Devoir surveillé de Mathématiques n 07 — 28 janvier 2023

Durée : 3 heures — Calculatrices interdites

Tous les résultats doivent être encadrés ou soulignés

EXERCICE 1 — (SUITES IMBRIQUÉES ET MATRICES). Dans cet exercice, on cherche à déterminer les termes généraux des suites réelles (u_n) et (v_n) définies en posant :

$$u_0 = 1, \ v_0 = 2 \quad \text{et} \quad \forall n \in \mathbb{N}, \ \begin{cases} u_{n+1} = v_n - 2u_n \\ v_{n+1} = 5v_n - 12u_n \end{cases}$$

On pose pour tout entier naturel $n: X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

- 1/ Justifier brièvement qu'il existe une matrice $A \in M_2(\mathbb{R})$ telle que : $\forall n \in \mathbb{N}, X_{n+1} = AX_n$.
- **2**/ Etablir que : $\forall n \in \mathbb{N}, X_n = A^n X_0$.
- 3/ On pose $P = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$. Justifier que P est inversible et calculer P^{-1} .
- 4/ Calculer $D = P^{-1}AP$, et vérifier que D est une matrice diagonale.
- 5/ Etablir que : $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.
- $\mathbf{6}/$ Déduire des questions précédentes les expressions de u_n et v_n en fonction de n.

Problème 1 — (Calcul matriciel)

Tout au long de ce problème, on pose :

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \text{et} \quad A = \begin{pmatrix} 5 & -8 & -4 \\ 4 & -7 & -4 \\ -2 & 4 & 3 \end{pmatrix}$$

Partie n^01 — Diagonalisation de la matrice A

1/ On considère la matrice : $P = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{pmatrix}$.

Montrer que P est inversible et expliciter P^{-1} (indication : P^{-1} est à coefficients entiers).

2/ Vérifier que : $P^{-1} \times A \times P = L$.

DS de Maths 7

Partie n⁰2 — Commutant de la matrice A

L'objectif de cette question est de déterminer le commutant de la matrice A, c'est à dire l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que : $M \times A = A \times M$.

Pour toute matrice $M \in M_3(\mathbb{R})$, on pose : $N = P^{-1} \times M \times P$.

- $\mathbf{3}/ \text{ Montrer } [M \times A = A \times M] \Longleftrightarrow [N \times L = L \times N].$
- 4/ Déterminer par le calcul l'ensemble des matrices $N \in M_3(\mathbb{R})$ telles que $N \times L = L \times N$.
- 5/ Déduire de ce qui précède qu'il existe 5 matrices J_1, \ldots, J_5 (que l'on ne demande pas de calculer) telles que :

$$[M \times A = A \times M] \iff \left[\exists (\alpha_1, \dots, \alpha_5) \in \mathbb{R}^5, M = \sum_{k=1}^5 \alpha_k J_k \right]$$

Partie n⁰3 — Equations matricielles

Dans cette question, on pose:

$$B = \frac{1}{9} \begin{pmatrix} 7 & 4 & 4 \\ 4 & 1 & -8 \\ 4 & -8 & 1 \end{pmatrix} \quad \text{et} \quad Q = \frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{pmatrix}$$

On note par ailleurs les deux équations matricielles suivantes (d'inconnues $M \in M_3(\mathbb{R})$ et $N \in M_3(\mathbb{R})$ respectivement):

(E1):
$$M^T \times B \times M = B$$
 et (E2): $N^T \times L \times N = L$

6/ Calculer : $Q \times Q^T$. En déduire que Q est inversible, et expliciter Q^{-1} .

On admet dans la suite du problème que : $Q^{-1} \times B \times Q = L$.

7/ Soit $M \in M_3(\mathbb{R})$.

Etablir que M est solution de (E1) si et seulement si $Q^{-1} \times M \times Q$ est solution de (E2).

8/ La suite de ce problème est consacrée à l'étude de l'ensemble des solutions de l'équation (E2). On note G cet ensemble, c'est à dire :

$$G = \{ M \in \mathcal{M}_3(\mathbb{R}) , M^T \times L \times M = L \}$$

- **a**/ Montrer que : $\forall (M, N) \in G^2$, $M \times N \in G$.
- **b**/ Soit $M \in G$. En remarquant que $L^2 = I_3$, justifier que M est inversible, et exprimer son inverse en fonction de M et de L.
- **c**/ Déduire de la question précédente que : $[M \in G] \Longrightarrow [M^{-1} \in G]$.
- \mathbf{d} / Montrer que (G, \times) est un sous-groupe de $(\operatorname{GL}_3(\mathbb{R}), \times)$.

DS de Maths 7

Problème 2 — (Calcul de $\zeta(2)$).

Nous avons établi en début d'année (et au CB1) que lorsque l'on fait tendre n vers $+\infty$, la somme

$$S_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$

tend vers une limite finie. Cette limite finie est notée $\zeta(2)$, et l'objectif de ce problème est de déterminer sa valeur exacte.

Partie 1: étude d'une fonction

On considère la fonction h définie sur $[0, \pi]$ par : $\forall t \in [0, \pi]$, $h(t) = \frac{t^2}{2\pi} - t$.

Et on définit une seconde fonction φ sur $[0,\pi]$ en posant :

$$\forall t \in [0, \pi], \quad \varphi(t) = \begin{cases} \frac{h(t)}{2\sin(\frac{t}{2})} & \text{si } t \neq 0\\ -1 & \text{si } t = 0 \end{cases}$$

- 1/ Quelle est la limite de $\frac{\sin(t)}{t}$ lorsque t tend vers 0? La réponse devra être justifiée.
- 2/ Déduire de la question précédente les limites de $\frac{t}{2\sin\left(\frac{t}{2}\right)}$ puis de $\frac{h\left(t\right)}{2\sin\left(\frac{t}{2}\right)}$ lorsque t tend vers 0.

Partie 2 : sommes et intégrales

- 3/ Montrer que pour tout entier naturel k, on a : $\cos(k\pi) = (-1)^k$.
- 4/ A l'aide d'une intégration par parties, établir que :

$$\forall k \in \mathbb{N}^*, \ \int_0^{\pi} t \cos(kt) \ dt = \frac{(-1)^k - 1}{k^2}$$

5/ Etablir que:

$$\forall k \in \mathbb{N}^*, \int_0^{\pi} t^2 \cos(kt) dt = \frac{2\pi (-1)^k}{k^2}$$

6/ Pour tout entier naturel k non nul, on pose :

$$I_k = \int_0^{\pi} h(t) \cos(kt) \, \mathrm{d}t$$

Déduire de ce qui précède l'expression de I_k en fonction de k.

7/ Soit $n \in \mathbb{N}^*$. Montrer que :

$$\forall t \in]0,\pi], \quad \sum_{k=1}^{n} \cos(kt) = \cos\left(\left(\frac{n+1}{2}\right)t\right) \frac{\sin\left(\frac{nt}{2}\right)}{\sin\left(\frac{t}{2}\right)}$$

4 DS de Maths 7

8/ Déduire de la question précédente l'existence d'un réel λ tel que :

$$\forall t \in]0,\pi], \quad \sum_{k=1}^{n} \cos(kt) = \frac{\sin((n+\frac{1}{2})t)}{2\sin(\frac{t}{2})} - \lambda$$

Partie 3 : épilogue

On admet que:

$$\lim_{n \to +\infty} \left(\int_0^{\pi} \varphi(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt \right) = 0$$

9/ Etablir que :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n \frac{1}{k^2} = \int_0^\pi h(t) \left(\sum_{k=1}^n \cos(kt) \right) dt$$

10/ Déduire de ce qui précède la valeur exacte de :

$$\zeta(2) = \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k^2} \right)$$