Exercices 14 – Limites et Continuité

EXERCICE 1. — Déterminer si les limites des fonctions suivantes existent en a :

1)
$$x \mapsto x \ln x$$
 (en $a = 0$)

2)
$$x \longmapsto \frac{\ln(1+x)}{x}$$
 (en $a=0$)

3)
$$x \mapsto x^2 \sin(1/x^3)$$
 (en $a = 0$)

1)
$$x \mapsto x \ln x$$
 (en $a = 0$)
2) $x \mapsto \frac{\ln (1+x)}{x}$ (en $a = 0$)
3) $x \mapsto x^2 \sin (1/x^3)$ (en $a = 0$)
4) $x \mapsto \left(\frac{1}{x^2}\right) e^{-1/x}$ (en $a = 0$)

5)
$$x \longmapsto e^{-1/x}$$
 (en $a = 0$)

6)
$$x \mapsto \frac{t^3}{a^t - 1}$$
 en $(a = 0 \text{ et } a = +\infty)$

6)
$$x \longmapsto \frac{t^3}{e^t - 1}$$
 en $(a = 0 \text{ et } a = +\infty)$
7) $x \longmapsto \frac{t}{\sin(\alpha t)}$ (en $a = 0$, avec $\alpha \in \mathbb{R}^*$)
8) $x \longmapsto x \left\lfloor \frac{1}{x} \right\rfloor$ (en $a = 0 \text{ et } a = +\infty$)

8)
$$x \mapsto x \left| \frac{1}{x} \right|$$
 (en $a = 0$ et $a = +\infty$)

EXERCICE 2. Soit f définie sur \mathbb{R}^* par $f(t) = \frac{t^2}{e^t - 1}$. Comment choisir f(0) pour que f soit continue en 0?

Exercice 3. — Même question avec la fonction f définie sur \mathbb{R}^* par $f(t) = \frac{\arctan t}{t}$

EXERCICE 4. — Même question avec la fonction f définie sur $]-\pi/2;\pi/2[\setminus\{0\}]$ par $f(t)=\frac{\tan t}{\sqrt{|t|}}$.

EXERCICE 5. — Montrer que l'équation $x^3 + x^2 + x - 1 = 0$ admet une solution unique dans $[0; +\infty[$.

Exercice 6. — Montrer que l'équation (E) : $x - e^{-x} = 0$ admet une solution unique α dans \mathbb{R} . Démontrer que $\alpha \in [1/2; 1].$

EXERCICE 7. — Pour tout entier naturel non-nul n, on note (E_n) l'équation : $\tan x = nx$.

- 1) Montrer que l'équation (E_n) admet une unique solution x_n dans $]0; \pi/2[$.
- 2) Que peut-on dire de la suite (x_n) ?

EXERCICE 8. — Soit f une fonction continue sur \mathbb{R} telle que : $\forall (x,y) \in \mathbb{R}^2$, $f(x+y) = f(x) \times f(y)$.

- 1) Etablir que f(0) = 0 ou f(0) = 1. Puis établir que si f(0) = 0, alors f est identiquement nulle sur \mathbb{R} .
- 2) A partir de maintenant, on suppose f(0) = 1.
 - 1) Etablir que f est strictement positive sur \mathbb{R} .
 - 2) Etablir que pour tout entier naturel n non nul, on a : $f(n) = [f(1)]^n$, et $f(-n) = \frac{1}{f(n)}$.
 - 3) Etablir que pour tout réel x, $f(x) = e^{x \ln(f(1))}$.

EXERCICE 9. — Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction. On suppose que f admet une limite finie en 0, et que pour tout réel x on a : $f(x) = f\left(\frac{x}{2}\right)$. Prouver que f est constante.

EXERCICE 10. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que : $f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} - \mathbb{Q} \end{cases}$

La fonction f n'est autre que la fonction indicatrice des rationnels notée $\mathbb{1}_{\mathbb{O}}$

Montrer que f n'admet de limite en aucun réel.

EXERCICE 11. — Soit f une fonction continue sur \mathbb{R} . Si la fonction f vérifie :

$$\forall x \in \mathbb{R}, \ f^2(x) = f(x)$$

alors f est identiquement nulle ou bien f est constante égale à 1.

EXERCICE 12. Montrer que les seules fonctions continues de \mathbb{R} dans \mathbb{Z} sont les fonctions constantes.

EXERCICE 13. — Soit $f:[0;1] \longrightarrow [0;1]$ une fonction continue. On suppose que f est k-lipschitzienne* avec $k \in]0;1[$. Montrer que f admet un unique point fixe.

EXERCICE 14. — Soient p et q deux réels strictement positifs, et $f:[0;1] \longrightarrow \mathbb{R}$ une fonction continue. Montrer qu'il existe un réel $x_0 \in [0;1]$ tel que : $pf(0) + qf(1) = (p+q)f(x_0)$.

EXERCICE 15. — Soient f et g deux fonctions continues définies sur [a;b] (avec $a, b \in \mathbb{R}$). On suppose que : $\forall x \in [a;b], f(x) < g(x)$.

Montrer qu'il existe un réel c strictement positif tel que : $\forall x \in \mathbb{R}, f(x) + c < g(x)$.

EXERCICE 16. — Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y)$$

- 1) Calculer f(0).
- 2) Montrer que pour tout réel x on a : f(-x) = -f(x).
- 3) Justifier que pour tout $n \in \mathbb{Z}$ et pour tout $x \in \mathbb{R}$ on a : f(nx) = nf(x).
- 4) Montrer que pour tout $r \in \mathbb{Q}$ on a : f(r) = rf(1).
- 5) Conclure que pour tout réel x on a : f(x) = xf(1).

EXERCICE 17. Montrer que toute fonction continue et périodique sur \mathbb{R} est bornée sur \mathbb{R} .

EXERCICE 18. — Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} respectivement continue et bornée. Montrer que $g \circ f$ et $f \circ g$ sont bornées sur \mathbb{R} .

SUITES RÉCURRENTES (" $u_{n+1} = f(u_n)$ ")

Exercice 19. — Etudier la suite (en particulier, on déterminera l'éventuelle limite) u définie en posant :

$$u_0 \in \mathbb{R}_+$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2}{1 + u_n}$

EXERCICE 20. — Etudier la suite u définie en posant : $u_0 \ge -2$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 2}$.

EXERCICE 21. — Etudier la suite u définie en posant : $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2$.

EXERCICE 22. — Etudier la suite u définie en posant : $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 + 1$.

EXERCICE 23. Etudier la suite u définie en posant : $u_0 \ge 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 1 + \ln(u_n)$.