Colle 19 - Programme et Questions de cours

100% Analyse

Les thèmes évalués dans cette colle recouvrent une majorité des notions d'Analyse étudiées depuis le début de l'année (à l'exception du calcul intégral, et des équations différentielles), explicitement :

- Fonctions usuelles : ensemble de déf, dérivabilité/dérivée, sens de variation, limites aux bornes des fonctions usuelles (y compris les "nouvelles" : ch, sh, arccos, arcsin, arctan, partie entière)
- Dérivation : définition du nombre dérivé, dérivée et opérations algébriques, dérivée d'une composée, théorèmes généraux sur la dérivabilité, dérivée d'une bijection réciproque
- **Développements limités à l'ordre 1** : équivalence entre la dérivabilité en *a* et l'existence d'un DL à l'ordre 1 en *a*, formulaire des DL1 usuels
- **Dérivées** *n*-èmes : linéarité de la "*n*-dérivation", dérivées *n*-èmes usuelles (exp,

- ch, sh, cos, sin, $\frac{1}{1 \pm x}$, x^N), dérivée *n*-ème d'un produit (formule de Leibniz)
- Suites réelles : propriétés générales ; théorèmes de comparaison, d'encadrement, de la limite monotone, des suites adjacentes, des suites extraites
- **Limites**: définition de limite en $a \in \mathbb{R}$, opérations algébriques sur les limites, comparaison, encadrement, croissances comparées
- Continuité : définition, théorèmes généraux sur la continuité, propriété de continuité séquentielle, théorème des valeurs intermédiaires, théorème de la bijection
- **Applications de la dérivation** : théorème de Rolle, théorème et inégalité des accroissements finis, fonctions lipschitziennes

EXCEPTIONNELLEMENT, cette colle débutera par une question de cours <u>PUIS</u> un exercice choisis dans les listes ci-dessous; la colle se poursuivra comme d'habitude, par un (des) exercice(s) proposé(s) par l'examinateur-trice.

QUESTIONS DE COURS

— QC 1:
$$\forall n \in \mathbb{N}, \sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$$

$$-\mathbf{QC} \ \mathbf{2} : \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = \mathbf{e}$$

$$- \mathbf{QC} \ \mathbf{3} : f(x) = \frac{1}{1-x}$$

$$\Longrightarrow \forall n \in \mathbb{N}, \ f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$$

— **QC** 4:
$$\forall x > 0$$
, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

— QC5 : Théorème des accroissements finis.

(MINI-)BANQUE D'EXERCICES

Les énoncés détaillés sont donnés page suivante.

- -- \mathbf{EC} $\mathbf{1}$: théorème du point fixe
- -- \mathbf{EC} 2 : calcul de 2 limites (extrait du DS4)
- **EC 3** : calcul d'une dérivée n-ème (extrait du DS4)
- **EC 4** : étude d'une bijection (extrait du DS5)
- **EC 5** : application d'un calcul de dérivée (extrait du DS5)
- **EC 6** : DL1 en 0 d'une fonction définie par une intégrale (extrait du DS6)
- **EC 7** : application du théorème de la bijection (extrait du DS8)

(MINI-)BANQUE D'EXERCICES — ENONCÉS

Exercice de cours 1. Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction.

On suppose que f est continue sur [a,b], et que : $f([a,b]) \subset [a,b]$.

Alors: $\exists c \in [a, b], f(c) = c.$

- ➤ Exercice de cours 2. Calculer les limites : $\ell_1 = \lim_{n \to +\infty} n^2 \tan\left(\frac{1}{n^2}\right)$ et $\ell_2 = \lim_{x \to +\infty} \frac{x^{2022}}{2022^x}$
- **Exercice de cours 3**. Pour tout réel x, on pose : $f(x) = (1 3x) e^{2x}$. Etablir que pour tout entier naturel n, on a :

$$\forall x \in \mathbb{R}, \qquad f^{(n)}(x) = P_n(x) e^{2x}$$

où P_n est un polynôme dont l'expression est à préciser.

Exercice de cours 4. On pose : $\forall x \in \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

Etablir que la fonction f réalise une bijection de $\mathbb R$ vers un intervalle J que l'on précisera.

- ➤ Exercice de cours 5. Etablir que : $\forall x \in \mathbb{R}$, $\arcsin\left(\frac{x}{\sqrt{x^2+1}}\right) = \arctan(x)$
- ➤ Exercice de cours 6. Pour tout réel x, on pose : $\varphi(x) = \int_0^x e^{\cos(t)} dt$.

Justifier brièvement que φ admet un DL_1 en 0, que l'on calculera.

 \triangleright Exercice de cours 7. Montrer que l'équation $\cos(x) = x$ possède une unique solution dans $[0, \pi/2]$.

Question de cours 1. —
$$\forall n \in \mathbb{N}, \ \sum_{k=1}^n k \binom{n}{k} = n2^{n-1}$$

PREUVE. Soit $n \in \mathbb{N}$. On définit sur \mathbb{R} une fonction f en posant : $\forall x \in \mathbb{R}, f(x) = (1+x)^n$ (\spadesuit).

D'après la formule du binôme de Newton, on a : $\forall x \in \mathbb{R}, f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k$ (\heartsuit).

La fonction f est dérivable sur \mathbb{R} , et on obtient deux expressions pour sa dérivée en utilisant les formules (\spadesuit) et (\heartsuit) .

D'une part : $\forall x \in \mathbb{R}, \ f'(x) = n(1+x)^{n-1} \ (\diamondsuit)$ Et d'autre part : $\forall x \in \mathbb{R}, \ f'(x) = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1} \ (\clubsuit)$

En calculant f'(1) à l'aide des formules (\diamondsuit) et (\clubsuit) , on obtient : $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1} = \sum_{k=0}^{n} k \binom{n}{k}$

QUESTION DE COURS 2. —
$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$$

PREUVE. Pour tout
$$n \in \mathbb{N}^*$$
 on a : $\left(1 + \frac{1}{n}\right)^n = e^{n \ln\left(1 + \frac{1}{n}\right)}$ (\spadesuit).

Au voisinage de 0, on a :
$$\ln(1+x) = x + o(x)$$
 (DL usuel). D'où : $\ln\left(1+\frac{1}{n}\right) = \frac{1}{n} + o_{+\infty}\left(\frac{1}{n}\right)$.

Par suite :
$$n \ln \left(1 + \frac{1}{n}\right) = 1 + o_{+\infty}(1)$$
. D'où : $\lim_{n \to +\infty} n \ln \left(1 + \frac{1}{n}\right) = 1$.

On en déduit, avec
$$(\spadesuit)$$
, que : $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$.

Question de cours 3. —
$$f(x) = \frac{1}{1-x} \Longrightarrow \forall n \in \mathbb{N}, \ f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$$

PREUVE. Pour tout
$$n \in \mathbb{N}$$
, notons $P(n)$: " $\forall x \in I =]1, +\infty[, f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$ ".

L'initialisation (vérification de P(0)) consiste à observer que f est continue (de classe \mathscr{C}^0) sur I, et à effectuer une vérification immédiate; passons à l'hérédité.

Supposons que P(n) soit vraie pour un certain entier naturel n. Alors : $\forall x \in I$, $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$.

En particulier $f^{(n)}$ est dérivable sur I et on a :

$$\forall x \in I, \quad f^{(n+1)}(x) = (f^{(n)})'(x) = -\frac{-n!(n+1)(1-x)^n}{(1-x)^{2n+2}} = \frac{(n+1)!}{(1-x)^{n+2}}$$

Ce qui assure que P(n+1) est vraie, établit l'hérédité, et achève cette récurrence.

Question de cours 4. —
$$\forall x > 0$$
, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

PREUVE. On pose: $\forall x \in \mathbb{R}_+^*$, $f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$.

La fonction f est dérivable sur \mathbb{R}_+^* (théorèmes généraux), et on a :

$$\forall x \in \mathbb{R}_+^*, \ f'(x) = \frac{1}{1+x^2} + \frac{-1/x^2}{1+(1/x^2)} = \frac{1}{1+x^2} + \frac{-1}{x^2+1} = 0.$$

Il s'ensuit que f est constante sur \mathbb{R}_+^* . Comme de plus : $f(1) = 2\arctan(1) = \frac{\pi}{2}$, on peut conclure :

$$\forall x \in \mathbb{R}_+^*, \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

Remarque. Par un raisonnement analogue (ou par un argument de parité) :

$$\forall x \in \mathbb{R}_{-}^{*}, \ \arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}$$

QUESTION DE COURS 5. — Théorème des accroissements finis. Si $f:[a,b] \longrightarrow \mathbb{R}$ est dérivable sur [a,b], continue sur [a,b], alors $: \exists c \in]a,b[$, $f'(c) = \frac{f(b) - f(a)}{b-a}$.

PREUVE. On définit une fonction g sur [a,b] en posant : $g(x) = f(x) - \frac{f(b) - f(a)}{b-a}(x-a)$

D'après les théorèmes généraux sur la continuité et la dérivabilité, la fonction g est continue sur [a,b] et dérivable sur [a,b].

En outre
$$g(a) = f(a) - \frac{f(b) - f(a)}{b - a}(a - a)$$
 d'où $g(a) = f(a)$; et $g(b) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a)$ d'où : $g(b) = f(a)$.

La fonction g vérifie les hypothèses du théorème de Rolle, dont l'application donne : $\exists c \in]a, b[, g'(c) = 0.$

Or:
$$\forall x \in]a, b[, g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

On en déduit :
$$\exists c \in]a, b[, f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$
. D'où finalement : $\exists c \in]a, b[, f'(c) = \frac{f(b) - f(a)}{b - a}$

EXERCICE DE COURS 1. — Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction.

On suppose que f est continue sur [a,b], et que : $f([a,b]) \subset [a,b]$.

Alors:
$$\exists c \in [a, b], f(c) = c$$

Corrigé. Posons : $\forall x \in [a, b], \ g(x) = f(x) - x.$

- ▶ Par hypothèse et selon les TG : $g \in \mathscr{C}^0([a,b],\mathbb{R})$.
- ▶ Puisque par hypothèse $f([a,b]) \subset [a,b]$, on a en particulier : $f(a) \ge a$ et $f(b) \le b$.

Il s'ensuit que $g(a) \ge 0$ et $g(b) \le 0$.

D'après le théorème des valeurs intermédiaires : $\exists c \in [a, b], g(c) = 0$.

Conclusion. $\exists c \in [a, b], f(c) = c$

EXERCICE DE COURS 2. — Calculer les limites : $\ell_1 = \lim_{n \to +\infty} n^2 \tan\left(\frac{1}{n^2}\right)$ et $\ell_2 = \lim_{x \to +\infty} \frac{x^{2022}}{2022^x}$

CORRIGÉ. > Soit
$$n \in \mathbb{N}^*$$
. On a : $\tan\left(\frac{1}{n^2}\right) = \frac{1}{n^2} + o_{+\infty}\left(\frac{1}{n^2}\right)$.

D'où :
$$n^2 \tan\left(\frac{1}{n^2}\right) = 1 + o_{+\infty}(1)$$
. Conclusion. $\lim_{n \to +\infty} n^2 \tan\left(\frac{1}{n^2}\right) = 1$.

 \blacktriangleright Pour tout réel x > 0, on a :

$$\frac{x^{2022}}{2022^x} = \frac{e^{2022\ln(x)}}{e^{x\ln(2022)}} = e^{2022\ln(x) - x\ln(2022)} = e^{x\left(2022\frac{\ln(x)}{x} - \ln(2022)\right)}$$

Puisque $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$ (croissances comparées), on a : $\lim_{x\to +\infty} 2022 \frac{\ln(x)}{x} - \ln(2022) = -\ln(2022)$.

On en déduit que : $\lim_{x \to +\infty} x \left(2022 \frac{\ln(x)}{x} - \ln(2022) \right) = -\infty.$

Conclusion. $\lim_{x \to +\infty} \frac{x^{2022}}{2022^x} = 0$

EXERCICE DE COURS 3. — Pour tout réel x, on pose : $f(x) = (1-3x)e^{2x}$. Etablir que pour tout entier naturel n, on a :

$$\forall x \in \mathbb{R}, \qquad f^{(n)}(x) = P_n(x) e^{2x}$$

CORRIGÉ. Posons pour tout réel x : g(x) = (1 - 3x) et $h(x) = e^{2x}$. Les fonctions g et h sont de classe \mathscr{C}^{∞} sur \mathbb{R} (théorèmes généraux).

On peut donc appliquer la formule de Leibnitz pour obtenir :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} g^{(k)}(x) h^{(n-k)}(x)$$

Observons à présent que pour tout réel x on a :

- ► $g^{(0)}(x) = 1 3x$; $g^{(1)}(x) = -3$; et pour tout entier $k \ge 2$: $g^{(k)}(x) = 0$;
- ➤ pour tout entier naturel $N: h^{(N)}(x) = 2^N e^{2x}$.

On en déduit que pour tout $(n, x) \in \mathbb{N} \times \mathbb{R}$ on a :

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} g^{(k)}(x) h^{(n-k)}(x) = (1-3x)2^n e^{2x} + n(-3)2^{n-1} e^{2x} = (-3 \times 2^n x + 2^n - 3 \times 2^{n-1} n) e^{2x}$$

Conclusion. En résumé, pour tout $(n, x) \in \mathbb{N} \times \mathbb{R}$ on a :

$$f^{(n)}(x) = P_n(x) e^{2x}$$
 avec : $P_n(x) = -3 \times 2^n x + 2^n - 3 \times 2^{n-1} n$

EXERCICE DE COURS 4. — On pose : $\forall x \in \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

Etablir que la fonction f réalise une bijection de $\mathbb R$ vers un intervalle J que l'on précisera.

Corrigé. Selon les théorèmes généraux, la fonction f est dérivable sur \mathbb{R} , et pour tout réel x on a :

$$f'(x) = \frac{\sqrt{x^2 + 1} - \frac{x^2}{\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{1}{(x^2 + 1)^{3/2}}$$

En particulier, f' est strictement positive sur \mathbb{R} . Donc f est strictement croissante sur \mathbb{R} .

Puisque la fonction f est continue et strictement croissante sur \mathbb{R} , elle réalise une bijection de \mathbb{R} vers $J=\lim_{x\to -\infty}f(x),\lim_{x\to +\infty}f(x)$ [.

En outre, on a pour tout réel x strictement positif :

$$f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{x}{x\sqrt{1 + \frac{1}{x^2}}} = \frac{1}{1\sqrt{1 + \frac{1}{x^2}}}$$
 D'où: $\lim_{x \to +\infty} f(x) = 1$

La fonction f étant impaire, on en déduit que : $\lim_{x \to -\infty} f(x) = -1$.

Conclusion. La fonction f réalise une bijection de \mathbb{R} vers]-1,1[.

EXERCICE DE COURS 5. — Etablir que : $\forall x \in \mathbb{R}$, $\arcsin\left(\frac{x}{\sqrt{x^2+1}}\right) = \arctan(x)$

Corrigé. D'après l'énoncé, on a : $g = \arcsin \circ f$, où f désigne la fonction de l'exercice précédent. Puisque f est à valeurs dans]-1,1[,* cette composée est dérivable sur $\mathbb R$ selon les théorèmes généraux.

Pour tout réel x on a :

$$g'(x) = \frac{f'(x)}{\sqrt{1 - f^2(x)}} = \frac{(x^2 + 1)^{-3/2}}{\sqrt{1 - \frac{x^2}{x^2 + 1}}} = \frac{(x^2 + 1)^{-3/2}}{\sqrt{\frac{1}{x^2 + 1}}} = \frac{(x^2 + 1)^{-3/2}}{(x^2 + 1)^{-1/2}} = (x^2 + 1)^{-1} = \frac{1}{x^2 + 1}$$

Par suite : $\exists k \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ g(x) = \arctan(x) + k$. Puisque $g(0) = 0 = \arctan(0)$, on peut conclure :

$$\forall x \in \mathbb{R}, \quad g(x) = \arctan(x)$$

EXERCICE DE COURS 6. — Pour tout réel x, on pose : $\varphi(x) = \int_0^x e^{\cos(t)} dt$.

Justifier brièvement que φ admet un DL_1 en 0, que l'on calculera.

CORRIGÉ. Par construction, la fonction φ est dérivable sur \mathbb{R} , et pour tout réel x on a : $\varphi'(x) = e^{\cos(x)}$. La fonction φ admet donc un DL à l'ordre 1 en 0, donné par la formule bien connue :

$$\varphi(x) = \underbrace{\varphi(0)}_{=0} + x \underbrace{\varphi'(0)}_{=1} + o(x)$$
 soit: $\varphi(x) = x + o(x)$

EXERCICE DE COURS 7. — Montrer que l'équation $\cos(x) = x$ possède une unique solution dans $[0, \pi/2]$.

CORRIGÉ. On pose $I = \left[0, \frac{\pi}{2}\right]$, et on définit une fonction f sur I en posant :

$$\forall x \in I, \quad f(x) = \cos(x) - x$$

La fonction f est continue et strictement décroissante sur I. † Elle réalise donc une bijection de I vers $f(I) = \left[-\frac{\pi}{2}, 1\right]$.

Puisque $0 \in f(I)$, il admet un unique antécédent par f dans I.

Conclusion. Il existe un unique réel $\alpha \in I$ tel que $f(\alpha) = 0$. Par suite, l'équation $\cos(x) = x$ possède une unique solution α dans $[0, \pi/2]$.

^{*.} Et que arcsin est dérivable sur [-1, 1].

 $[\]dagger$. La stricte décroissance de f sur I est aisée à justifier.