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CHAPITRE 1 — ELEMENTS DE LOGIQUE ET DE
THEORIE DES ENSEMBLES
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1. ELEMENTS DE LOGIQUE

DEFINITION 1 - (assertion logique). On appelle assertion logique tout assemblage de mots et
de symboles obéissant a une syntaxe, a laquelle on peut associer une valeur de vérité : Vrai (V) ou
Faux (F').

Deux assertions P et () sont synonymes ou logiquement équivalentes si elles ont méme valeur de
vérité. On le note P = Q).

» Régles logiques

On admet les régles suivantes :

e Régle de non contradiction : on ne peut avoir une assertion vraie et fausse en méme temps.

e Régle du tiers exclu : une assertion qui n’est pas vraie est fausse et une assertion qui n’est pas
fausse est vraie.

1.1. Négation, conjonction et disjonction.

DEFINITION 2 - (négation) La négation de I’assertion P est I'assertion, notée non P, P ou =P
qui est vraie lorsque P est fausse et fausse sinon.

_ P
La valeur de vérité de P dépend de celle de P, elles satisfont a une table v
de vérité. 7

<|=|

Montrer que P est vraie c’est trouver un contre-exemple a P.

Conséquence (Double négation). P=r
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DEFINITION 3 - (Conjonction et disjonction). Soient P et () deux assertions.

e La conjonction des deux assertions P et (), notée Pet (Q ou P A @,

est I'assertion qui est vraie lorsque P et @ sont toutes les deux vraies, et | £ | @ | Pet @ | Pou @
fausse sinon. VIV v v

e La disjonction des deux assertions P et (), notée Pou @) ou PV @, VF r v
est ’assertion qui est vraie lorsqu’au moins 1'une des deux assertions P v r 4
ou () est vraie, et fausse sinon. FF F F

Observons que pour toute assertion P, I'assertion P A P est toujours fausse (non-contradiction), tandis
que PV P est toujours vraie (tiers exclu).
PROPRIETE 1 - Soient P, ) et R trois assertions logiques. On a :

1
2
3
4

PANP=PetPVP=P

Commutativité : PAQ=QANPet PVQ=QVP

Associativité : PA(QAR)=(PAQ)ARet PV(QVR)=(PVQ)VR
Distributivité : PA(QVR)=(PAQ)V(PAR)et PV(QAR)=(PVQ)AN(PVR)

~— O O e

1.2. Implication et équivalence.

DEFINITION 4 - (implication).

Soient P et () deux assertions. On définit P = @) par 5 8 F ? @
[P = Q] = [P ou Q] VIF| F

P = () est vraie si P est fausse ou () est vraie et fausse sinon. ? ‘]g “;

» Vocabulaire associé aux implications

P = @ : P est 'hypothése et () la conclusion.

On dit que P (est vraie) implique @ (est vraie), si P (est vraie) alors () (est vraie).
P est une condition suffisante pour avoir () : pour avoir ), il suffit d’avoir P.
Q@ est une condition nécessaire pour avoir P : pour avoir P, il faut avoir Q.

DEFINITION 5 - (équivalence). Soient P et () deux assertions.

On définit P < @ par
[P <= Q| =[P = Qet Q = P]

» Vocabulaire associé aux équivalences

P <= (@ : P est équivalente a Q.
P (est vraie) si et seulement si ) (est vraie).
P est une condition nécessaire et suffisante pour avoir () : pour avoir P, il faut et il suffit

d’avoir Q.
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1.3. Reégles de négation.

PROPRIETE 2 - Reégles de négation (lois de Morgan). Soient P et () deux assertions.

Pet Q = Pou Q et Pou Q = Pet Q

Conséquence. Soient P et () deux assertions. P— Q = Pet Q

Remarque. La négation d’une implication n’est donc pas une implication!!!

2. NOTATIONS ET VOCABULAIRE SUR LES ENSEMBLES

2.1. Appartenance.

DEFINITION 6 - (ensemble). Un ensemble est défini soit extension par énumération de ses
éléments, soit en compréhension comme les objets vérifiant une certaine propriété.

Exemple. En extension : {#, &, O, ${1;4},[0,1],N,R, C

En compréhension : {M € & : MA= MB},{z€C:z"=1}.

Cas particulier (intervalle d’entiers). Soient n et m deux entiers relatifs. On pose

[nm]={k€Z|n<k<m}=[nmNZ

Notations. Lorsque z est un élément de E, on note x € E et on lit «z appartient & E». Si x n’est
pas un élément de E on note alors x ¢ E.

DEFINITION 7 - (ensemble vide, singleton). Un ensemble qui ne contient qu’un seul élément
x est appelé singleton et se note {z}.

L’ensemble qui ne contient aucun élément est appelé ensemble vide et se note () ou { }.

2.2. Quantificateurs. On considére une assertion P dépendant d’une variable x qui appartient a un
ensemble F ; on la notera P(x).

DEFINITION 8 - (quantificateurs)
» On définit I'assertion
Vz e E,P(x)
comme ’assertion qui est vraie si pour tout  élément de E, P(z) est vraie.
Le symbole V est appelé quantificateur universel et est lu «quel que soit», «pour tout»

» On définit 'assertion
dz € FE, P(x)
comme Dassertion qui est vraie s'il existe au moins un z élément de E tel que P(x) soit vraie.
Le symbole J est appelé quantificateur existentiel et est lu «il existe au moins un ... »
» On définit I'assertion
dlz € E, P(x)

comme 'assertion qui est vraie s’il existe un unique x élément de E tel que P(z) soit vraie.

Le symbole 3! est appelé quantificateur d’unicité et est lu «il existe un unique ... »
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Remarque. Attention!!! Dans une assertion contenant plusieurs quantificateurs on peut changer I'ordre
de deux quantificateurs de méme nature mais on ne peut changer 'ordre de deux quantificateurs de nature
différentes.

Exemple. Comparer les deux assertions suivantes :

Vr>0,3y>0,y=+x et Jy>0,Vr>0,y=/7

PROPRIETE 3 - Reégles de négation

> non (Vx € E, P(zr)) =3x € E, P(x)

> non (3x € E, P(x)) =V € E, P(x)

Exemple. non (Vx >0, 3y >0, y = /2) <

2.3. Inclusion.

DEFINITION 9 - Soient E et F' deux ensembles.

On dit que F est inclus dans F' si tout élément de E appartient a
F. On le note £ C F.

On dit également que F' contient E, noté F' O E ou encore E est un
sous-ensemble de F', une partie de F.

Dans le cas contraire, E est non inclus dans F' et on note £ ¢ F.

PROPRIETE 4 -
> Pour tout ensemble F, on a ) C

> Reégle de double-inclusion. (E C Fet F C E) <= (E=F)

DEFINITION 10 - Deux ensembles A et B sont dits distincts si| | 4 el
A # B, c’est-a-dire s’ils ne contiennent pas les mémes éléments. {© = '

DEFINITION 11 - On appelle ensemble des parties de F, noté Z(FE), ensemble formé par
tous les sous-ensembles de F.

Exemple. Z({1;2}) = {0; {1};{2}; {1;2}}.
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2.4. Intersection et union.

DEFINITION 12 - (intersection et union). Soient A et B deux parties d’un ensemble E.
> AN B est I'intersection de A et B; c’est 'ensemble des éléments qui appartiennent a A et B.

> AU B est 'union de A et B; c’est 'ensemble des éléments qui appartiennent a au moins I'un
ensemble A et B.

PROPRIETE 5 - (commutativité et distributivité). Soient A et B deux parties d’'un ensemble
/g,

> ANB=BNA e AUB=BUA
> AN(BUC)=(ANB)U(ANC) e AUBNC)=(AUB)N(AUCQC)

' |
DEFINITION 13 - Soient A et B deux parties d’un ensemble E. \ 4
A et B sont dits disjoints si AN B = ).

2.5. Complémentaire et différence.

DEFINITION 14 - Soient A et B deux parties d’'un ensemble E.

> A\ B est la différence de A par B; c¢’est I'ensemble des éléments de A qui n’appartiennent
pas a B.

> A est le complémentaire de A dans E ; ¢’est Uensemble des éléments de E qui n’appartiennent
pas & A. Autres notations du complémentaire : £\ A ou Ca.

PROPRIETE 6 - Soient A et B deux parties d’'un méme ensemble E.

> (@A) =A >AUB=4ANB > ANA=40
>ANB=AUB >0=E > AUA=E
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Exemple d’application de la régle de double inclusion (et de double implication). Soient A et
B deux parties d’un méme ensemble E. Etablir que : [A C B] <= [AU B = B].

Exemple d’application des propriétés de 1’inclusion, de ’union. ... Soient E un ensemble, et A
et B deux parties de E. On définit la différence symétrique de A et B (et on note AAB) la partie
suivante :

AAB = (A\B) U (B\A)
Etablir que : AAB = (AUB)\ (AN B).

2.6. Produit cartésien.

DEFINITION 15 - (produit cartésien). Soient E et F' deux en-
sembles. On appelle produit cartésien de E par F, noté¢ E x F,
’ensemble des couples (x,y) avec x € E et y € F.

Exemple : le rectangle [0, 1] x [—1,1].

Cas particuliers. On note E x E par E? et plus généralement si n € N*, E x --- x E par E".
—_—

n fois

Exemple. Le plan peut donc étre assimilé & R? et I'espace a R3.
Vocabulaire. Soient (Ej)icpi,) des ensembles. Les éléments de ) x E, s’appellent des couples, de
Ey x Ey x E3 des triplets et plus généralement de £y x Es X --- X E,, des n-uplets.

3. METHODES DE DEMONSTRATION

3.1. Axiome, postulat, théoréme.

DEFINITION 16 - (axiome et postulat). On appelle axiome une assertion que 'on pose vraie
a priori et postulat ou conjecture une assertion que 'on suppose vraie.

Exemple. [’axiome d’Euclide de la géométrie plane : «Par un point du plan on peut mener une unique
paralléle & une droite donnéey.

DEFINITION 17 - (théoréme ou tautologie). Un théoréme de logique appelé aussi tautologie
est une assertion vraie quelles que soient les valeurs de vérité des éléments qui la composent. Elle
se déduit d’axiomes ou d’autres théorémes.

Exemple. L’assertion () = [Pou F] est une tautologie.

3.2. Comment prouver une implication ?

Par syllogisme. Soient P, () et R trois assertions logiques. On a :

[(P= Q)et () = R)] = [P = R]

Exemple (Aristote, 350 av.JC). «Les hommes sont mortels, or tous les Grecs sont des hommes, donc
tous les Grecs sont mortelsy.
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Par disjonction de cas. Soient P, () et R trois assertions logiques.

[(P= R)et () = R)] = [(Pou Q) = R]

Exemple. Un entier naturel et son carré ont la méme parité.

Par contraposition. Soient P et () deux assertions logiques.

P=Ql=[Q=P]

Cette derniére assertion est appelée contraposée de P —> ().

x
Exemple. Montrer que si 1 < 0 alors < 0.
x

Conséquence. Soient P et () deux assertions logiques.

Pe—=Q=P<=Q

3.3. Démonstration par ’absurde.

Principe. Pour montrer qu’une proposition P est vraie, on montre que sa négation P entraine une
proposition et son contraire. On aboutit alors & une contradiction. On peut conclure que '’hypothése P
est fausse et donc que P est vraie.

PROPRIETE 7 - /2 € (R\Q) (cad : v/2 est irrationnel).

3.4. Démonstration par analyse-synthése.

Pour justifier 'existence et parfois I'unicité d’une solution, on peut étre amené a déterminer la
forme de celle-ci, forme qui n’est pas nécessairement donnée dans I’énoncé. On raisonne alors par
analyse-synthése :

> Analyse : on suppose qu’il existe au moins une solution, et on essaie d’en tirer le maximum de
renseignements la concernant.

> Synthése : on reporte dans le probléme initial la ou les solution(s) trouvée(s) précédemment, ce
qui permet de déterminer s’il y a bien une solution, puis une unique ou plusieurs.

> Conclusion : on énonce le résultat démontré.

THEOREME 1 - (de décomposition “paire + impaire”). Toute fonction f : D — R avec
D C R symétrique par rapport a 0 s’écrit de maniére unique comme la somme d’une fonction paire
et d’une fonction impaire.

Remarque et exemple d’application. Le théoréme de décomposition est un énoncé dit constructif
dans le sens ou il donne un moyen explicite d’obtenir I’écriture de f comme somme d’une fonction paire
et d’une fonction impaire. Concrétement, dans le cas ot la fonction f est la fonction exponentielle (définie
sur R, qui est un ensemble symétrique par rapport a zéro), on a :

e +e ™ et —e77

Vre R, e =
x , e 5 5
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La premiére des deux fonctions intervenant dans la somme ci-dessus est paire, et la seconde est impaire.
Plus précisément, on appelle cosinus hyperbolique (resp. sinus hyperbolique) et on note ch (resp.

sh) la premiére (resp. deuxiéme) fonction. On a donc :

DEFINITIONS ET PROPRIETES.

1) Définition du cosinus hyperbolique : Vx € R, ch(z) = e re

e$

2) Définition du sinus hyperbolique : Vx € R, sh(z) =

3) La fonction ch est paire, et la fonction sh est impaire.

4) En outre : exp = ch+sh. Il revient au méme d’écrire : Vo € R, e” = ch(z)+sh(z).

Pour finir, voici a titre d’illustration les courbes représentatives des fonctions ch et sh.

-
2

3.5. Démonstration par récurrence.

L’objectif de ce type de raisonnement est de prouver qu'une propriété P(n) dépendant d’un entier naturel

n est valable pour toute valeur de celui-ci. Cette méthode comporte quatre étapes :

» On donne un nom a la propriété que 'on souhaite prouver.

» Initialisation : on vérifie que la propriété P (0) est vraie.

thése de récurrence), et on prouve que la propriété P (n + 1) est vraie.

Remarque : dans certaines situations, la propriété P (n) n’est valable que pour n > 1 (resp.
pour m = ng, avec ng un entier); dans ce cas, Uinitialisation doit consister a vérifier que
P(1) est vraie (resp. que P (ng) est vraie). On parle alors de récurrence décalée.

» Hérédité : on suppose que P(n) est vraie pour un certain entier (ou rang) n (c’est ’hypo-

» Conclusion : on peut alors conclure que pour tout entier n la propriété P (n) est vraie.
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Remarque 1 : il existe plusieurs variantes du raisonnement par récurrence. La plus célebre (la seule que
vous connaissez a priori) est celle présentée plus haut, appelée récurrence faible.

Dans une récurrence forte, on suppose pour établir I’hérédité que la propriété est vraie jusqu’au rang n
(et non pas simplement au rang n).

Dans une récurrence double, linitialisation consiste a vérifier que P(0) et P (1) sont vraies; et I’hérédité
consiste & prowver que si P (n) et P(n+ 1) sont vraies, alors P (n + 2) [’est.

Dans une récurrence finie, Uinitialisation consiste a vérifier que P(0) est vraie; et ’hérédité consiste a
prouver que si P (n) est vraie pour tout entier naturel n < ng, alors P (n+ 1) l’est. On prouve ainsi que
pour tout entier n € [ 0,ng + 1] Uassertion P(n) est vraie.

Nous aurons l’occasion, en cours d’année, de rencontrer ces différentes variantes. En attendant, [’essentiel
est que vous maitrisiez le raisonnement par récurrence “classique” (la récurrence faible donc).

Remarque 2 : si, apres la lecture des lignes précédentes, vous étes trés impatients de tester d’autres
ratsonnements par récurrence, voici ci-dessous une situation ou [’on doit procéder par récurrence double.

Exercice. Soit (u,) la suite réelle définie par ug = 2, uy = 3 et la relation de récurrence suivante :
VneN, uyro = 3Upi1 — 2u,. Montrer que : Vn € N, u, =2" + 1.

Remarque 3 : si, apres la lecture des lignes précédentes, vous éles encore trés impatients de tester d’autres
ratsonnements par récurrence, voict ci-dessous une situation ot l'on doit procéder par récurrence finie.

N!
m%’N—n sinG[[O,N]]
Exercice. Soit N un entier naturel. On a : Vn € N, (xN)(n) = n:
0 sin>N
On donne ci-dessous quelques exemples classiques de raisonnement par récurrence.

Exemple 1 : somme des termes d’une suite arithmétique

PROPRIETE 8 - Soit (u,) une suite arithmétique (de raison r avec r € C). On a :

“ Uy + Uy,
> =1

k=0

Exemple 2 : somme des cubes

n 2 2
P n°(n+1
PROPRIETE 9 - (somme des cubes). Vn € N, Zk3 = %
k=0
(Anti-)Exemple 3 : un cas ot 'on peut éviter une récurrence — somme des termes d’une

suite arithmétique

Le piége dans lequel il ne faut pas tomber est de penser que ’on ne peut démontrer une propriété dépendant
d’un entier n que par récurrence sur n. Ce n’est évidemment pas toujours le cas, comme l'illustre I’exemple
de I'exercice 1 sur la somme des termes d’une suite arithmétique. On aurait en effet pu écrire pour tout
ne N:

)d’unepart :Zuk:Z(uo—l—k’T (ZUO>+T<ZI{I> n+1 U0+T(,rl2m
k=0 k=0
(ug +up+nr)(n+1) 2ug(n+1)+nr(n+1)
2 - 2

n(n+1)
2

» d’autre part :uo—iz—un (n+1)= =+ 1ug+r
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Ce qui prouve la propriété directement, et nettement plus rapidement que plus haut.

n

Exemple 4 (plus technique). Montrer que : Vn € N*, H 2k +1)! > ((n4+ D)™™
k=1
(c-ard : 1 x 3l x - x (2n4+ 1! > ((n+ 1)DH"H

On raisonne par récurrence sur l’entier naturel non nul n pour établir la propriété de I’énoncé.

Notons donc P(n) I’assertion : H 2k + 1) > ((n+ 1))
k=1
1

» Initialisation : pour n = 1, on a d’une part H (2k 4+ 1)! = 3! = 6, et d’autre part ((1+ 1))+ = 4.
k=1

On en déduit que P(1) est vraie.

» Hérédité : supposons P(n) vraie pour un certain entier naturel non nul n. Alors :

n+1 n
(2k + 1)1 = 2k+ D! x 2n4+3)! > ((n+ D))" (2n 4+ 3)!
[T (e ) ~

k= HR

Pour établir que P(n+1) est vraie, il “n’y a plus qu’a” montrer que : | ((n + 1)1)"™ (2n + 3)! > ((n +2)1)" 2|,

(n+ D)™ @2n+3)!  ((n+ D" 2n+3) (2n + 3)!

((n+2)H)"* C(n+ )" P +2)" (n4 1) (n+2)"

(n+ D] (n+k)

En avant :

n+3n—|—k

k=2
- n+2:H
(n+1)!(n+2) S nt2

k
Or, pour tout entier k > 2, ona:n+k>n+2. Dou:Vke[2,n+3], nj__g > 1.
n
n+3
k;
Par suite : H nt
k2n+2

(n+ 1D (2n + 3)!
((n+2))""

On en déduit que : > 1, Cest-a-dire : | ((n+ D)D" (20 +3)! = ((n+2))"? |,

Ce qui signifie que la propriété P(n + 1) est vraie, établit ’hérédité, et achéve cette récurrence.

n
11

Conclusion : Vn € N*, H 2k+1)! > ((n+ 1)) | =
k=1




