Mathématiques — Cahier de Vacances de Noël 2022

Exercice 1 — Calculer les intégrales suivantes :

$$I_{1} = \int_{0}^{\pi/4} \cos(ax) \cos(bx) dx \qquad I_{2} = \int_{0}^{\pi} e^{1+x} \sin(2x) dx \qquad I_{3} = \int_{e}^{e^{2}} \frac{dx}{x (\ln x)^{4}}$$

$$(a \text{ et } b \text{ réels})$$

EXERCICE 2 — **Etude d'une suite.** Soient a un réel strictement positif, et f la fonction définie sur \mathbb{R} en posant :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{x^3 + 3ax}{3x^2 + a}$$

Soit (u_n) la suite définie par : $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- 1/ Etablir que l'équation f(x) = x admet exactement trois racines réelles, que l'on précisera.
- 2/ Pour tout réel x, on pose : g(x) = f(x) x. Etudier le signe de g sur \mathbb{R} .
- 3/ Etablir que :

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{3[h(x)]^2}{(3x^2 + a)^2}$$

où h est une fonction polynomiale que l'on explicitera.

- 4/ Déterminer le sens de variation de f. Que peut-on en déduire pour la suite (u_n) ?
- 5/ Dans cette question, on suppose que $u_0 > \sqrt{a}$.
 - \mathbf{a} / Etablir que : $\forall n \in \mathbb{N}, u_n > \sqrt{a}$.
 - $\mathbf{b}/$ Etablir que la suite (u_n) est convergente, et préciser sa limite.

EXERCICE 3 — Nombres réels. On note $\mathbb{Q} + i\mathbb{Q}$ l'ensemble des nombres complexes dont les parties réelles et imaginaires sont rationnelles, càd :

$$\mathbb{Q} + i\mathbb{Q} = \{ a + i b / (a, b) \in \mathbb{Q}^2 \}$$

Montrer que tout nombre complexe est limite d'une suite d'éléments de $\mathbb{Q}+\mathrm{i}\,\mathbb{Q}.$

EXERCICE 4 — Pour tout entier naturel n, on note:

$$u_n = \frac{1}{\sqrt{7}} \left[\left(2 + \sqrt{7} \right)^n - \left(2 - \sqrt{7} \right)^n \right]$$

Etablir que pour tout entier naturel n, le réel u_n est un entier naturel.

^{*.} Ce résultat signifie que $\mathbb{Q} + i\mathbb{Q}$ est dense dans \mathbb{C} .

EXERCICE 5 — Intégrales et suites. On désigne par f une fonction définie et continue sur [0;1] et on considère la suite $(I_n)_{n\in\mathbb{N}}$ définie par :

$$I_0 = \int_0^1 f(x) dx$$
, et pour tout n dans \mathbb{N}^* , $I_n = \int_0^1 x^n f(x) dx$

L'objet de cet exercice est d'étudier la suite $(I_n)_{n\in\mathbb{N}}$ pour deux fonctions f différentes. Les questions 1) et 2) sont donc indépendantes.

- 1/ Dans cette question, on suppose que f est définie par : $f(x) = \ln(1+x^2)$.
 - a/ Montrer, à l'aide d'une intégration par parties, que pour tout entier naturel n on a :

$$I_n = \frac{1}{n+1} \left(\ln 2 - 2 \int_0^1 \frac{x^{n+2}}{1+x^2} \, \mathrm{d}x \right)$$

- b/ Etablir, pour tout x de [0;1] l'encadrement : $0 \le \frac{x^{n+2}}{1+x^2} \le x^{n+2}$.
- c/ Montrer que $\lim_{n \to +\infty} \int_0^1 \frac{x^{n+2}}{1+x^2} dx = 0.$
- d/ Quelle est la limite de nI_n lorsque n tend vers $+\infty$?
- 2/ Dans cette question, on suppose que f est définie par : $f(x) = \frac{1}{1+x+x^2}$.
 - a/ Pour tout n de \mathbb{N} , calculer $I_n + I_{n+1} + I_{n+2}$ en fonction de n.
 - b/ Etudier la monotonie de la suite $(I_n)_{n\in\mathbb{N}}$.
 - c/ En déduire, pour tout n supérieur ou égal à 2, l'encadrement : $\frac{1}{3(n+1)} \leqslant I_n \leqslant \frac{1}{3(n-1)}$
 - d/ Quelle est la limite de nI_n lorsque n tend vers $+\infty$?

EXERCICE 6 — Système. Déterminer tous les couples de nombres complexes (a, b) tels que :

$$\begin{cases} ab = 2 \\ a^3 + b^3 = 9 \end{cases}$$

EXERCICE 7 — Equation différentielle Déterminer toutes les fonctions f de classe \mathscr{C}^1 sur [0,1] et à valeurs réelles telles que

$$\forall x \in \mathbb{R}, \quad f'(x) + f(x) + \int_0^1 f(t) dt = 0$$

EXERCICE 8 — Nombres réels. Etablir qu'entre deux nombres rationnels, il existe une infinité de nombres irrationnels (et réciproquement).

3

EXERCICE 9 — Bornes supérieures et inférieures (exercice technique). Soient C et D deux parties de \mathbb{R} , que l'on suppose majorées.

- 1/ Etablir que : $[C \subset D] \Longrightarrow [\sup C \leqslant \sup D]$.
- 2/ a/ Justifier l'existence de sup $(C \cup D)$.
 - b/ Déduire de la question précédente que max $(\sup C, \sup D) \leq \sup (C \cup D)$.
 - c/ Etablir que : $\sup (C \cup D) \leq \max (\sup C, \sup D)$. Conclure.
- 3/ On pose : $C + D = \{c + d / (c, d) \in C \times D\}.$
 - a/ Justifier l'existence de sup (C + D).
 - b/ Etablir que : $\sup (C + D) = \sup C + \sup D$.