Corrigé du problème de la semaine 4

EXERCICE 1 — (APPLICATION). On considère l'application :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (3x - 5y, x - 2y)$

Etablir que f est bijective, et déterminer l'expression de sa bijection réciproque f^{-1} .

Soit (X,Y) un élément arbitraire de \mathbb{R}^2 . Résolvons l'équation f(x,y)=(X,Y).

On a:
$$f(x,y) = (X,Y) \iff \begin{cases} 3x - 5y = X & (L_1) \\ x - 2y = Y & (L_2) \end{cases}$$

Alors: $(L_1) - (3L_2) \iff y = X - 3Y$. Et: $2(L_1) - 5(L_2) \iff x = 2X - 5Y$.

En d'autres termes : $f(x,y) = (X,Y) \iff (x,y) = (2X - 5Y, X - 3Y)$.

On a ainsi établi que tout élément (X,Y) de \mathbb{R}^2 admet un unique antécédent par f dans \mathbb{R}^2 .

Conclusion. L'application f est bijective, et sa bijection réciproque est

$$f^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(X,Y) \longmapsto (2X - 5Y, X - 3Y)$$

EXERCICE 2 — (LIMITE).

Soit β un réel. On pose, pour tout entier naturel non nul $n: u_n = 1 - \sqrt{1 + \frac{1}{n}}$.

1/ Pour tout réel x>-1, on pose : $f(x)=\sqrt{1+x}$. Rappeler la formule donnant le développement limité à l'ordre 1 en 0 de f.

Pour tout réel x > -1, on pose : $\sqrt{1+x} = 1 + \frac{x}{2} + x\varepsilon(x)$ avec $\lim_{x\to 0} \varepsilon(x) = 0$

2/ Déterminer en fonction de β la limite : $\lim_{n\to+\infty} n^{\beta}u_n$.

Selon la question précédente, on a pour tout entier naturel non nul n:

$$\sqrt{1+\frac{1}{n}}=1+\frac{1}{2n}+\frac{1}{n}\varepsilon\left(\frac{1}{n}\right)\,\mathrm{avec}\,\lim_{n\to+\infty}\varepsilon\left(\frac{1}{n}\right)=0$$

Par suite:

$$u_n = \frac{1}{n} \left(-\frac{1}{2} + \varepsilon \left(\frac{1}{n} \right) \right) \text{ avec } \lim_{n \to +\infty} \varepsilon \left(\frac{1}{n} \right) = 0$$

D'où:

$$n^{\beta}u_n = n^{\beta-1}\left(-\frac{1}{2} + \varepsilon\left(\frac{1}{n}\right)\right) \text{ avec } \lim_{n \to +\infty} \varepsilon\left(\frac{1}{n}\right) = 0$$

Conclusion. On en déduit que : $\lim_{n\to +\infty} n^{\beta} u_n = \begin{cases} +\infty & \text{si } \beta > 1 \\ -\frac{1}{2} & \text{si } \beta = 1 \\ 0 & \text{si } \beta < 1 \end{cases}$

EXERCICE 3 — (APPLICATIONS - SIMILITUDES DIRECTES).

Pour tout couple $(a,b) \in \mathbb{C}^2$, avec $a \neq 0$, on définit une application $f_{a,b} \in \mathbb{C}^{\mathbb{C}}$ en posant :

$$f_{a,b}: \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto az + b$$

Une telle application $f_{a,b}$ est appelée une **similitude directe**, et on note $\operatorname{Sim}^+(\mathbb{C})$ l'ensemble des similitudes directes :

$$\operatorname{Sim}^+(\mathbb{C}) = \{ f_{a,b}, \ (a,b) \in \mathbb{C}^* \times \mathbb{C} \}$$

- 1/ Deux cas particuliers.
 - a/ Le cas a=1. Soit b un nombre complexe. Montrer que l'application $f_{1,b}$ est une bijection, et déterminer sa bijection réciproque.

Soient z et Z deux complexes. On a :

$$f_{1,b}(z) = Z \iff z + b = Z \iff z = Z - b$$

On en déduit que tout nombre complexe Z admet un unique antécédent par $f_{1,b}$, qui est Z-b. Conclusion. L'application $f_{1,b}$ est une bijection, et sa bijection réciproque est $f_{1,-b}$.

b/ L'application $f_{1+i,2}$. Dans cet exemple, on pose a=1+i et b=2, et on considère l'application $g=f_{1+i,2}$ qui est définie sur \mathbb{C} en posant :

$$\forall z \in \mathbb{C}, \qquad g(z) = (1+i)z + 2$$

Montrer que l'application g est une bijection, et déterminer sa bijection réciproque.

Soient z et Z deux complexes. On a :

$$g(z) = Z \iff (1+i)z + 2 = Z \iff (1+i)z = Z - 2 \iff z = \frac{1}{1+i}Z - \frac{2}{1+i}Z$$

On en déduit que tout nombre complexe Z admet un unique antécédent par g, qui est $\frac{1}{1+\mathrm{i}}Z - \frac{2}{1+\mathrm{i}}$. Conclusion. L'application g est une bijection, et sa bijection réciproque est $f_{\frac{1}{1+\mathrm{i}},-\frac{2}{1+\mathrm{i}}}$.

- 2/ Généralisation Le groupe des similitudes directes.
 - a/ Justifier brièvement que $id_{\mathbb{C}} \in Sim^{+}(\mathbb{C})$.

Très très brièvement : $\mathrm{id}_{\mathbb{C}} = f_{1,0}$. Ainsi : $\mathrm{id}_{\mathbb{C}} \in \mathrm{Sim}^+(\mathbb{C})$.

b/ Soient (a,b) et $(a',b') \in \mathbb{C}^* \times \mathbb{C}$. Pour tout complexe z, calculer $(f_{a',b'} \circ f_{a,b})(z)$. En déduire que l'application $f_{a',b'} \circ f_{a,b}$ est une similitude directe.

Soit z un complexe. On a:

$$(f_{a',b'} \circ f_{a,b})(z) = f_{a',b'}(f_{a,b}(z)) = f_{a',b'}(az+b) = a'az + a'b + b'$$

On en déduit que : $f_{a',b'} \circ f_{a,b} = f_{a'a,a'b+b'}$

Conclusion. L'application $f_{a',b'} \circ f_{a,b}$ est une similitude directe, explicitement : $f_{a'a,a'b+b'}$

c/ Soit $(a,b) \in \mathbb{C}^* \times \mathbb{C}$. A l'aide des deux questions précédentes, établir que $f_{a,b}$ est une bijection, et que sa bijection réciproque est une similitude directe.

Selon les deux questions précédentes, on a :

$$f_{\frac{1}{a}}, -\frac{b}{a} \circ f_{a,b} = f_{1,0} = \mathrm{id}_{\mathbb{C}} \text{ et } f_{a,b} \circ f_{\frac{1}{a}}, -\frac{b}{a} = f_{1,0} = \mathrm{id}_{\mathbb{C}}$$

Conclusion. $f_{a,b}$ est une bijection, et sa bijection réciproque est une similitude directe : $f_{\frac{1}{a}}, -\frac{b}{a}$

3/ Les similitudes directes à centre.

Dans toute cette question, on considère un couple $(a,b) \in \mathbb{C}^2$, avec $a \neq 0$ et $a \neq 1$.

Un nombre complexe z_0 est appelé **point fixe** de la similitude $f_{a,b}$ si : $f_{a,b}(z_0) = z_0$.

a/ Etablir que $f_{a,b}$ possède un unique point fixe z_0 , que l'on exprimera en fonction de a et b.

$$z_0$$
 est un point fixe de $f_{a,b}$ SSI $f_{a,b}(z_0)=z_0$ SSI $az_0+b=z_0$ SSI $z_0=-\frac{b}{a-1}$

Conclusion. $f_{a,b}$ possède un unique point fixe $z_0 = \frac{b}{1-a}$

b/ Avec les notations de la question précédente, établir que :

$$\forall z \in \mathbb{C}, \quad f_{a,b}(z) = a(z - z_0) + z_0$$

Soit z un complexe quelconque. On a :

$$a(z-z_0) + z_0 = a\left(z - \frac{b}{1-a}\right) + \frac{b}{1-a} = \frac{a(1-a)z - ab + b}{1-a} = \frac{a(1-a)z + (1-a)b}{1-a} = az + b$$

Conclusion. $\forall z \in \mathbb{C}, \quad f_{a,b}(z) = a(z - z_0) + z_0$

c/ Toujours avec les notations des questions précédentes, le complexe z_0 est appelé **centre** de la similitude directe $f_{a,b}$.

Montrer que deux similitudes directes ayant même centre commutent.

Soient f et g deux similitudes ayant même centre z_0 . Il résulte de la question précédente qu'il existe deux complexes a et a' tels que pour tout z complexe on ait :

$$f(z) = a(z - z_0) + z_0$$
 et $g(z) = a'(z - z_0) + z_0$

Il reste alors à vérifier que $g \circ f = f \circ g$ (ce qui signifient que f et g commutent). Pour ce faire, on établit sans peine que :

$$g(f(z)) = aa'(z - z_0) + z_0 = f(g(z))$$

Conclusion. Si f et g sont deux similitudes ayant même centre, alors : $f \circ g = g \circ f$ (f et g commutent).