Problème de la semaine 11 - Corrigé

Exercice 1 — (Polynômes, et DL en zéro de la fonction tangente).

- 1/ Rappels sur la fonction tangente.
 - **a**/ Quelle est la période de la fonction tangente? Justifier brièvement que la fonction tangente admet en 0 un développement limité à tout ordre.
 - **b**/ Soit n un entier naturel. Que vaut $\tan^{(2n)}(0)$?
 - c/ Rappeler les deux formules donnant la dérivée de la fonction tangente.
 - d/ Retrouver le développement limité à l'ordre 3 en 0 de la fonction tangente.
 - e/ A l'aide de la question précédente, calculer :

$$\lim_{x \to 0} \frac{2\tan(x) - \tan(2x)}{x(1 - \cos(3x))}$$

- 2/ Démontrer qu'il existe une suite de polynômes $(T_n)_{n\in\mathbb{N}}$ telle que :
 - $ightharpoonup T_0(X) = X$
 - \triangleright et pour tout entier naturel n, la dérivée n-ième $\tan^{(n)}$ de la fonction tan, vérifie :

$$\forall x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right[, \tan^{(n)}(x) = T_n(\tan(x))$$

On explicitera une relation de récurrence entre les polynômes T'_n et T_{n+1} .

- 3/ Expliciter les polynômes T_1 , T_2 et T_3 .
- 4/ Soit $n \in \mathbb{N}$. Démontrer que les coefficients du polynôme T_n sont entiers naturels.
- 5/ Déterminer le degré et le coefficient dominant de T_n , pour tout entier naturel n.
- 6/ (Hors-programme à ce stade de l'année). Justifier qu'il existe une unique suite de nombres entiers naturels $(t_n)_n$ telle que :

$$\forall n \in \mathbb{N}, \quad \forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \quad \tan(x) = \sum_{j=0}^{n} \frac{t_j}{(2j+1)!} x^{2j+1} + \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} T_{2n+2} \left(\tan(t) \right) dt$$

On citera précisément le théorème utilisé.

Corrigé.

- 1/ Rappels sur la fonction tangente.
- a/ La fonction tangente est π -périodique

Puisqu'elle est de classe \mathscr{C}^{∞} au voisinage de 0, elle admet en 0 un développement limité à tout ordre la formule de Taylor-Young.

b/ La fonction tan est impaire et de classe \mathscr{C}^{∞} au voisinage de 0. Il s'ensuit que toutes ses dérivées d'ordre pair existent, et sont elles aussi impaires. Par suite : $|\forall n \in \mathbb{N}, \tan^{(2n)}(0) = 0|$.

c/ Selon le cours :
$$\tan' = 1 + \tan^2 = \frac{1}{\cos^2}$$

d/ Puisque la fonction tangente est impaire (et de classe \mathscr{C}^3 au voisinage de 0), il existe un unique couple de réels (a_1, a_3) tel que :

$$\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \tan(x) = a_1 x + a_3 x^3 + o(x^3).$$

On en déduit que pour tout réel $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ on a :

$$\tan'(x) = a_1 + 3a_3x^2 + o(x^2)$$
 et $\tan'(x) = 1 + a_1^2x^2 + o(x^2)$

Par unicité du DL, on en déduit que : $a_1 = 1$ et $3a_3 = a_1^2$. D'où : $a_1 = 1$ et $a_3 = 1/3$.

Conclusion.
$$\forall x \in \left] - \frac{\pi}{2}; \frac{\pi}{2} \left[, \tan(x) = x + \frac{x^3}{3} + o(x^3) \right] \right]$$

e/ D'après la question précédente, pour x non nul dans $\left] - \frac{\pi}{10^6}; \frac{\pi}{10^6} \right[$, on a :

$$\tan(x) = x + \frac{x^3}{3} + o(x^3)$$
 et $\tan(2x) = 2x + \frac{8x^3}{3} + o(x^3)$

D'où:
$$2\tan(x) - \tan(2x) = -2x^3 + o(x^3)$$
. D'où: $2\tan(x) - \tan(2x) \sim_0 -2x^3$ (\spadesuit)

Par ailleurs :
$$1 - \cos(3x) = \frac{9}{2}x^2 + o(x^2)$$
 d'où : $x(1 - \cos(3x)) = \frac{9x^3}{2} + o(x^3)$

Donc:
$$x(1 - \cos(3x)) \sim_0 \frac{9x^3}{2}$$
 (4)

On déduit de (
$$\spadesuit$$
) et (\clubsuit) que : $\frac{2\tan(x) - \tan(2x)}{x(1 - \cos(3x))} \sim_0 -\frac{4}{9}$.

Conclusion.
$$\lim_{x \to 0} \frac{2\tan(x) - \tan(2x)}{x(1 - \cos(3x))} = -\frac{4}{9}$$
.

2/ Montrons par récurrence sur n qu'il existe une suite de polynômes $(T_n)_{n\in\mathbb{N}}$ satisfaisant les conditions de l'énoncé.

Notons P(n) l'assertion :

"il existe un polynôme
$$T_n \in \mathbb{R}[X]$$
 tel que $\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \tan^{(0)}(x) = T_0(\tan(x))$ "

► Initialisation (n=0). Posons $T_0 = X$. On a : $\forall x \in \left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$, $T_0(\tan(x)) = \tan(x) = \tan^{(0)}(x)$. Ainsi P(0) est vraie.

▶ **Hérédité**. Supposons P(n) vraie pour un certain entier naturel n, et soit x un réel de $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

On a:
$$\tan^{(n+1)}(x) = \frac{d}{dx} \left[\tan^{(n)}(x) \right] =_{HR} \frac{d}{dx} \left[T_n \left(\tan(x) \right) \right] = \left(1 + \tan^2(x) \right) T'_n \left(\tan(x) \right).$$

On pose alors judicieusement : $T_{n+1} = (1 + X^2)T'_n$. Observons que T_{n+1} est un polynôme (T'_n est un polynôme, $(1 + X^2)$ également, et le produit de deux polynômes en est encore un).

En outre, il résulte des calculs précédents que :

$$\forall x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right[, T_{n+1}(\tan(x)) = (1 + \tan^2(x)) T'_n(\tan(x))$$

Ce qui signifie que P(n+1) est vraie, et achève la preuve de l'hérédité.

Conclusion.
$$\forall n \in \mathbb{N}, \exists T_n \in \mathbb{R}[X], \forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, T_n(\tan(x)) = \tan^{(n)}(x)\right]$$

Remarque. On a de surcroît établi que : $\forall n \in \mathbb{N}, T_{n+1} = (1 + X^2)T'_n$.

3/ On déduit de la relation $\forall n \in \mathbb{N}$, $T_{n+1} = (1+X^2)T'_n$ et du fait que $T_0 = X$ les expressions de T_1 , T_2 et T_3 .

Conclusion.
$$T_1 = X^2 + 1$$
; $T_2 = 2X^3 + 2X$; $T_3 = 6X^4 + 5X^2 + 1$

4/ Soient $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{m} b_k X^k$ deux polynômes à coefficients entiers naturels.

Alors: $PQ = \sum_{k=0}^{n+m} \left(\sum_{i=0}^{k} a_i b_{k-i} \right) X^k$. Pour tout entier k compris entre 0 et n+m, le coefficient de X^k dans

ce produit est : $c_k = \sum_{i=0} a_i b_{k-i}$. Puisque tous les a_j et tous les b_j sont entiers naturels, et que l'on peut puissamment observer que \mathbb{N} est stable par somme et par produit, on peut affirmer que $c_k \in \mathbb{N}$.

Il s'ensuit que PQ est à coefficients entiers naturels.

Ainsi : le produit de 2 polynômes à coefficients dans $\mathbb N$ est à coefficients dans $\mathbb N$ (\spadesuit)

Notons à présent pour tout entier naturel n l'assertion P(n): " T_n est à coefficients dans \mathbb{N} ".

On a $T_0 = X$. Il s'ensuit que P(0) est vraie.

Supposons que P(n) est vraie pour un certain entier naturel n. Le polynôme T_n est à coefficients entiers naturels, donc son polynôme dérivé T'_n est également à coefficients entiers naturels. Puisque $T_{n+1} = (1 + X^2)T'_n$, on déduit de (\spadesuit) que T_{n+1} est à coefficients naturels, ce qui signifie que l'assertion P(n+1) est vraie, et prouve l'hérédité de la propriété.

Conclusion.
$$\forall n \in \mathbb{N}, T_n \in \mathbb{N}[X]$$
.

5/ A la lumière des calculs de la question 3, il est raisonnable de conjecturer que pour tout entier naturel n on a : $deg(T_n) = n + 1$ et $cd(T_n) = n!$.

Notons pour tout $n \in \mathbb{N}$ l'assertion P(n): " $\deg(T_n) = n + 1 \quad \wedge \quad \operatorname{cd}(T_n) = n!$ "

Il est immédiat que P(0) est vraie.

Supposons que P(n) est vraie pour un certain entier naturel n. On a : $T_{n+1} = (1 + X^2)T'_n$.

Par conséquent : $\deg(T_{n+1}) = 2 + \deg(T'_n)$ et $\operatorname{cd}(T_{n+1}) = 1 \times \operatorname{cd}(T'_n)$

Puisque $\deg(T_n) = n + 1$, on a $\deg(T'_n) = n$. Ainsi : $\deg(T_{n+1}) = n + 2$.

Par ailleurs : $cd(T'_n) = deg(T_n) \times cd(T_n) = (n+1) \times n! = (n+1)!$. Ainsi : $cd(T_{n+1}) = (n+1)!$.

Conclusion.
$$\forall n \in \mathbb{N}, \ \deg(T_n) = n+1 \quad \land \quad \operatorname{cd}(T_n) = n!$$

6/ Soit n un entier naturel, et x un réel de $\left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$ arbitraires. La fonction tan étant de classe \mathscr{C}^{2n+2} sur $\left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$, on peut lui appliquer la formule de Taylor avec reste intégrale pour obtenir :

$$\tan(x) = \sum_{k=0}^{2n+1} \frac{\tan^{(k)}(0)}{k!} x^k + \frac{1}{(2n+1)!} \int_0^x (x-t)^{2n+1} \tan^{(2n+2)}(t) dt$$

Selon la question 2, tous les termes de rang pair dans la somme ci-dessus sont nuls. Puisqu'en outre l'ensemble des entiers impairs compris entre 0 et 2n+1 est $\{2j+1/j \in [0,n]\}$, on a :

$$\tan(x) = \sum_{j=0}^{n} \frac{\tan^{(2j+1)}(0)}{(2j+1)!} x^{2j+1} + \int_{0}^{x} \frac{(x-t)^{2n+1}}{(2n+1)!} \tan^{(2n+2)}(t) dt$$

De plus, on a : $\tan^{(2n+2)}(t) = T_{n+2}(\tan(t))$ par construction de la suite de polynômes (T_n) . D'où :

$$\tan(x) = \sum_{j=0}^{n} \frac{\tan^{(2j+1)}(0)}{(2j+1)!} x^{2j+1} + \int_{0}^{x} \frac{(x-t)^{2n+1}}{(2n+1)!} T_{n+2}(\tan(t)) dt$$

Enfin, pour tout j, on a : $\tan^{(2j+1)}(0) = T_{2j+1}(\tan(0)) = T_{2j+1}(0)$. En d'autres termes, $\tan^{(2j+1)}(0)$ est le coefficient constant du polynôme T_{2j+1} . Puisque T_{2j+1} est à coefficients entiers naturels (question précédente), $\tan^{(2j+1)}(0)$ est en particulier un élément de \mathbb{N} . En posant : $t_j = \tan^{(2j+1)}(0)$, on a donc $t_j \in \mathbb{N}$ et :

$$\tan(x) = \sum_{j=0}^{n} \frac{t_j}{(2j+1)!} x^{2j+1} + \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} \tan^{(2n+2)}(t) dt$$

Il existe donc une suite d'entiers naturels $(t_n)_n$ satisfaisant les conditions de l'énoncé. Son unicité provient de l'unicité du DL en 0 de la fonction tan.

Conclusion. $\exists ! (T_n)_n \in \mathbb{R}[X]^{\mathbb{N}}, \ \exists ! (t_n)_n \in \mathbb{N}^{\mathbb{N}},$ $\forall n \in \mathbb{N}, \quad \forall x \in \] -\frac{\pi}{2}; \frac{\pi}{2} \left[\ , \quad \tan(x) = \sum_{j=0}^n \frac{t_j}{(2j+1)!} x^{2j+1} + \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} T_{2n+2} (\tan(t)) \ dt \right]$

5

Exercice 2 — (Transformée de Laplace).

Problématique. L'objet de cet exercice est de fournir des éléments d'explication sur la transformée de Laplace, et en particulier de donner l'origine de quelques formules sur les transformées de Laplace usuelles.

1/ On considère le \mathbb{R} -espace vectoriel $E = \mathscr{C}^0(\mathbb{R}_+, \mathbb{R})$ des fonctions continues sur $[0, +\infty[$ et à valeurs réelles. Dans E, on note F la partie constituée des fonctions négligeables devant la fonction exponentielle au voisinage de $+\infty$, soit :

$$F = \{ f \in E / f(t) = o_{+\infty}(e^t) \}$$

- **a**/ Justifier que les fonctions sin, et $t \in \mathbb{R}^+ \mapsto t^n$ (avec $n \in \mathbb{N}$) appartiennent à F.
- **b**/ Etablir que F est un sous-espace vectoriel de E, et qu'il est de dimension infinie.
- \mathbf{c} / Justifier que les fonctions polynomiales appartiennent à F.
- 2/ Pour toute fonction $f \in F$, on appelle **transformée de Laplace** de f la fonction notée $\mathscr{L}f$ définie par :

$$\forall p \in]1, +\infty[, [\mathscr{L}f](p) = \lim_{A \to +\infty} \left(\int_0^A f(t) e^{-pt} dt \right)$$

On admet dans cet exercice que pour toute fonction f de F, la limite notée ci-dessus existe et est finie.

- Dans les trois questions ci-dessous, on suppose que p est un réel strictement supérieur à 1.
- \mathbf{a} / Fonction de Heaviside. On considère la fonction $H = \mathbb{1}_{\mathbb{R}_+}$. Montrer que : $[\mathscr{L}H](p) = \frac{1}{p}$.
- **b**/ Fonction exponentielle. Soient α un réel positif, et f la fonction définie par : $\forall t \in \mathbb{R}_+, f(t) = e^{-\alpha t}$.

Etablir que : $\forall A \in \mathbb{R}_+, \int_0^A f(t) e^{-pt} dt = \frac{1}{\alpha + p} \left(1 - e^{-(\alpha + p)A} \right)$. En déduire l'expression de $[\mathcal{L}f](p)$.

 $\mathbf{c}/$ Fonctions cosinus et sinus. On considère la fonction g définie par : $\forall t \in \mathbb{R}_+, \ g(t) = \cos{(\alpha t)}$.

Etablir que :
$$\forall A \in \mathbb{R}_+, \int_0^A \cos(\alpha t) e^{-pt} dt = \frac{1}{\alpha^2 + p^2} \left[p + e^{-pA} \left(\alpha \sin(\alpha A) - p \cos(\alpha A) \right) \right]$$

En déduire que : $[\mathscr{L}g](p) = \frac{p}{\alpha^2 + p^2}$

De la même manière, on peut prouver que $\mathscr{L}h(p) = \frac{\alpha}{\alpha^2 + p^2}$, avec : $\forall t \in \mathbb{R}_+$, $h(t) = \sin{(\alpha t)}$.

- 3/ On considère la fraction rationnelle : $F = \frac{4X^2 + 8X + 1}{X^3 + 3X^2 + 4X + 12}$.
 - **a**/ On pose : $Q = X^3 + 3X^2 + 4X + 12$.

Vérifier que $z_0 = 2i$ est racine de Q. En déduire la décomposition en irréductibles de Q dans $\mathbb{R}[X]$.

b/ Décomposer en éléments simples dans $\mathbb{R}(X)$ la fraction rationnelle F.

c/ En admettant la linéarité de la transformation de Laplace, déterminer une fonction causale f de $F(p) = \frac{4p^2 + 8p + 1}{p^3 + 3p^2 + 4p + 12}$, c'est à dire une fonction f définie sur \mathbb{R}_+ telle que : $\mathscr{L}f = F$.

Corrigé.

1/ On considère le \mathbb{R} -espace vectoriel $E = \mathscr{C}^0(\mathbb{R}_+, \mathbb{R})$ des fonctions continues sur $[0, +\infty[$ et à valeurs réelles. On pose $F = \{f \in E \, / \, f(t) = o_{+\infty}\,(e^t)\}.$

a/ On a : $\sin(t) = O_{+\infty}(1)$ et $1 = o_{+\infty}(e^t)$. D'où : $\sin(t) = o_{+\infty}(e^t)$.

Pour tout entier naturel n, on a : $\lim_{t \to +\infty} t^n e^{-t} = 0$. Ainsi : $t^n = o_{+\infty}(e^t)$.

Conclusion. Les fonctions sin, et $t \in \mathbb{R}^+ \longmapsto t^n$ (avec $n \in \mathbb{N}$) appartiennent à F

b/ Par définition, F est une partie de E (SEV1). La fonction nulle est négligeable devant la fonction exponentielle au voisinage de $+\infty$ (SEV2).

Soient f et g deux fonctions de F, λ et μ deux réels. Par hypothèse : $\lim_{t\to +\infty} f(t) \mathrm{e}^{-t} = 0$ et $\lim_{t\to +\infty} g(t) \mathrm{e}^{-t} = 0$. Il s'ensuit : $\lim_{t\to +\infty} (\lambda f(t) + \mu g(t)) \mathrm{e}^{-t} = 0$. Ce qui assure que $\lambda f + \mu g$ appartient à F, et prouve que F est

stable par combinaison linéaire (SEV3).

Conclusion. F est une partie de E, contenant le vecteur nul de E, et stable par combinaison linéaire. A ce titre, F est un sev de E.

En outre, la famille $\{f_n : t \in \mathbb{R}_+ \longmapsto t^n / n \in \mathbb{N}\}$ est clairement libre, et encore plus clairement de cardinal infini. Subséquemment : F est un sev de E de dimension infinie.

c/ D'après la question a, les fonctions $t \in \mathbb{R}^+ \longmapsto t^n$ (avec $n \in \mathbb{N}$) appartiennent à F. Puisque F est stable par combinaison linéaire d'après b, toute fonction polynomiale appartient à F.

Conclusion. Les fonctions polynomiales appartiennent à F.

2/ Pour toute fonction $f \in F$, on appelle **transformée de Laplace** de f la fonction notée $\mathscr{L}f$ définie par :

$$\forall p \in]1, +\infty[, [\mathscr{L}f](p) = \lim_{A \to +\infty} \left(\int_0^A f(t) e^{-pt} dt \right)$$

Dans les trois questions ci-dessous, on suppose que p est un réel strictement supérieur à 1.

a/ Fonction de Heaviside. On considère la fonction $H=\mathbbm{1}_{\mathbb{R}_+}.$ Soit A un réel positif.

On a:
$$\int_0^A H(t)e^{-pt} dt = \int_0^A e^{-pt} dt = -\frac{1}{p} \left[e^{-pt} \right]_0^A = \frac{1}{p} \left(1 - e^{-pA} \right).$$

Puisque p > 0, on a : $\lim_{A \to +\infty} 1 - \mathrm{e}^{-pA} = 1$. On en déduit que : $\lim_{A \to +\infty} \int_0^A H(t) \mathrm{e}^{-pt} \, \mathrm{d}t = \frac{1}{p}$.

Conclusion. $[\mathscr{L}H](p) = \frac{1}{p}$.

b/ Fonction exponentielle. Soient α un réel positif, et f la fonction définie par : $\forall t \in \mathbb{R}_+, f(t) = e^{-\alpha t}$. Soit A un réel positif.

On a:
$$\int_0^A f(t)e^{-pt} dt = \int_0^A e^{-(\alpha+p)t} dt = -\frac{1}{\alpha+p} \left[e^{-(\alpha+p)t} \right]_0^A = \frac{1}{\alpha+p} \left(1 - e^{-(\alpha+p)A} \right).$$

Puisque p > 0 et $\alpha \ge 0$, on a : $\lim_{A \to +\infty} 1 - e^{-(\alpha+p)A} = 1$. On en déduit que : $\lim_{A \to +\infty} \int_0^A f(t)e^{-pt} dt = \frac{1}{\alpha+p}$.

Conclusion.
$$[\mathscr{L}f](p) = \frac{1}{\alpha + p}$$
.

c/ Fonctions cosinus et sinus. On considère la fonction g définie par : $\forall t \in \mathbb{R}_+, \ g(t) = \cos{(\alpha t)}$. Soit A un réel positif.

On a :
$$\int_0^A g(t)e^{-pt} dt = \int_0^A \cos(\alpha t)e^{-pt} dt = \operatorname{Re}\left(\int_0^A e^{(i\alpha-p)t} dt\right) = \operatorname{Re}\left(\frac{1}{i\alpha-p}\left[e^{(i\alpha-p)t}\right]_0^A\right)$$
$$= \operatorname{Re}\left(-\frac{p+i\alpha}{p^2+\alpha^2}\left(e^{(i\alpha-p)A}-1\right)\right) \qquad (\clubsuit)$$

Courage:
$$-\frac{p+\mathrm{i}\alpha}{p^2+\alpha^2} \left(\mathrm{e}^{(\mathrm{i}\alpha-p)A} - 1 \right) = -\frac{p+\mathrm{i}\alpha}{p^2+\alpha^2} \left(\mathrm{e}^{\mathrm{i}\alpha A} \mathrm{e}^{-pA} - 1 \right)$$
$$= \frac{1}{p^2+\alpha^2} \left(p+\mathrm{i}\alpha \right) \left(1 - \mathrm{e}^{-pA} \cos(\alpha A) - \mathrm{i}\mathrm{e}^{-pA} \sin(\alpha A) \right)$$

Il s'ensuit que :
$$\operatorname{Re}\left(-\frac{p+\mathrm{i}\alpha}{p^2+\alpha^2}\left(\mathrm{e}^{(\mathrm{i}\alpha-p)A}-1\right)\right)=\frac{1}{p^2+\alpha^2}\left(p-p\mathrm{e}^{-pA}\cos(\alpha A)+\alpha\mathrm{e}^{-pA}\sin(\alpha A)\right)$$
 (4).

D'après (
$$\spadesuit$$
) et (\clubsuit):
$$\int_0^A \cos(\alpha t) e^{-pt} dt = \frac{1}{p^2 + \alpha^2} \left(p - p e^{-pA} \cos(\alpha A) + \alpha e^{-pA} \sin(\alpha A) \right)$$
(\heartsuit)

Puisque p > 0, on a : $\lim_{A \to +\infty} p e^{-pA} \cos(\alpha A) = 0$ (produit "bornée par limite 0") et $\lim_{A \to +\infty} \alpha e^{-pA} \sin(\alpha A) = 0$ (re-produit "bornée par limite 0").

On déduit de ces observations et de (\heartsuit) que : $\lim_{A \to +\infty} \int_0^A \cos(\alpha t) e^{-pt} dt = \frac{p}{p^2 + \alpha^2}$.

Conclusion.
$$[\mathscr{L}g](p) = \frac{p}{\alpha^2 + p^2}$$

3/ On considère la fraction rationnelle : $F = \frac{4X^2 + 8X + 1}{X^3 + 3X^2 + 4X + 12}$.

a/ On pose : $Q = X^3 + 3X^2 + 4X + 12$. On vérifie aisément que Q(2i) = 0. Puisque Q est à coefficients réels, on en déduit que (-2i) est également racine de Q. Il s'ensuit que $(X - 2i)(X + 2i) = (X^2 + 4)$ divise Q. Le polynôme Q étant de degré 3, de coefficient dominant 1 et de coefficient constant 12, on a : $Q = (X^2 + 4)(X + 3)$.

Conclusion. La DPI de $Q = X^3 + 3X^2 + 4X + 12$ dans $\mathbb{R}[X]$ est : $Q = (X^2 + 4)(X + 3)$

b/ La fraction rationnelle F est de degré -1; sa partie entière est donc nulle. D'après le théorème de la décomposition en éléments simples dans $\mathbb{R}(X)$:

$$\exists ! (a, b, c) \in \mathbb{R}^3, \quad F = \frac{a}{X+3} + \frac{bX+c}{X^2+4}$$

Puisque -3 est un pôle simple de F, on a : $a = \frac{P(-3)}{Q'(-3)} = \frac{13}{13} = 1$.

Ainsi :
$$F = \frac{1}{X+3} + \frac{bX+c}{X^2+4}$$
. D'où : $F = \frac{(b+1)X^2 + (c+3b)X + (4+3c)}{(X+3)(X^2+4)}$.

En procédant (une fois n'est pas coutume) par identification, on obtient le système :

$$\begin{cases} b+1 &= 4 \\ c+3b &= 8 \\ 4+3c &= 1 \end{cases} \iff \begin{cases} b=3 \\ c=-1 \end{cases}$$

Conclusion. La DES de
$$F = \frac{4X^2 + 8X + 1}{X^3 + 3X^2 + 4X + 12}$$
 dans $\mathbb{R}(X)$ est : $F = \frac{1}{X+3} + \frac{3X+1}{X^2+4}$.

c/ D'après b :
$$F(p) = \frac{1}{p+3} + \frac{3p+1}{p^2+4} = \frac{1}{p+3} + 3\frac{p}{p^2+2^2} + \frac{1}{2}\frac{2}{p^2+2^2}$$
.

D'après la question 2 : la fonction $\forall t \in \mathbb{R}_+, \ f(t) = e^{-3t} + 3\cos(2t) + \frac{1}{2}\sin(2t)$ est telle que $\mathscr{L}f = F$.