Exercices 19 — Polynômes

Partie 1 - Degré, coefficient dominant, division euclidienne.

Exercice 1. — (Degré et coefficient dominant)

- 1/ Calculer le degré et le coefficient dominant de $P = (1+X)^2 + (1-X)^2$
- 2/ Calculer le degré et le coefficient dominant de $P = (1+X)^3 + (1-X)^3$
- 3/ Soit n un entier naturel non nul. Calculer le degré et le coefficient dominant de $P=(1+X)^n+(1-X)^n$

EXERCICE 2. — (Utilisation du degré) Soit n un entier naturel.

Prouver qu'il n'existe aucun polynôme P tel que : $P^2 = X(X^{2n} + 1)$

EXERCICE 3. — Déterminer tous les polynômes $P \in \mathbb{R}[X]$ solutions de l'équation :

(E)
$$P(X^2) = (X^2 + 1) P(X)$$

EXERCICE 4. — (Utilisation du degré et du coefficient dominant) Déterminer tous les polynômes P tels que : $P^2 = 4P$

EXERCICE 5. — (Utilisation du degré et du coefficient dominant) Déterminer tous les polynômes P tels que

$$P^3 = X^2 P$$

EXERCICE 6. — (Division euclidienne). Effectuer la division euclidienne de A = 5X + 7 par $B = X^3 + 2$, puis celle de B par A.

EXERCICE 7. — (Division euclidienne). Effectuer la division euclidienne de $A = 2X^4 - 3X^3 + 4X^2 - 5X + 6$ par $B = X^2 - 3X + 1$.

EXERCICE 8. — (Division euclidienne). A quelle condition le polynôme $X^4 + aX^2 + bX + c$ est-il divisible par $X^2 + X + 1$?

EXERCICE 9. — (Inversibles de $\mathbb{K}[X]$) Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Déterminer $\mathbb{K}[X]^*$.

Seconde formulation. Quels sont les polynômes de l'anneau $\mathbb{K}[X]$ inversibles pour la multiplication?

Troisième formulation. Déterminer tous les polynômes $P \in \mathbb{K}[X]$ pour lesquels il existe un polynôme $Q \in \mathbb{K}[X]$ tels que PQ = 1.

EXERCICE 10. — (Utilisation du coefficient dominant) Déterminer tous les polynômes P tels que P = XP'

où P' désigne le polynôme dérivé de P.

PARTIE 2 - DIVISION EUCLIDIENNE, UTILISATION DES RACINES.

EXERCICE 11. — (Division euclidienne) Le reste de la division euclidienne d'un polynôme P par (X-2) est 3 et par (X+2) est 2. Quel est le reste de la division euclidienne de P par (X^2-4) ?

EXERCICE 12. — (Division euclidienne). Soient α et β deux éléments distincts de \mathbb{K} (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}), et soit P un polynôme de $\mathbb{K}[X]$.

Déterminer le reste dans la division euclidienne de P par $Q = (X - \alpha)(X - \beta)$.

EXERCICE 13. — (Division euclidienne, bis). Soit α un élément de \mathbb{K} (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}), et soit P un polynôme de $\mathbb{K}[X]$.

Déterminer le reste dans la division euclidienne de P par $Q = (X - \alpha)^2$.

EXERCICE 14. — Soit $n \in \mathbb{N}$. Déterminer le reste dans la division euclidienne de X^n par $B = X^2 - 3X + 2$.

EXERCICE 15. — Soit $A \in M_n(\mathbb{K})$ telle que : $A^2 - 3A + 2I_n = 0_{M_n(\mathbb{K})}$.

Etablir que pour tout entier naturel N, la matrice A^N est combinaison linéaire de A et de I_n (c'est à dire qu'il existe deux scalaires a_N et b_N tels que : $A^N = a_N A + b_N I_n$).

EXERCICE 16. — Soit n un entier naturel. Déterminer le reste dans la division euclidienne de X^n par $X^3 - 10X^2 + 16X$.

EXERCICE 17. — Soient m, n et p trois entiers naturels, et θ un nombre réel. Vérifier dans chacun des cas suivants que le polynôme A divise le polynôme B:

$$1/A = 2X^3 - 3X^2 + X$$
 et $B = (X - 1)^{2n} - X^{2n} + 2X - 1$.

$$2/A = X^2 + X + 1$$
 et $B = X^{3n+2} + X^{3m+1} + X^{3p}$.

$$3/A = X^2 - 2X\cos\theta + 1$$
 et $B = X^{2n} - 2X^n\cos(n\theta) + 1$ avec $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$.

EXERCICE 18. — Soit $P \in \mathbb{R}[X]$. Etablir que si $\alpha \in \mathbb{C}$ est racine de P, alors $\bar{\alpha}$ est racine de P.

EXERCICE 19. — Factoriser dans $\mathbb{R}[X]$ le polynôme : $P = X^4 - X^3 + 2X^2 - 2X + 4$ après avoir calculé P(1+i).

EXERCICE 20. — Factoriser le polynôme $P = X^4 + 2X^3 - 2X^2 + 2X - 3$, dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Indication : on pourra calculer P(i).

EXERCICE 21. — Etablir qu'il existe un unique polynôme $P \in \mathbb{R}_2[X]$, que l'on déterminera, tel que :

$$P(-1) = 1;$$
 $P(0) = -2$ et $P(2) = 1$

EXERCICE 22. — Soient α_1 , α_2 , α_3 et α_4 quatre réels, deux à deux distincts.

Etablir que l'application:

$$F: \mathbb{R}_3[X] \longrightarrow \mathbb{R}^4$$

$$P \longmapsto (P(\alpha_1), P(\alpha_2), P(\alpha_3), P(\alpha_4))$$

est bijective.

EXERCICE 23. — Soit $A \in M_n(\mathbb{K})$ telle que : $A^2 - 5A + 6I_n = 0_{M_n(\mathbb{K})}$.

Etablir que pour tout entier naturel N, il existe deux scalaires a_N et b_N tels que : $A^N = a_N A + b_N I_n$.

EXERCICE 24. — Soit z un nombre complexe.

Etablir que le polynôme $P = (X - z)(X - \overline{z})$ est à coefficients réels.

EXERCICE 25. — Factoriser le polynôme $P = X^3 - 1$, dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

^{1.} Càd que θ est un réel non multiple de π .

EXERCICE 26. — Factoriser le polynôme $P = X^6 - 1$, dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

EXERCICE 27. — Soient n un entier naturel ≥ 2 et $\alpha_0, \alpha_1, \ldots \alpha_n$ (n+1) réels, deux à deux distincts. Etablir que l'application :

$$F: \mathbb{R}_n[X] \longrightarrow \mathbb{R}^{n+1}$$

$$P \longmapsto (P(\alpha_0), P(\alpha_1), \dots, P(\alpha_n))$$

est bijective.

EXERCICE 28. — Factoriser le polynôme $P = X^4 + 1$, dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

EXERCICE 29. — Factoriser le polynôme $P = X^4 - X^2 + 2X - 1$ dans $\mathbb{R}[X]$.

Partie 3 - Multiplicité d'une racine, polynômes interpolateurs.

EXERCICE 30. — Démontrer la formule de Taylor pour les polynômes : pour tout polynôme $P \in \mathbb{K}[X]$ de degré n, on a

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(0)}{k!} X^{k}$$

Exercice 31. — Le but de cet exercice est de mettre en exergue une propriété des polynômes de Lagrange.

On considère les 3 réels : $\alpha_0 = -1$, $\alpha_1 = 1$ et $\alpha_2 = 2$.

On définit L_0 , L_1 et L_2 comme les 3 polynômes de Lagrange associés aux réels -1, 1 et 2.

- 1/ Par définition, $L_0,\,L_1$ et L_2 appartiennent à $\mathbb{R}_n[X]\,;$ pour quelle valeur de $n\,?^{\,2}$
- 2/ Déterminer les expressions des polynômes de Lagrange L_0 , L_1 et L_2 associés aux trois réels -1, 1 et 2.
- 3/ Trois exemples pour commencer à comprendre.
 - a/ On pose $Q = L_0 + L_1 + L_2$. Calculer explicitement le polynôme Q (c'est-à-dire déterminer explicitement ses coefficients).
 - b/ On pose $R = -L_0 + L_1 + 2L_2$. Calculer explicitement le polynôme R.
 - c/ On pose $S = L_0 + L_1 + 4L_2$. Calculer explicitement le polynôme S.
- 4/ Généralisation.
 - a/ Soit $P \in \mathbb{R}_2[X]$. On pose $P_1 = P(-1)L_0 + P(1)L_1 + P(2)L_2$. A la lumière des exemples ci-dessus, que peut-on dire des polynômes P et P_1 ?
 - b/ Justifier la réponse à la question précédente.

^{2.} Sous-entendu : quelle est la **plus petite valeur** de *n* qui convient.

EXERCICE 32. — On pose $P = X^4 - 2X^2 + 3X + 5 \in \mathbb{R}_4[X]$.

On considère par ailleurs les 5 polynômes de Lagrange L_0 , L_1 , L_2 , L_3 et L_4 associés aux réels 0, 1, 2, 3 et 4.

Les deux questions sont indépendantes.

- 1/ Exprimer P en fonction de L_0, L_1, L_2, L_3 et L_4 .
- 2/ Exprimer P en fonction de 1, (X+1), $(X+1)^2$, $(X+1)^3$ et $(X+1)^4$.

EXERCICE 33. — Soit $n \in N^*$. On considère (n+1) scalaires $\alpha_0, \ldots, \alpha_n$ deux à deux distincts, et L_0, \ldots, L_n les (n+1) polynômes de Lagrange (de $\mathbb{K}_n[X]$) associés à $\alpha_0, \ldots, \alpha_n$. Soit $P \in \mathbb{K}_n[X]$.

Les deux questions sont indépendantes.

1/ On pose : $Q = \sum_{k=0}^{n} P(\alpha_k) L_k$. Montrer que P = Q.

2/ Exprimer P en fonction de $1, (X+1), \ldots, (X+1)^n$.

EXERCICE 34. — Etablir que 1 est racine de multiplicité 4 de $P = X^5 - X^4 - 6X^3 + 14X^2 - 11X + 3$.

EXERCICE 35. — Soit $n \in \mathbb{N}^*$. Déterminer a et b pour que $P = aX^{n+1} + bX^n + 1$ soit divisible par $(X-1)^2$.

EXERCICE 36. — Soit $n \in N$, $n \ge 3$. Montrer que le polynôme $P = X^{2n} - nX^{n+1} + nX^{n-1} - 1$ est divisible par $(X - 1)^3$, mais n'est pas divisible par $(X - 1)^4$.

EXERCICE 37. — Déterminer la valeur de m pour que 1 soit racine double 3 du polynôme $P_m = X^3 - 3X + m$.

EXERCICE 38. — Déterminer les racines (dans \mathbb{C}) du polynôme $P = \sum_{k=0}^{n} \left[\binom{n}{k} 3^k (1-X)^{3n-2k} X^k \right]$ ainsi que leurs multiplicités.

Partie 4 - Multiplicité d'une racine (bis), polynômes irréductibles.

EXERCICE 39. — Etablir que le polynôme $X^2 - 4X + 3$ n'est pas irréductible dans $\mathbb{R}[X]$.

EXERCICE 40. — Etablir que le polynôme $X^2 - 3X + 4$ est irréductible dans $\mathbb{R}[X]$.

EXERCICE 41. — Décomposer en irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ les polynômes suivants 4 :

$$P_1(X) = X^4 - 16$$
 $P_2(X) = X^3 - 8$ $P_3(X) = X^3 + X^2 + X + 1$

^{3.} Càd de multiplicité exactement 2.

^{4.} Dans $\mathbb{C}[X]$, les polynômes irréductibles sont exactement ceux de degré 1. Dans $\mathbb{R}[X]$, les polynômes irréductibles sont exactement ceux de degré 1, et ceux de degré 2 sans racine réelle ("avec un $\Delta < 0$ ").

EXERCICE 42. — Dans $\mathbb{R}_6[X]$, on considère l'ensemble E des polynômes P admettant 1 comme racine de multiplicité au moins 3.

- 1/ Par définition, que signifie l'assertion "P admet 1 comme racine de multiplicité au moins 3"?
- 2/ Montrer qu'il existe quatre polynômes P_1 , P_2 , P_3 et P_4 à coefficients réels tel que :

$$\forall P \in E, \exists (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \mathbb{R}^4, P = \alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 + \alpha_4 P_4.$$

EXERCICE 43. — Soit $P \in \mathbb{R}[X]$, et soit $a \in \mathbb{R}$. On suppose que P(a) > 0 et : $\forall k \in \mathbb{N}^*$, $P(k)(a) \ge 0$. Etablir que : $\forall x \ge a$, P(x) > 0.

EXERCICE 44. On considère l'application f définie sur \mathbb{R} par $f(x) = e^{-x^2}$.

- 1) Montrer que pour tout $n \in \mathbb{N}$, la dérivée n-ième de f est $f^{(n)}: x \in \mathbb{R} \longmapsto P_n(x) e^{-x^2}$, avec P_n polynôme à coefficients réels. Calculer P_0 , P_1 et P_2 .
- 2) Préciser le degré et le coefficient dominant de P_n .
- 3) Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$ on a : $P_{n+1}(x) = 2xP_n(x) + 2nP_{n-1}(x) = 0$. On pourra utiliser le fait que : $\forall x \in \mathbb{R}, f'(x) = -2xf(x)$.

EXERCICE 45. — (Décomposition en irréductibles).

Décomposer en polynômes irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ les polynômes :

$$1/P = X^4 - X$$
 $2/Q = X^6 + X^4 + X^2 + 1$

EXERCICE 46. — (Multiplicité, décomposition en irréductibles, \mathbb{U}_3). On pose :

$$P = (X^4 - X)(X^2 + X + 1)$$

- 1/ Déterminer les racines dans \mathbb{C} , ainsi que les multiplicités, du polynôme P.
- 2/ Déterminer la décomposition en irréductibles du polynôme P dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.

Exercice 47. — (Multiplicité, \mathbb{U}_3). On pose :

$$P_1 = (X^2 + X + 1)^3 (X - 2) (X^2 + 1) (X^3 - 1);$$
 $P_2 = (X^2 + X + 1)^2 (X^3 - 1)^2 (X^2 + 1)$

Déterminer les racines dans \mathbb{C} , ainsi que les multiplicités, des polynômes P_1 et P_2 .

EXERCICE 48. — (Un exo pas trop complexe). Soit P un polynôme non nul de $\mathbb{R}[X]$.

On suppose que i et j sont racines de P.

Etablir que P n'est pas irréductible dans $\mathbb{R}[X]$.

EXERCICE 49. — (Utilisation des racines 5-èmes de l'unité). On pose :

$$P = \sum_{k=0}^{4} X^k$$
 càd $P = X^4 + X^3 + X^2 + X + 1$

Déterminer la décomposition en irréductibles du polynôme P dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.

Partie 5 - Deux exos classiques.

EXERCICE 50. — (A propos des polynômes de Tchebychev).

On définit une suite de polynômes $(T_n)_{n\in\mathbb{N}}$ en posant

$$T_0 = 1,$$
 $T_1 = X,$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$

Ces polynômes sont appelés polynômes de Tchebychev de première espèce.

- 1/ Expliciter T_2 et T_3 .
- 2/ Pour tout entier naturel n, déterminer le degré de P et son coefficient dominant.
- 3 / Etablir que : $\forall n \in \mathbb{N}, \ \forall \theta \in \mathbb{R}, \ T_n(\cos(\theta)) = \cos(n\theta)$
- 4/ Soit à présent n un entier naturel non nul. Montrer que T_n admet n racines deux à deux distinctes dans l'intervalle [-1,1].

Exercice 51. — (Polynômes de Tchebychev, deuxième acte).

L'objectif de cet exo est d'établir que pour tout entier naturel n, il existe un unique polynôme T_n à coefficients réels tel que :

$$\forall \theta \in \mathbb{R}, \quad T_n(\cos(\theta)) = \cos(n\theta)$$

Cet unique polynôme T_n est appelé n-ème polynôme de Tchebychev (de première espèce).

1/ Unicité. Soit n un entier naturel, et soient P et Q deux polynômes tels que :

$$\forall \theta \in \mathbb{R}, \quad P(\cos(\theta)) = \cos(n\theta) \land Q(\cos(\theta)) = \cos(n\theta)$$

Montrer que P = Q.

2/ Existence et expression. Soient n un entier naturel et θ un réel.

a/ Etablir que :
$$\cos(n\theta) = \operatorname{Re}\left(\sum_{k=0}^{n} \binom{n}{k} \mathrm{i}^k \sin^k(\theta) \cos^{n-k}(\theta)\right)$$

b/ Soit
$$n \in \mathbb{N}$$
. Déduire de ce qui précède que :
$$T_n = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{2k} \left(X^2 - 1\right)^k X^{n-2k}.$$