Colle 8 - Questions de cours

QUESTION DE COURS N⁰1 — **Propriété**. Positivité de l'intégrale : soient a et b deux réels, avec $a \le b$, et $f \in \mathscr{C}^0([a,b],\mathbb{R})$. Si $f \geqslant 0$ sur [a,b], alors $\int_a^b f(t) \, \mathrm{d}t \geqslant 0$.

Sous les hypothèses de l'énoncé, la fonction f est continue et positive sur le segment [a,b]: à ce titre, elle admet une primitive F (th fondamental de l'intégration) sur [a,b], et F est croissante sur [a,b] (car F est dérivable et $F'=f\geqslant 0$).

On en déduit que $\int_a^b f = F(b) - F(a) \geqslant 0$, d'où la conclusion.

QUESTION DE COURS N⁰2 — **Propriété**. Croissance de l'intégrale : soient a et b deux réels, avec $a \leqslant b$, et $f,g \in \mathscr{C}^0([a,b],\mathbb{R})$. Si $f \geqslant g$ sur [a,b], alors $\int_a^b f(t) \, \mathrm{d}t \geqslant \int_a^b g(t) \, \mathrm{d}t$.

Sous les hypothèses de l'énoncé, la fonction f-g est continue et positive sur le segment [a,b]. Par positivité de l'intégrale, on a donc : $\int_a^b (f-g) \geqslant 0$. Par linéarité de l'intégrale, on en déduit que : $\int_a^b f - \int_a^b g \geqslant 0$, d'où la conclusion.

QUESTION DE COURS N⁰3 — **Propriété**. Relation de Chasles pour les intégrales.

Soient a et b deux réels, avec $a \leqslant b$, et $f \in \mathscr{C}^0\left(\left[a,b\right],\mathbb{R}\right)$. Alors pour tout $c \in \left[a,b\right]$ on a : $\int_a^b f = \int_a^c f + \int_c^b f$.

Puisque f est continue sur le segment [a, b], elle admet une primitive F sur [a, b]. Alors:

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = F(b) - F(c) + F(c) - F(a) = \int_{c}^{b} f(t) dt + \int_{a}^{c} f(t) dt, \text{ cqfd.}$$

QUESTION DE COURS N⁰4 — **Propriété**. Formule d'intégration par parties

Soient u et v deux fonctions de classe \mathscr{C}_1 sur un intervalle I, et soient a et b deux réels dans I. Alors uv est dérivable sur I et :

 $\forall x \in I, (uv)'(x) = u'(x)v(x) + u(x)v'(x)$. Par intégration entre a et b (légitime car u, v, u' et v' sont continues), on en déduit que : $\int_a^b (uv)'(x) \, \mathrm{d}x = \int_a^b u'(x)v(x) \, \mathrm{d}x + \int_a^b u(x)v'(x) \, \mathrm{d}x$ d'où

$$\forall (u,v) \in \mathscr{C}^1(I,\mathbb{R}), \ \int_a^b u'(x)v(x)\mathrm{d}x = \left[u(x)v(x)\right]_a^b - \int_a^b u(x)v'(x)\mathrm{d}x$$

Remarque : cette méthode peut en particulier être appliquée au calcul de primitives :

$$\forall (u,v) \in \mathscr{C}^1(I,\mathbb{R}), \int u'(x)v(x)dx = u(x)v(x) - \int u(x)v'(x)dx \ (+cste)$$

QUESTIONS DE COURS N⁰5 ET 6 — **Exercices**. Primitives de ln, arcsin, arccos et arctan

▶ Application 1.
$$\int \ln(x) dx = \int 1 \times \ln(x) dx = x \ln(x) - \int x \times \frac{1}{x} dx = x \ln(x) - x$$

La fonction $x \in \mathbb{R}_+^* \longmapsto x \ln(x) - x$ est une primitive de la fonction ln sur \mathbb{R}_+^* .

 $\underline{\text{Remarque}}: \text{les fonctions } x \longmapsto x \text{ et } x \longmapsto \ln(x) \text{ sont de classe } \mathscr{C}^1 \text{ sur } \mathbb{R}_+^*, \text{ ce qui rend légitime cette IPP.}$

▶ Application 2.
$$\int \arctan(x) dx = \int 1 \times \arctan(x) dx = x\arctan(x) - \int \frac{x}{1+x^2} dx = x\arctan(x) - \ln\left(\sqrt{1+x^2}\right)$$

La fonction $x \in \mathbb{R} \longrightarrow x \arctan(x) - \ln(\sqrt{1+x^2})$ est une primitive de la fonction arctan sur \mathbb{R} .

➤ Application 3.

$$\int \arccos(x) dx = \int 1 \times \arccos(x) dx = x \arccos(x) + \int \frac{x}{\sqrt{1 - x^2}} dx = x \arccos(x) - \sqrt{1 - x^2}$$

La fonction $x \in]-1,1[\longrightarrow x\arccos(x)-\sqrt{1-x^2} \text{ est une primitive de la fonction } \arccos \text{ sur }]-1,1[.$

➤ Application 4.

$$\int \arcsin(x) \mathrm{d}x = \int 1 \times \arcsin(x) \mathrm{d}x = x \arcsin(x) - \int \frac{x}{\sqrt{1 - x^2}} \, \mathrm{d}x = x \arcsin(x) + \sqrt{1 - x^2}$$

La fonction $x \in]-1,1[\mapsto x \arcsin(x) + \sqrt{1-x^2}$ est une primitive de la fonction arcsin sur]-1,1[.

Question de cours N^07 — **Exercice**. $\ln(2) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k+1}$

Soit n un entier naturel, et x un réel différent de (-1). On a : $\frac{1}{1+x} = \left[\sum_{k=0}^{n} (-1)^k x^k\right] + (-1)^{n+1} \frac{x^{n+1}}{1+x}$

On en déduit que :

$$\frac{1}{1+x} = \left[\sum_{k=0}^{n} (-1)^k x^k \right] + (-1)^{n+1} \frac{x^{n+1}}{1+x}$$

En intégrant terme à terme cette relation sur l'intervalle [0; 1] on obtient :

$$\int_{0}^{1} \frac{1}{1+x} dx = \int_{0}^{1} \left(\left[\sum_{k=0}^{n} (-1)^{k} x^{k} \right] + (-1)^{n+1} \frac{x^{n+1}}{1+x} \right) dx$$

$$\iff [\ln(1+x)]_{0}^{1} = \int_{0}^{1} \left[\sum_{k=0}^{n} (-1)^{k} x^{k} \right] dx + \int_{0}^{1} (-1)^{n+1} \frac{x^{n+1}}{1+x} dx \qquad \text{(par linéarité de l'intégrale)}$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} (-1)^{k} \int_{0}^{1} x^{k} dx \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx \qquad \text{(par linéarité de l'intégrale, bis)}$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} (-1)^{k} \left[\frac{x^{k+1}}{k+1} \right]_{0}^{1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

$$\iff \ln 2 = \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1} \right] + (-1)^{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x} dx$$

Observons à présent que pour tout x dans [0;1], on a : $1+x\geqslant 1$. Il découle de cette remarquable observation que : $\forall x\in [0;1]$, $0\leqslant \frac{x^{n+1}}{1+x}\leqslant x^{n+1}$. En intégrant cet encadrement sur [0;1], on obtient alors :

$$0 \leqslant \int_0^1 \frac{x^{n+1}}{1+x} \, \mathrm{d}x \leqslant \int_0^1 x^{n+1} \, \mathrm{d}x \, \mathrm{d}$$
'où : $0 \leqslant a_n \leqslant \frac{1}{n+2}$

On déduit de cet encadrement et du théorème des gendarmes que : $\overline{\lim_{n \to +\infty} a_n = 0}$ (\$\infty\$)

Conclusion. D'après (
$$\spadesuit$$
) et (\clubsuit) : $\lim_{n \to +\infty} \left[\sum_{k=0}^{n} \frac{(-1)^k}{k+1} \right] = \ln 2$

Remarque. Plus tard dans l'année (sans doute au mois de juin), nous interprèterons cette conclusion en disant que la série de terme général $\frac{(-1)^k}{k+1}$ est convergente, et a pour somme $\ln 2$, et nous écrirons "simplement" : $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1} = \ln 2$