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Chapitre 1 � Eléments de logique et de

théorie des ensembles
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1. Eléments de logique

Définition 1 - (assertion logique). On appelle assertion logique tout assemblage de mots et
de symboles obéissant à une syntaxe, à laquelle on peut associer une valeur de vérité : Vrai (V ) ou
Faux (F ).

Deux assertions P et Q sont synonymes ou logiquement équivalentes si elles ont même valeur de
vérité. On le note P ≡ Q.

ä Règles logiques
On admet les règles suivantes :

• Règle de non contradiction : on ne peut avoir une assertion vraie et fausse en même temps.

• Règle du tiers exclu : une assertion qui n'est pas vraie est fausse et une assertion qui n'est pas
fausse est vraie.

1.1. Négation, conjonction et disjonction.

Définition 2 - (négation) La négation de l'assertion P est l'assertion, notée non P, P ou ¬P
qui est vraie lorsque P est fausse et fausse sinon.

La valeur de vérité de P dépend de celle de P , elles satisfont à une table
de vérité.

P P
V F
F V

Montrer que P est vraie c'est trouver un contre-exemple à P .

Conséquence (Double négation). P ≡ P
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Définition 3 - (Conjonction et disjonction). Soient P et Q deux assertions.
• La conjonction des deux assertions P et Q, notée P et Q ou P ∧ Q,
est l'assertion qui est vraie lorsque P et Q sont toutes les deux vraies, et
fausse sinon.

• La disjonction des deux assertions P et Q, notée Pou Q ou P ∨ Q,
est l'assertion qui est vraie lorsqu'au moins l'une des deux assertions P
ou Q est vraie, et fausse sinon.

P Q P et Q Pou Q
V V V V
V F F V
F V F V
F F F F

Observons que pour toute assertion P , l'assertion P ∧ P est toujours fausse (non-contradiction), tandis
que P ∨ P est toujours vraie (tiers exclu).

Propriété 1 - Soient P , Q et R trois assertions logiques. On a :

1) P ∧ P ≡ P et P ∨ P ≡ P

2) Commutativité : P ∧Q ≡ Q ∧ P et P ∨Q ≡ Q ∨ P

3) Associativité : P ∧ (Q ∧R) ≡ (P ∧Q) ∧R et P ∨ (Q ∨R) ≡ (P ∨Q) ∨R

4) Distributivité : P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R) et P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

1.2. Implication et équivalence.

Définition 4 - (implication).

Soient P et Q deux assertions. On dé�nit P =⇒ Q par

[P =⇒ Q] ≡
[
P ou Q

]
P =⇒ Q est vraie si P est fausse ou Q est vraie et fausse sinon.

P Q P =⇒ Q
V V V
V F F
F V V
F F V

ä Vocabulaire associé aux implications

P =⇒ Q : P est l'hypothèse et Q la conclusion.

On dit que P (est vraie) implique Q (est vraie), si P (est vraie) alors Q (est vraie).

P est une condition su�sante pour avoir Q : pour avoir Q, il su�t d'avoir P .

Q est une condition nécessaire pour avoir P : pour avoir P , il faut avoir Q.

Définition 5 - (équivalence). Soient P et Q deux assertions.

On dé�nit P ⇐⇒ Q par
[P ⇐⇒ Q] ≡ [P =⇒ Qet Q =⇒ P ]

ä Vocabulaire associé aux équivalences

P ⇐⇒ Q : P est équivalente à Q.
P (est vraie) si et seulement si Q (est vraie).
P est une condition nécessaire et su�sante pour avoir Q : pour avoir P , il faut et il su�t
d'avoir Q.
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1.3. Règles de négation.

Propriété 2 - Règles de négation (lois de Morgan). Soient P et Q deux assertions.

P et Q ≡ Pou Q et Pou Q ≡ P et Q

Conséquence. Soient P et Q deux assertions. P =⇒ Q ≡ P et Q

Remarque. La négation d'une implication n'est donc pas une implication ! ! !

2. Notations et vocabulaire sur les ensembles

2.1. Appartenance.

Définition 6 - (ensemble). Un ensemble est dé�ni soit extension par énumération de ses
éléments, soit en compréhension comme les objets véri�ant une certaine propriété.

Exemple. En extension : {♠,♣,♡,♢}, {1; 4}, [0, 1] ,N,R,C
En compréhension : {M ∈ P : MA = MB}, {z ∈ C : zn = 1}.

Cas particulier (intervalle d'entiers). Soient n et m deux entiers relatifs. On pose

[[ n,m ]]= {k ∈ Z |n ≤ k ≤ m} = [n,m] ∩ Z

Notations. Lorsque x est un élément de E, on note x ∈ E et on lit �x appartient à E�. Si x n'est
pas un élément de E on note alors x /∈ E.

Définition 7 - (ensemble vide, singleton). Un ensemble qui ne contient qu'un seul élément
x est appelé singleton et se note {x}.
L'ensemble qui ne contient aucun élément est appelé ensemble vide et se note ∅ ou { }.

2.2. Quanti�cateurs. On considère une assertion P dépendant d'une variable x qui appartient à un
ensemble E ; on la notera P (x).

Définition 8 - (quanti�cateurs)

ä On dé�nit l'assertion
∀x ∈ E,P (x)

comme l'assertion qui est vraie si pour tout x élément de E, P (x) est vraie.

Le symbole ∀ est appelé quanti�cateur universel et est lu �quel que soit�, �pour tout�

ä On dé�nit l'assertion
∃x ∈ E,P (x)

comme l'assertion qui est vraie s'il existe au moins un x élément de E tel que P (x) soit vraie.

Le symbole ∃ est appelé quanti�cateur existentiel et est lu �il existe au moins un . . . �

ä On dé�nit l'assertion
∃ !x ∈ E,P (x)

comme l'assertion qui est vraie s'il existe un unique x élément de E tel que P (x) soit vraie.

Le symbole ∃ ! est appelé quanti�cateur d'unicité et est lu �il existe un unique . . . �
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Remarque. Attention ! ! ! Dans une assertion contenant plusieurs quanti�cateurs on peut changer l'ordre
de deux quanti�cateurs de même nature mais on ne peut changer l'ordre de deux quanti�cateurs de nature
di�érentes.

Exemple. Comparer les deux assertions suivantes :

∀x ≥ 0, ∃y ≥ 0, y =
√
x et ∃y ≥ 0, ∀x ≥ 0, y =

√
x.

Propriété 3 - Règles de négation

ã non (∀x ∈ E, P (x)) ≡ ∃ x ∈ E, P (x)

ã non (∃x ∈ E, P (x)) ≡ ∀ x ∈ E, P (x)

Exemple. non (∀x ≥ 0, ∃y ≥ 0, y =
√
x) ⇐⇒ . . .

2.3. Inclusion.

Définition 9 - Soient E et F deux ensembles.

On dit que E est inclus dans F si tout élément de E appartient à
F . On le note E ⊂ F .

On dit également que F contient E, noté F ⊃ E ou encore E est un
sous-ensemble de F , une partie de F .

Dans le cas contraire, E est non inclus dans F et on note E ̸⊂ F .

Propriété 4 - .

ã Pour tout ensemble E, on a ∅ ⊂ E

ã Règle de double-inclusion. (E ⊂ F et F ⊂ E) ⇐⇒ (E = F )

Définition 10 - Deux ensembles A et B sont dits distincts si
A ̸= B, c'est-à-dire s'ils ne contiennent pas les mêmes éléments.

Définition 11 - On appelle ensemble des parties de E, noté P(E), l'ensemble formé par
tous les sous-ensembles de E.

Exemple. P({1; 2}) = {∅; {1}; {2}; {1; 2}}.



MPSI 5

2.4. Intersection et union.

Définition 12 - (intersection et union). Soient A et B deux parties d'un ensemble E.

ã A∩B est l'intersection de A et B ; c'est l'ensemble des éléments qui appartiennent à A et B.

ã A ∪ B est l'union de A et B ; c'est l'ensemble des éléments qui appartiennent à au moins l'un
ensemble A et B.

Propriété 5 - (commutativité et distributivité). Soient A et B deux parties d'un ensemble
E.

ã A ∩B = B ∩ A et A ∪B = B ∪ A

ã A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) et A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Définition 13 - Soient A et B deux parties d'un ensemble E.
A et B sont dits disjoints si A ∩B = ∅.

2.5. Complémentaire et di�érence.

Définition 14 - Soient A et B deux parties d'un ensemble E.

ã A \ B est la di�érence de A par B ; c'est l'ensemble des éléments de A qui n'appartiennent
pas à B.

ã A est le complémentaire de A dans E ; c'est l'ensemble des éléments de E qui n'appartiennent
pas à A. Autres notations du complémentaire : E \ A ou CA

E .

Propriété 6 - Soient A et B deux parties d'un même ensemble E.

ã (A) = A ã A ∪B = A ∩B ã A ∩ A = ∅
ã A ∩B = A ∪B ã ∅ = E ã A ∪ A = E
ã A \B = A ∩B



6 MPSI

Exemple d'application de la règle de double inclusion (et de double implication). Soient A et
B deux parties d'un même ensemble E. Etablir que : [A ⊂ B] ⇐⇒ [A ∪B = B].

Exemple d'application des propriétés de l'inclusion, de l'union. . . . Soient E un ensemble, et A
et B deux parties de E. On dé�nit la di�érence symétrique de A et B (et on note A∆B) la partie
suivante :

A∆B = (A\B) ∪ (B\A)

Etablir que : A∆B = (A ∪B) \ (A ∩B).

2.6. Produit cartésien.

Définition 15 - (produit cartésien). Soient E et F deux en-
sembles. On appelle produit cartésien de E par F , noté E × F ,
l'ensemble des couples (x, y) avec x ∈ E et y ∈ F .

Exemple : le rectangle [0, 1]× [−1, 1].

Cas particuliers. On note E × E par E2 et plus généralement si n ∈ N∗, E × · · · × E︸ ︷︷ ︸
n fois

par En.

Exemple. Le plan peut donc être assimilé à R2 et l'espace à R3.

Vocabulaire. Soient (Ei)i∈[[1,n]] des ensembles. Les éléments de E1 × E2 s'appellent des couples, de
E1 × E2 × E3 des triplets et plus généralement de E1 × E2 × · · · × En des n-uplets.

3. Méthodes de démonstration

3.1. Axiome, postulat, théorème.

Définition 16 - (axiome et postulat). On appelle axiome une assertion que l'on pose vraie
a priori et postulat ou conjecture une assertion que l'on suppose vraie.

Exemple. L'axiome d'Euclide de la géométrie plane : �Par un point du plan on peut mener une unique
parallèle à une droite donnée�.

Définition 17 - (théorème ou tautologie). Un théorème de logique appelé aussi tautologie
est une assertion vraie quelles que soient les valeurs de vérité des éléments qui la composent. Elle
se déduit d'axiomes ou d'autres théorèmes.

Exemple. L'assertion Q =
[
Pou P

]
est une tautologie.

3.2. Comment prouver une implication ?

Par syllogisme. Soient P,Q et R trois assertions logiques. On a :

[(P =⇒ Q)et (Q =⇒ R)] =⇒ [P =⇒ R]

Exemple (Aristote, 350 av.JC). �Les hommes sont mortels, or tous les Grecs sont des hommes, donc
tous les Grecs sont mortels�.
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Par disjonction de cas. Soient P,Q et R trois assertions logiques.

[(P =⇒ R)et (Q =⇒ R)] =⇒ [(Pou Q) =⇒ R]

Exemple. Un entier naturel et son carré ont la même parité.

Par contraposition. Soient P et Q deux assertions logiques.

[P =⇒ Q] ≡
[
Q =⇒ P

]
Cette dernière assertion est appelée contraposée de P =⇒ Q.

Exemple. Montrer que si
x

1 + x
< 0 alors x < 0.

Conséquence. Soient P et Q deux assertions logiques.

P ⇐⇒ Q ≡ P ⇐⇒ Q

3.3. Démonstration par l'absurde.

Principe. Pour montrer qu'une proposition P est vraie, on montre que sa négation P entraine une
proposition et son contraire. On aboutit alors à une contradiction. On peut conclure que l'hypothèse P
est fausse et donc que P est vraie.

Propriété 7 -
√
2 ∈ (R\Q) (càd :

√
2 est irrationnel).

3.4. Démonstration par analyse-synthèse.

Pour justi�er l'existence et parfois l'unicité d'une solution, on peut être amené à déterminer la
forme de celle-ci, forme qui n'est pas nécessairement donnée dans l'énoncé. On raisonne alors par
analyse-synthèse :

ã Analyse : on suppose qu'il existe au moins une solution, et on essaie d'en tirer le maximum de
renseignements la concernant.

ã Synthèse : on reporte dans le problème initial la ou les solution(s) trouvée(s) précédemment, ce
qui permet de déterminer s'il y a bien une solution, puis une unique ou plusieurs.

ã Conclusion : on énonce le résultat démontré.

Théorème 1 - (de décomposition �paire + impaire�). Toute fonction f : D −→ R avec
D ⊂ R symétrique par rapport à 0 s'écrit de manière unique comme la somme d'une fonction paire
et d'une fonction impaire.

Remarque et exemple d'application. Le théorème de décomposition est un énoncé dit constructif
dans le sens où il donne un moyen explicite d'obtenir l'écriture de f comme somme d'une fonction paire
et d'une fonction impaire. Concrètement, dans le cas où la fonction f est la fonction exponentielle (dé�nie
sur R, qui est un ensemble symétrique par rapport à zéro), on a :

∀x ∈ R, ex =
ex + e−x

2
+

ex − e−x

2
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La première des deux fonctions intervenant dans la somme ci-dessus est paire, et la seconde est impaire.
Plus précisément, on appelle cosinus hyperbolique (resp. sinus hyperbolique) et on note ch (resp.
sh) la première (resp. deuxième) fonction. On a donc :

Définitions et propriétés.

1) Dé�nition du cosinus hyperbolique : ∀x ∈ R, ch(x) =
ex + e−x

2

2) Dé�nition du sinus hyperbolique : ∀x ∈ R, sh(x) =
ex − e−x

2

3) La fonction ch est paire, et la fonction sh est impaire.

4) En outre : exp = ch+sh. Il revient au même d'écrire : ∀x ∈ R, ex = ch(x)+sh(x).

Pour �nir, voici à titre d'illustration les courbes représentatives des fonctions ch et sh.

3.5. Démonstration par récurrence.

L'objectif de ce type de raisonnement est de prouver qu'une propriété P (n) dépendant d'un entier naturel
n est valable pour toute valeur de celui-ci. Cette méthode comporte quatre étapes :

ä On donne un nom à la propriété que l'on souhaite prouver.

ä Initialisation : on véri�e que la propriété P (0) est vraie.

Remarque : dans certaines situations, la propriété P (n) n'est valable que pour n > 1 (resp.
pour n > n0, avec n0 un entier) ; dans ce cas, l'initialisation doit consister à véri�er que
P (1) est vraie (resp. que P (n0) est vraie). On parle alors de récurrence décalée.

ä Hérédité : on suppose que P (n) est vraie pour un certain entier (ou rang) n (c'est l'hypo-
thèse de récurrence), et on prouve que la propriété P (n+ 1) est vraie.

ä Conclusion : on peut alors conclure que pour tout entier n la propriété P (n) est vraie.
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Remarque 1 : il existe plusieurs variantes du raisonnement par récurrence. La plus célèbre (la seule que
vous connaissez a priori) est celle présentée plus haut, appelée récurrence faible.

Dans une récurrence forte, on suppose pour établir l'hérédité que la propriété est vraie jusqu'au rang n
(et non pas simplement au rang n).

Dans une récurrence double, l'initialisation consiste à véri�er que P (0) et P (1) sont vraies ; et l'hérédité
consiste à prouver que si P (n) et P (n+ 1) sont vraies, alors P (n+ 2) l'est.

Dans une récurrence �nie, l'initialisation consiste à véri�er que P (0) est vraie ; et l'hérédité consiste à
prouver que si P (n) est vraie pour tout entier naturel n 6 n0, alors P (n+ 1) l'est. On prouve ainsi que
pour tout entier n ∈ [[ 0, n0 + 1 ]] l'assertion P (n) est vraie.

Nous aurons l'occasion, en cours d'année, de rencontrer ces di�érentes variantes. En attendant, l'essentiel
est que vous maîtrisiez le raisonnement par récurrence �classique� (la récurrence faible donc).

Remarque 2 : si, après la lecture des lignes précédentes, vous êtes très impatients de tester d'autres
raisonnements par récurrence, voici ci-dessous une situation où l'on doit procéder par récurrence double.

Exercice. Soit (un) la suite réelle dé�nie par u0 = 2, u1 = 3 et la relation de récurrence suivante :
∀ n ∈ N, un+2 = 3un+1 − 2un. Montrer que : ∀n ∈ N, un = 2n + 1.

Remarque 3 : si, après la lecture des lignes précédentes, vous êtes encore très impatients de tester d'autres
raisonnements par récurrence, voici ci-dessous une situation où l'on doit procéder par récurrence �nie.

Exercice. Soit N un entier naturel. On a : ∀n ∈ N,
(
xN
)(n)

=


N !

(N − n) !
xN−n si n ∈ [[ 0, N ]]

0 si n > N

On donne ci-dessous quelques exemples classiques de raisonnement par récurrence.

Exemple 1 : somme des termes d'une suite arithmétique

Propriété 8 - Soit (un) une suite arithmétique (de raison r avec r ∈ C). On a :
n∑

k=0

uk =
u0 + un

2
(n+ 1)

Exemple 2 : somme des cubes

Propriété 9 - (somme des cubes). ∀ n ∈ N,
n∑

k=0

k3 =
n2 (n+ 1)2

4

(Anti-)Exemple 3 : un cas où l'on peut éviter une récurrence � somme des termes d'une
suite arithmétique

Le piège dans lequel il ne faut pas tomber est de penser que l'on ne peut démontrer une propriété dépendant
d'un entier n que par récurrence sur n. Ce n'est évidemment pas toujours le cas, comme l'illustre l'exemple
de l'exercice 1 sur la somme des termes d'une suite arithmétique. On aurait en e�et pu écrire pour tout
n ∈ N :

ä d'une part :
n∑

k=0

uk =

n∑
k=0

(u0 + kr) =

(
n∑

k=0

u0

)
+ r

(
n∑

k=0

k

)
= (n+ 1)u0 + r

n (n+ 1)

2

ä d'autre part :
u0 + un

2
(n+ 1) =

(u0 + u0 + nr) (n+ 1)

2
=

2u0 (n+ 1) + nr (n+ 1)

2
= (n+ 1)u0 + r

n (n+ 1)

2
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Ce qui prouve la propriété directement, et nettement plus rapidement que plus haut.

Exemple 4 (plus technique). Montrer que : ∀n ∈ N∗,

n∏
k=1

(2k + 1)! > ((n+ 1)!)n+1

(c-à-d : 1!× 3!× · · · × (2n+ 1)! > ((n+ 1)!)n+1)

On raisonne par récurrence sur l'entier naturel non nul n pour établir la propriété de l'énoncé.

Notons donc P (n) l'assertion :
n∏

k=1

(2k + 1)! > ((n+ 1)!)n+1.

ä Initialisation : pour n = 1, on a d'une part
1∏

k=1

(2k + 1)! = 3! = 6, et d'autre part ((1 + 1)!)1+1 = 4.

On en déduit que P (1) est vraie.

ä Hérédité : supposons P (n) vraie pour un certain entier naturel non nul n. Alors :

n+1∏
k=1

(2k + 1)! =

(
n∏

k=1

(2k + 1)!

)
× (2n+ 3)! >︸︷︷︸

HR

((n+ 1)!)n+1 (2n+ 3)!

Pour établir que P (n+1) est vraie, il �n'y a plus qu'à� montrer que : ((n+ 1)!)n+1 (2n+ 3)! > ((n+ 2)!)n+2 .

En avant :
((n+ 1)!)n+1 (2n+ 3)!

((n+ 2)!)n+2 =
((n+ 1)!)n+1 (2n+ 3)!

((n+ 1)!)n+2 (n+ 2)n+2 =
(2n+ 3)!

(n+ 1)! (n+ 2)n+2

=

(n+ 1)!
n+3∏
k=2

(n+ k)

(n+ 1)! (n+ 2)n+2 =
n+3∏
k=2

n+ k

n+ 2

Or, pour tout entier k > 2, on a : n+ k > n+ 2. D'où : ∀ k ∈ [[ 2, n+ 3 ]],
n+ k

n+ 2
> 1.

Par suite :
n+3∏
k=2

n+ k

n+ 2
> 1 .

On en déduit que :
((n+ 1)!)n+1 (2n+ 3)!

((n+ 2)!)n+2 > 1, c'est-à-dire : ((n+ 1)!)n+1 (2n+ 3)! > ((n+ 2)!)n+2 .

Ce qui signi�e que la propriété P (n+ 1) est vraie, établit l'hérédité, et achève cette récurrence.

Conclusion : ∀n ∈ N∗,

n∏
k=1

(2k + 1)! > ((n+ 1)!)n+1 K


