Colle 14 – Questions de cours

QUESTION DE COURS 1 — **Propriété** : la matrice identité I_n est l'élément neutre pour le produit matriciel. On montrera ici que : $\forall A \in M_n(\mathbb{K}), A \times I_n = A$ et on pourra admettre $I_n \times A = A$.

Soient n un entier naturel non nul, et $A = (a_{ij})$ une matrice de $M_n(\mathbb{K})$.

Notons $P = (p_{ij})$ la matrice produit $A \times I_n$. On rappelle que $\forall (i,j) \in [1,n]^2$, $(I_n)_{ij} = \delta_{ij}$.

Soient i et j deux entiers de [1, n]. On a : $P_{ij} = \sum_{k=1}^{n} a_{ik} (I_n)_{kj}$.

Or $(I_n)_{kj} = 0$ pour $k \neq j$, et $(I_n)_{jj} = 1$. Il s'ensuit que : $P_{ij} = a_{ij}$.

En résumé : $\forall (i,j) \in [1,n]^2$, $P_{ij} = a_{ij}$. Donc P = A, et donc : $A \times I_n = A$

<u>Preuve de la partie admise</u>. Notons $Q = (q_{ij})$ la matrice produit $I_n \times A$.

Soient i et j deux entiers de [1, n]. On $a: Q_{ij} = \sum_{k=1}^{n} (I_n)_{ik} a_{kj}$.

Or $(I_n)_{ik} = 0$ pour $k \neq i$, et $(I_n)_{ii} = 1$. Il s'ensuit que : $Q_{ij} = a_{ij}$.

En résumé: $\forall (i,j) \in [1,n]^2$, $Q_{ij} = a_{ij}$. Donc Q = A, et donc: $I_n \times A = A$

QUESTION DE COURS 2 — Exercice : pour tout $N \in \mathbb{N}$, calculer A^N avec $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Observons que : $A = 2I_3 + B$ avec $B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

➤ On a :
$$B^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $B^3 = 0_{M_3(\mathbb{K})}$. Ainsi : $\forall k \in \mathbb{N}, \ (k \geqslant 3) \Longrightarrow \left(B^k = 0_{M_3(\mathbb{K})} \right)$ (♠). †

➤ On a : $(2I_3) \times B = B \times (2I_3)$ (♣). En effet, toute matrice de la forme $(\lambda I_3)^{\ddagger}$ commute avec toute matrice de $M_3(\mathbb{K})$.

➤ Soit N un entier naturel. On a : $A^N = (2I_3 + B)^N$. Grâce à (♣), on peut utiliser la formule du binôme de Newton pour écrire :

$$A^{N} = \sum_{k=0}^{N} \binom{N}{k} B^{k} (2I_{3})^{n-k} = \sum_{k=0}^{N} \binom{N}{k} 2^{N-k} B^{k}$$

D'après (\spadesuit), on a encore : $A^N = \sum_{k=0}^2 \binom{N}{k} 2^{N-k} B^k = 2^N \underbrace{\mathcal{B}^0}_{=\mathrm{I}_3} + N2^{N-1} B + \frac{N(N-1)}{2} 2^{N-2} B^2$

Explicitement:

$$A^{N} = \begin{pmatrix} 2^{N} & 0 & 0 \\ 0 & 2^{N} & 0 \\ 0 & 0 & 2^{N} \end{pmatrix} + \begin{pmatrix} 0 & N2^{N-1} & N2^{N-1} \\ 0 & 0 & N2^{N-1} \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & N(N-1)2^{N-3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

^{*.} Où δ_{ij} désigne le symbole de Kronecker, càd : $\delta_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon} \end{cases}$

 $[\]dagger.$ Ainsi la matrice B est nilpotente.

^{‡.} Une telle matrice est appelée matrice scalaire.

D'où finalement:

$$\forall N \in \mathbb{N}, \ A^{N} = \begin{pmatrix} 2^{N} & N2^{N-1} & N\left(N+3\right)2^{N-3} \\ 0 & 2^{N} & N2^{N-1} \\ 0 & 0 & 2^{N} \end{pmatrix}$$

QUESTION DE COURS 3 — Propriété : le produit de deux matrices diagonales est une matrice diagonale, et plus précisément :

$$\operatorname{diag}(\alpha_1,\ldots,\alpha_n)\times\operatorname{diag}(\mu_1,\ldots,\mu_n)=\operatorname{diag}(\lambda_1\mu_1,\ldots,\lambda_n\mu_n)$$

Soient 2n scalaires $\alpha_1, \ldots, \alpha_n, \mu_1, \ldots, \mu_n$. Posons $A = \operatorname{diag}(\alpha_1, \ldots, \alpha_n), B = \operatorname{diag}(\mu_1, \ldots, \mu_n)$ et P = AB.

 \blacktriangleright Commençons par montrer que P est diagonale : soient i et h deux entiers de $\llbracket 1, n \rrbracket$ tels que $i \neq j$.

Alors:
$$P_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{ii} b_{ij} = \lambda_i \times \underbrace{b_{ij}}_{=0 \text{ (B diag)}} = 0.$$

Ainsi : $\forall (i,j) \in [1,n]^2$, $[i \neq j] \Longrightarrow [P_{ij} = 0]$. D'où : P est diagonale.

 \blacktriangleright Déterminons à présent les coefficients diagonaux de P. Soit $i \in [1, n]$. On a :

$$P_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki} = a_{ii} b_{ii} = \lambda_i \mu_i$$

Ainsi : $\forall i \in [1, n], P_{ii} = \lambda_i \mu_i$.

Conclusion. P est diagonale et $\forall i \in [1, n], P_{ii} = \lambda_i \mu_i$. Ainsi :

$$\operatorname{diag}(\alpha_1,\ldots,\alpha_n)\times\operatorname{diag}(\mu_1,\ldots,\mu_n)=\operatorname{diag}(\lambda_1\mu_1,\ldots,\lambda_n\mu_n)$$

QUESTION DE COURS 4 — Théorème : toute matrice de $M_n(\mathbb{K})$ s'écrit de manière unique (à l'ordre près) comme somme d'une matrice symétrique et d'une matrice antisymétrique, soit

$$\forall M \in \mathcal{M}_n(\mathbb{K}), \exists! (S, A) \in S_n(\mathbb{K}) \times A_n(\mathbb{K}), M = S + A$$

On raisonne par analyse-synthèse. Soit $M \in \mathcal{M}_n(\mathbb{K})$.

ightharpoonup Analyse : supposons qu'il existe une matrice symétrique S et une matrice antisymétrique A telles que : M = S + A.

Alors : ${}^tM = {}^tS + {}^tA$. Or par hypothèse ${}^tS = S$ et ${}^tA = -A$. On a donc : ${}^tM = S - A$.

Il s'ensuit que S et A sont solutions du système : $\begin{cases} S+A &= M \\ S-A &= {}^tM \end{cases}$

La résolution aisée de celui-ci donne : $S = \frac{1}{2} (M + {}^t M)$ et $A = \frac{1}{2} (M - {}^t M)$.

ightharpoonup Synthèse: il ne reste plus qu'à vérifier que le couple (S,A) obtenu précédemment convient. Pour cela on commence par s'assurer que M=S+A (trivial). En outre :

ightharpoonup en posant $S = \frac{1}{2} \left(M + {}^t M \right)$, on a : ${}^t S = \frac{1}{2} \left({}^t M + {}^t ({}^t M) \right) = \frac{1}{2} \left({}^t M + M \right) = \frac{1}{2} \left(M + {}^t M \right) = S$; donc S est symétrique :

ightharpoonup et en posant $A=\frac{1}{2}\left(M-{}^tM\right)$, on a : ${}^tA=\frac{1}{2}\left({}^tM-M\right)=-\frac{1}{2}\left(M-{}^tM\right)=-A$; donc A est antisymétrique.

Conclusion (partielle): nous venons d'établir l'existence, pour toute matrice carrée M d'un couple (S, A) (avec S symétrique et A antisymétrique) tel que : M = S + A.

En outre, ce couple est explicitement donné par les formules : $S = \frac{1}{2} (M + {}^tM)$ et $A = \frac{1}{2} (M - {}^tM)$.

Pour achever la preuve du théorème, il reste à établir l'unicité du couple (S, A).

▶ Unicité : supposons qu'il existe deux couples (S, A) et (S', A') tels que S + A = M et S' + A' = M, avec S et S' symétriques, et A et A' antisymétriques. Dans ce cas : S + A = S' + A', d'où S - S' = A' - A.

Dans cette dernière égalité la matrice de gauche (S - S') est symétrique (puisque S et S' le sont); mais elle est aussi antisymétrique, car égale à A' - A (et A et A' sont antisymétriques).

Or la seule matrice symétrique et antisymétrique est la matrice nulle. On en déduit donc que $S-S'=0_{\mathrm{M}_n(\mathbb{K})}$ d'où S=S'; et $A'-A=0_{\mathrm{M}_n(\mathbb{K})}$ d'où A=A'. Par suite les couples (S,A) et (S',A') sont égaux, ce qui prouve l'unicité et complète la démonstration du théorème.

QUESTION DE COURS 5 — **Propriété** : le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure.

Soient $A = (a_{ij})$ et $B = (b_{ij})$ deux matrices triangulaires supérieures de $M_n(\mathbb{K})$. Par définition (de $T_n^+(\mathbb{K})$), on a :

$$\forall (i,j) \in [1,n]^2, (i>j) \Longrightarrow (a_{ij}=0 \land b_{ij}=0)$$

Notons $P = A \times B$. Soient i et j deux entiers de [1, n], avec i > j (4).

On a:
$$P_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{i-1} a_{ik} b_{kj} + \sum_{k=i}^{n} a_{ik} b_{kj}$$
.

Dans la somme : $\sum_{k=1}^{i-1} a_{ik} b_{kj}$ on a k < i, donc $a_{ik} = 0$ (d'après (\spadesuit)). Ainsi : $\sum_{k=1}^{i-1} a_{ik} b_{kj} = 0$.

Dans la somme : $\sum_{k=i}^{n} a_{ik} b_{kj}$ on a $k \geqslant i$ d'où k > j (d'après (\clubsuit)), donc $b_{kj} = 0$ (d'après (\spadesuit)). Ainsi :

$$\sum_{k=i}^{n} a_{ik} b_{kj} = 0.$$

Finalement $P_{ij} = 0$. En résumé, on a établi que : $\forall (i,j) \in [1,n]^2$, $(i > j) \Longrightarrow (P_{ij} = 0)$; ce qui signifie exactement que $P \in \mathcal{T}_n^+(\mathbb{K})$.

Conclusion: $\forall (A, B) \in T_n^+(\mathbb{K})^2$, $A \times B \in T_n^+(\mathbb{K})$ (la matrice produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure)

Remarques:

- 1) La propriété ci-dessus est l'ingrédient le moins trivial pour établir que $(T_n^+(\mathbb{K}), +, \times)$ est un anneau (un sous-anneau de $M_n(\mathbb{K})$). Dès que $n \ge 2^{\S}$, cet anneau est non commutatif et non intègre.
- 2) On démontre sur le même plan que ci-dessus que la matrice produit de deux matrices triangulaires inférieures est une matrice triangulaire inférieure. On peut encore établir que $(T_n^-(\mathbb{K}), +, \times)$ est un anneau (un sous-anneau de $M_n(\mathbb{K})$), toujours non commutatif et non intègre pour $n \ge 2$.

QUESTION DE COURS 6 — Théorème (Caractérisation de $GL_n(\mathbb{K})$). Soit $A \in M_n(\mathbb{K})$.

A est inversible si et seulement si pour tout $B \in \mathbb{K}^n$, le système AX = B admet une (unique) solution.

Lorsque tel est le cas, l'unique solution du système AX = B est $A^{-1}B$.

^{§.} Càd dès que l'on considère des "vraies" matrices.

PREUVE. On raisonne par double implication. Soit $A \in M_n(\mathbb{K})$.

ightharpoonup Supposons que A est inversible. Soit $B \in \mathbb{K}^n$ un vecteur quelconque.

Alors $A(A^{-1}B) = (AA^{-1})B = I_nB = B$. Donc le vecteur $X_0 = A^{-1}B$ est solution du système AX = B.

Etablissons son unicité : soit $X_1 \in \mathbb{K}^n$ un vecteur solution du système AX = B. Alors : $AX_0 = AX_1$. Puisque A est inversible, on en déduit que : $X_0 = X_1$ (il suffit de multiplier à gauche par A^{-1} les deux termes de l'égalité précédente).

En résumé : si A est inversible, alors pour tout $B \in \mathbb{K}^n$, le système AX = B admet une unique solution.

 \blacktriangleright Réciproquement, supposons que pour tout $B \in \mathbb{K}^n$, le système AX = B admet une unique solution.

Notons alors:
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, ..., $e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$.

Soit j un entier quelconque entre 1 et n. Par hypothèse, il existe un unique vecteur X_j tel que : $AX_j = e_j$.

En notant
$$X_j = \begin{pmatrix} x_{1j} \\ \vdots \\ x_{nj} \end{pmatrix}$$
, ceci signifie que : $A \begin{pmatrix} x_{1j} \\ \vdots \\ \vdots \\ x_{nj} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \longleftrightarrow j$ -ème place

Formons alors une matrice C en concaténant les colonnes X_1, \ldots, X_n (dans l'ordre):

$$C = \begin{pmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \ddots & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ \underbrace{x_{n1}}_{X_1} & \cdots & \underbrace{x_{nj}}_{X_j} & \cdots & \underbrace{x_{nn}}_{X_n} \end{pmatrix}$$

Alors, par construction des vecteurs X_i , on a :

$$AC = A \begin{pmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ \vdots & \ddots & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & & \ddots & \vdots \\ \vdots$$

Une nouvelle application de la propriété suivant laquelle $A \in M_n(\mathbb{K})$ est inversible SSI il existe $B \in M_n(\mathbb{K})$ telle que $AB = I_n \ \underline{ou} \ BA = I_n$ permet de conclure que A est inversible et que $A^{-1} = C$.

En résumé : si pour tout $B \in \mathbb{K}^n$, le système AX = B admet une (unique) solution, alors A est inversible.

Ce qui achève la preuve de la réciproque, et donc de l'équivalence du théorème.