue sur [3,4], on a : f([3;4]) = [f(4), f(3)].

Or: f4)=4- i In4 <4.Et f(3) =4 — i In3 > 3 (puisque In(3) < 4). D’ou: 3 < f(3) < f(4) < 4.

Il s’ensuit que : f ([3;4]) C [3;4].

*. Il n’y a pas de piége.
t. Il n’y a pas de piége ici non plus.
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1
» Enfin, pour tout réel x > 0,ona: Vx>0, |f'(x)] = o
x
1
On en déduit que : Vo € [3,4], |[f'(z)] <|f'(3)] < o
1

Conclusion. f([3;4]) C [3;4] et Va € [3,4], |f'(x)] < T

Démontrer qu’il existe un unique réel £ € [3;4] tel que f (¢) = £.

Pour tout réel z € [3,4], on pose : g(x) = f(x) —x. On a g(3) > 0 (puisque f(3) = 3) et g(4) < 0 (puisque f(4) > 4).
La fonction g étant continue sur [3,4], le TVI permet d’affirmer qu'il existe un réel ¢ € [3,4] tel que g(¢) = 0, cad tel
que f () = L.

Montrons I'unicité de ce réel. Supposons qu'il existe deux réels distincts £ et £/ dans [3, 4] tels que f(¢) = Let f(¢') = C'.
SNALG, on peut supposer que £ < £’. On peut alors appliquer le TAF a f sur [, ¢'] pour affirmer que :

Jeel, ', f(&)—f)=f'(c)('—10)
Do : £/ — €= f'(c) (' — £). D'ou : [¢! — €] = |'(c)| x ¢/ — €.

1
D’aprés la question précédente, on en déduit que : [ — ¢| < 13 X |0 — .

1
Donc : 1 < 7 Absurde. Il s’ensuit que £ = ¢/, ce qui fournit 'unicité désirée.
Conclusion. 3!/ € [3,4], f({) =1
On consideére la suite (u,) définie par ug =3, et Vn € N, upp1 = f (un)-

a) Justifier que pour tout entier naturel n, u, € [3;4].

Récurrence immédiate en utilisant la question 1 (f ([3;4]) C [3;4]).
1
12
Soit m un entier naturel. Si u,, = ¢, alors u,4+1 = ¢ et 'inégalité est vérifiée.

b) Montrer que pour tout entier naturel n, |u,+1; — €] < |y, — £].

Sinon, on peut appliquer le TAF & la fonction f entre u, et £ pour affirmer qu’il existe un réel c¢ entre u,, et ¢ tel
que :

f(un) — f(ﬂ) / Up41 — l ’ Up4+1 — V4 ,
)0 o) e Bt o = Ml
Or d’apreés la question 1, on a : |f/(c)| < S 1l s’ensuit que : Unyr — 4] 1
pres e S 12 R v ST
. 1
Conclusion. |u, 11 — | < - [tr, — £

12
Récurrence immeédiate sur n (hérédité fournie par la question précédente, l'initialisation provenant de |ug — ¢| < 1
puisque ug et £ sont dans [3,4].

1 n
¢) En déduire que pour tout entier naturel n, |u, — | < ( ) .

1 n
Conclusion. Vn € N, |u, —{| < (12>

1 n
Or: lim |(-—] =0.0n en déduit que: lim |u, — ¢ =0.
n—+oo \ 12 n—-+o0o

Par conséquent, la suite (u,,) converge vers /.
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EXERCICE 9. — Soit f : R — R une fonction dérivable. On suppose que f’ ne s’annule pas sur R. Montrer que f
n’est pas périodique.

Soit f : R — R une fonction dérivable, telle que f’ ne s’annule pas sur R.

Par ’absurde, supposons que f est périodique. Il existe un réel T > 0 tel que f est T-périodique. Sur Uintervalle [0, 7],
la fonction f vérifie les hypothéses du théoréme de Rolle. Il existe donc un réel ¢ €]0, T tel que f'(¢) = 0 : contradiction
(puisque f’ ne s’annule pas sur R).

Conclusion. Soit f: R — R une fonction dérivable. Si f’ ne s’annule pas sur R, alors f n’est pas périodique.

EXERCICE 10. — (Régle de I"'Hospital) . Soient f et g deux fonctions vérifiant les hypothéses des accroissements
finis sur [a;b]. On suppose de plus que ¢’ ne s’annule pas sur ] a;b|.

f0) = fla) _ f'(e)

Montrer qu'il existe un réel ¢ dans ]a;b[ tel que : =

g9(b) —g(a)  ¢'(¢)

Pour tout réel « € [a,b], on pose :

Ainsi : h(a) = h(b). La fonction h satisfait donc les hypothéses du théoréme de Rolle. Par suite :
dee Jasb], h(c)=0
Donc: 3ee Ja;b[,  g'(c) (f(b) = f(a)) = f'(c)(g(b) — g(a)) = 0.

Puisque ¢’ ne s’annule pas sur [a, b], on peut conclure : 3¢ € Ja;b[, =

EXERCICE 11. — Déterminer : lim |(x + 1)ew<1+1 — zer

r—>+400
Pour tout réel u > 0, notons : f(u) = uew.

Soit 2 un réel strictement positif. La fonction f est continue sur [z, + 1] et dérivable sur |z, a + 1] (car f est de classe
¢ sur R% selon les théorémes généraux).

On peut donc lui appliquer le TAF et affirmer que :

deelr,a+1, fla+1) - flx)=[f'(c) (#)

1

, 1 - : /

; —et(1-2). Don: 1 =1 :

Or: f'(c)=e ( c) ou: lim (e ()
Conclusion. D’apres (#) et (&) : 1il£ (x + 1)e7mi1 —ger| =1.

1. Du nom du marquis de 'Hospital (1661-1704), qui fut un éléve de Jean Bernoulli (1667-1748), mathématicien suisse.
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EXERCICE 12. — (Convergence des séries de Riemann). Soit a € R. On définit une suite (un)ycy- €n posant :

SN
VNEN', uyv=) —

n=1

Le but de l'exercice est d’étudier la limite de la suite (ux) en fonction des valeurs de a.

1
1) (Le cas o =1) — A T'aide du théoréme des accroissements finis, établir que : V N € N*, N

En déduire la limite de la suite (uy) dans le cas ou a = 1.

>In(N+1) —In(N).

2) (Le cas v < 0) — La suite (uy),y étant (positive) et croissante, elle admet une limite finie ou tend vers +oc.
a) On suppose que (un), admet une limite finie . Montrer que : uy4+1 — uy tend vers 0 quand N tend vers +oo.
b) En déduire une condition nécessaire sur o pour que (uy), converge.

3) (Le cas a > 0, a # 1) — Sans vouloir tuer tout suspense, la condition nécessaire de la question précédente n’est pas
suffisante. Et c’est 'objet de cette question de préciser cette affirmation.

On suppose donc o > 0 et o # 1.

a) On considére la fonction f définie sur R en posant : Vz € R, f(z) =az'"*
Justifier briévement que f est dérivable sur R% , calculer sa dérivée, et donner son sens de variation.
1 (n+1)"*—pl-e

b) Soit n un entier naturel non nul. Etablir que : 3c € [njn+1[, — = T
c -«

¢) Dans cette question, on suppose 0 < o < 1.

(n+ 1)170‘ —pl-o
l1—«

—_— =
ne =

i) Soit m un entier naturel non nul. Déduire de la question précédente que :

N
1 1 .
ii) Etablir alors que : Z v > — [(N + 1)t - 1}
n=1

iii) En déduire la limite de (ux) dans le cas ou 0 < o < 1.

d) Dans cette question, on suppose que a > 1. Prouver que (uy) est convergente.
Pour la correction de ce probléme, voir épilogue du chapitre 17 (dans le pdf, page 440).

EXERCICE 13. — Dans cet exercice, I désigne un intervalle de R ouvert et non-vide.

1) Enoncer le théoréme de Rolle.

Voir cours.

2) Soit h une fonction de I vers R, dérivable sur I, et p un entier naturel, p > 2. On suppose que h s’annule p fois sur I,
démontrer que h' s’annule au moins p — 1 fois sur I.

Notons z1,. .., zp les valeurs d’annulation de h. Quitte a renuméroter ces réels, on peut supposer : 1 < ... < .

Sur chacun des intervalles [z, zx11] (avec k €[ 1,p — 1]), la fonction h vérifie les hypothéses du théoréme de Rolle.
On peut donc affirmer que :

Vk € [[ 1,p— 1]], deg, E]xk,xk+1[, h’(ck) =0

Les réels c1,. .., ¢,—1 sont p — 1 valeurs d’annulation de 7'.

Conclusion. Si h est dérivable sur I et a valeurs réelles, et si h s’annule p fois sur I, alors i’ s’annule au moins p — 1
fois sur 1.
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3) On consideére les fonctions a et b de ] 0; 400 [ vers R définies en posant pour tout réel x > 0 :
a(z) =3x720 + 2710 4+ 4210 4 2220 4 11230 et b(x) = —15027°1 — 402~4 — 802 ~2! — 202~ 1!

On suppose que b s’annule au plus 3 fois dans ]0; 400 [. Montrer que a s’annule au plus 4 fois dans ] 0;+oo [.

Soit © > 0. Posons : h(z) = %. Ona:h(z)=32"0 42740 + 42720 4 22710 1 11.
x

La fonction h est dérivable sur R et :
Va >0, h(z)=—1502"5 — 402~ — 80x=2* — 202~ = b(z) (quelle chance!)

Supposons que a s’annule 5 fois (au moins) sur R . Alors h s’annule 5 fois (au moins) sur R , et d’aprés la question
précédente, h' = b s’annule 4 fois (au moins) sur R’ : ce qui contredit ’hypothése faite sur b.

Conclusion. La fonction a s’annule au plus 4 fois dans ]0; +oo .

EXERCICE 14. — (DS9 mars 2018). On considére la fonction f définie par : f (z) = /2 — In(z).
1) Préciser I'ensemble de définition D de f, puis dresser le tableau de variation de f.
2) Montrer que l'intervalle [1; €] est stable par f. En déduire l'existence d’un unique point fixe a pour f dans [1;e].

3) On considére la suite (u,,),, définie par up =1et Vn € N, u,41 = f (u,). Montrer que :

1
V?’LGN, |un+1_a|<§|un_a|

1 n
4) En déduire que : Vn €N, |u, —a| < <2> (e — 1) puis en déduire la limite de la suite u.

1) Le réel 1/2 — In(x) est défini SSI In(z) est défini et 2 — In(x) > 0, cad SSI 0 < x < €. L’ensemble de définition de f
est donc | D = ]0,e?] |

La fonction f est continue sur D et dérivable sur D\ {ez} d’aprés les théorémes généraux,

et on a : z |0 e?
Va e ]O,eQ[,f’(x):—; T
2x4/2 — In(x) f(z) \
On en déduit que f est strictement décroissante sur D. En outre f(e?) = 0 et lirg+ f(z) = 0
r—r
+o0.

2) La fonction f est continue et strictement décroissante sur D, donc en particulier sur [1,e]. A ce titre, elle réalise une
bijection de [1, €] sur [f(e), f(1)], cad sur I'intervalle [1, v/2]. Puisque /2 € [1, €], on en déduit que :‘ [1,€] est stable par f ‘

Puisque la fonction f est continue sur [1,e] et qu’elle laisse stable ce segment, le théoréme du point fixe permet d’affimer
qu’il existe un réel a tel que f(a) = a. Comme en outre la fonction & — f(x) — x est strictement décroissante sur [1, €],
a est 'unique point fixe de la fonction f.

3) Puisque ug appartient a l'intervalle stable [1,¢], tous les termes de la suite « appartiennent a [1,e]; ce qui justifie en
particulier que la suite u est bien définie.

Soit n un entier naturel quelconque. Puisque u,, et a appartiennent a l'intervalle [1, e], et que f est continue (resp.dérivable)
sur [1,e] (resp.sur |1,¢[), on peut appliquer le théoréme des accroissements finis a la fonction f entre a et u,, :

oo . un) — fla
il existe un réel ¢,, compris entre a et u,, tel que : f'(c,) = M
Up — @
. . , . ’ Up+1 a
— il existe un réel ¢,, compris entre a et u,, tel que : f'(¢,) =
Up — @

= il existe un réel ¢, compris entre a et u, tel que : up11 —a = f'(¢y) X (up, — a)

— il existe un réel ¢, compris entre a et u, tel que : |u,11 —a| = |f'(cn)| X |up —al (M)
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Par ailleurs, pour tout réel z € ]1,e[ on a:
1
2x4/2 — In(x)

la premiére majoration provenant du fait que x > 1, et la seconde du fait que /2 — In(z) > 1 sur [1,€].

1

24/2 —In(x) S5 (&)

2

<

(@) =

1
On déduit de (#) et de (&) que : [Vn €N, |u,r1 —a| < 3 |y, — al |

1 n
4) L’assertion “Vn € N, |u, —a| < () (e —1)” se déduit de la question précédente par une récurrence immédiate.

Puisque par ailleurs lim ( =0,ona: lim |u,—a| =0, cequisignifie que :| lim wu, =a|
n—-+o0o 2 n—-+oo n—-+oo




