Exercices 23 — Espaces vectoriels de dimension finie

FAMILLES LIBRES, BASES

EXERCICE 1. — (Familles libres).

Dans chacun des cas suivants, déterminer si chacune des familles suivantes est libre ou liée.

$$1/E = \mathbb{R}^{2}; \qquad \mathscr{F} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$

$$2/E = \mathbb{R}^{2}; \qquad \mathscr{F} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\}$$

$$3/E = \mathbb{R}^{2}; \qquad \mathscr{F} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ -2 \end{pmatrix} \right\}$$

$$4/E = \mathbb{R}_{2}[X]; \qquad \mathscr{F} = \{1, 3X - 4, 2X^{2} - X + 1\}$$

$$5/E = \mathbb{R}_{2}[X]; \qquad \mathscr{F} = \{X, X + 1, X^{2}\}$$

$$6/E = \mathbb{M}_{2}(\mathbb{R}); \qquad \mathscr{F} = \{I_{2}, E_{11}, E_{22} - E_{11}\}$$

$$7/E = \mathscr{C}^{0}(\mathbb{R}, \mathbb{R}); \qquad \mathscr{F} = \{\sin, \cos\}$$

$$8/E = \mathscr{C}^{0}(\mathbb{R}, \mathbb{R}); \qquad \mathscr{F} = \{\exp, \cosh, \sinh\}$$

EXERCICE 2. — (Bases et dimension).

Dans chacun des cas suivants, on demande de déterminer une base du sev F, et d'en déduire la dimension de F.

$$1/F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \ x + 2y - 3z = 0 \right\}$$

$$2/F = \{P \in \mathbb{R}_2[X], P(0) = 0\}$$

$$3/F = \{P \in \mathbb{K}_3[X], P(2) = 0\}$$

- 4/ Le sev F des matrices triangulaires supérieures de $\mathrm{M}_{2}\left(\mathbb{K}\right)$
- 5/ Le sev F des matrices antisymétriques de $M_3(\mathbb{K})$
- 6/ Le sev F des fonctions f de $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ solutions de l'équation différentielle : y'' 6y' + 8y = 0
- $7/F = \operatorname{im} \rho \text{ avec}$ $\rho: P \in \mathbb{R}_3[X] \mapsto (P(-1), P(0), P(1)) \in \mathbb{R}^3$

EXERCICE 3. — (Familles libres et liées dans $\mathbb{K}[X]$). Déterminer si chacune des familles est libre ou liée.

$$1/\mathscr{F}_1 = (1, X - 1, X^2 - X)$$

$$2/\mathscr{F}_2 = (2X + 1, X^2 + X, 2X^2 - 1)$$

$$3/\mathscr{F}_3 = (X^2, X^2 - X, X^2 - 2X)$$

$$4/\mathscr{F}_4 = (L_1, L_2, L_3, L_4) \text{ où les } L_i \text{ sont les polynômes (de degré 3) d'interpolation de Lagrange associés aux valeurs 1, 2, 3 et 4.}$$

EXERCICE 4. — (Bases de sous-espaces vectoriels de $\mathbf{M}_n(\mathbb{K})$). Déterminer une base de chacun des sous-espaces vectoriels suivants :

$$1/ F_{1} = \{A \in M_{2}(\mathbb{R}), \ ^{t}A = A \}.$$

$$2/ F_{2} = \{A \in M_{2}(\mathbb{R}), \ ^{t}A = -A \}.$$

$$3/ F_{3} = \{A \in M_{3}(\mathbb{R}), \ ^{t}A = A \}.$$

$$5/ F_{5} = \{A \in M_{n}(\mathbb{R}), \ A \text{ diagonale } \}.$$

EXERCICE 5. — (ker et im). On considère l'application $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ définie en posant :

$$\forall \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4, \qquad f \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 2x + y + z \\ x + y + t \\ x + z - t \end{pmatrix}$$

On admet que f est linéaire

- 1) Déterminer le noyau de f. En préciser une base et la dimension.
- 2) Déterminer l'image de f. En préciser une base et la dimension.

EXERCICE 6. — (Bases). On considère la famille $\mathscr{B} = (M_1, M_2, M_3, M_4)$ de $M_2(\mathbb{K})$, où l'on a posé :

$$M_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}; \qquad M_3 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}; \qquad M_4 = \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}$$

Montrer que \mathscr{B} est une base de $M_2(\mathbb{K})$.

EXERCICE 7. — (Bases et dimension). On considère l'application $\varphi : \mathbb{K}_3[X] \longrightarrow \mathbb{K}_3[X]$ définie en posant :

$$\forall P \in \mathbb{K}_3[X], \ \varphi(P) = P(X+1) - P(X)$$

- 1/ Montrer que φ est linéaire.
- 2/ Déterminer $\ker \varphi$ et im φ .
- 3/ Préciser une base pour chacun des sev ker φ et im φ , en déduire leur dimension.

EXERCICE 8. — (Bases et dimension). Dans chacun des cas suivants, on demande de déterminer une base du sev F, et d'en déduire la dimension de F.

- $1/F = \{A \in M_3(\mathbb{R}), \operatorname{tr}(A) = 0\}$
- 2/ Le sev F des fonctions f de $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ solutions de l'équation différentielle : y'-6y=0
- $3/F = \{P \in \mathbb{K}_4[X] \mid P(1) = 0 \land P'(1) = 0\}$
- $4/F = \ker \varphi \text{ avec } \varphi : P \in \mathbb{K}_2[X] \mapsto (P(0), P'(0)) \in \mathbb{R}^2$

EXERCICE 9. — Dans cet exercice, on note $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

Par ailleurs, on définit sur $\mathbb R$ trois fonctions $g_1,\,g_2$ et g_3 en posant :

$$g_1: x \in \mathbb{R} \longmapsto e^{2x}; \qquad g_2: x \in \mathbb{R} \longmapsto e^{-x} \cos(x\sqrt{3}) \quad \text{et} \qquad g_3: x \in \mathbb{R} \longmapsto e^{-x} \sin(x\sqrt{3})$$

Enfin on note F le sev de E engendré par les fonctions g_i définies ci-dessus, càd :

$$F = Vect (g_1, g_2, g_3)$$

Montrer que la famille $\mathscr{F} = \{g_1, g_2, g_3\}$ est une base de F.

EXERCICE 10. — (Une famille libre arbitrairement grande dans $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$). Soient $n \ge 1$ un entier naturel, et $(\alpha_1,\ldots,\alpha_n)$ n réels distincts; on suppose $\alpha_1 < \alpha_2 < \cdots < \alpha_n$.

On considère la famille $F_n = (f_k : x \longmapsto e^{\alpha_k x}, \ k \in [\![1, n]\!])$. Montrer que F_n est une famille libre de $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

EXERCICE 11. — Dans $\mathbb{R}[X]$, on considère la famille de polynômes

$$\mathscr{F} = \left\{ \underbrace{(X-1)(X-2)(X-3)}_{=P_0}, \underbrace{X(X-2)(X-3)}_{=P_1}, \underbrace{X(X-1)(X-3)}_{=P_2}, \underbrace{X(X-1)(X-2)}_{=P_3} \right\}$$

Montrer que \mathscr{F} est libre.

EXERCICE 12. — (Transport de bases). Soient E et F deux \mathbb{K} -ev, $\varphi: E \longrightarrow F$ un isomorphisme de E dans F, et $\mathscr{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ une base de E.

On note $\varphi(\mathscr{B}) = \{ \varphi(\overrightarrow{v_1}), \dots, \varphi(\overrightarrow{v_1}) \}$ l'image de \mathscr{B} par φ .

Montrer que $\varphi(\mathcal{B})$ est une base de F.

On prouve ainsi l'énoncé:

"L'image d'une base par un isomorphisme est une base"

EXERCICE 13. — (Familles échelonnée de polynômes). Soit $n \in \mathbb{N}^*$.

Dans $\mathbb{K}[X]$, on considère n polynômes P_1, \ldots, P_n tous non nuls.

On suppose que:

$$\deg(P_1) < \deg(P_2) < \dots < \deg(P_n)$$

Montrer que la famille $\mathscr{F} = (P_1, \dots, P_n)$ est libre.

On prouve ainsi l'énoncé:

"Toute famille échelonnée de polynômes est libre"

EXERCICE 14. — (Challenge). Soit n un entier naturel non nul. Montrer que l'application

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

$$P \longmapsto P + XP''$$

est bijective (on pourra admettre que f est linéaire).

EXERCICE 15. — (Une base classique de $\mathbb{K}_n[X]$). Soient n un entier naturel non nul, et $\alpha \in \mathbb{K}$ un scalaire quelconque.

On considère la famille

$$\mathscr{B} = \left\{1, X - \alpha, (X - \alpha)^2, \dots, (X - \alpha)^n\right\}$$

On se propose de prouver de deux manières différentes que \mathscr{B} est une base de $\mathbb{K}_n[X]$.

- 1/ Justifier que \mathscr{B} est une famille libre de $\mathbb{K}_n[X]$. En déduire que c'est une base de $\mathbb{K}_n[X]$.
- 2/ Justifier que \mathscr{B} est une famille génératrice de $\mathbb{K}_n[X]$. En déduire que c'est une base de $\mathbb{K}_n[X]$.

EXERCICE 16. — (Une autre base classique de $\mathbb{K}_n[X]$ — Polynômes interpolateurs de Lagrange). Soit n un entier naturel non nul.

On considère (n+1) scalaires $\alpha_0, \ldots, \alpha_n$ deux à deux distincts.

On note L_0, \ldots, L_n les (n+1) polynômes interpolateurs de Lagrange associés aux scalaires $\alpha_0, \ldots, \alpha_n$.

- 1/ Question de cours : rappeler l'expression du polynôme L_k pour tout $k \in [0, n]$.
- 2/ Etablir que la famille $\mathscr{B} = \{L_0, \ldots, L_n\}$ est une base de $\mathbb{K}_n[X]$.

EXERCICE 17. — (Supplémentaires). Dans cette partie, E désigne le \mathbb{R} -espace vectoriel $M_2(\mathbb{R})$ des matrices carrées de taille 2 à coefficients réels.

On pose $F = \text{Vect}(I_2)$, et on note G le sev des matrices de E de trace nulle.

- 1/ Déterminer la dimension de F et la dimension de G.
- 2/ Montrer que F et G sont supplémentaires dans E.

EXERCICE 18. — (Supplémentaires bis). Dans $E = \mathbb{K}_2[X]$ on considère les sev $F = \text{Vect}(X^2 + X + 1, 5X + 2)$ et $G = \text{Vect}(X^2 - X)$.

On pourra noter $P_1 = X^2 + X + 1$; $P_2 = 5X + 2$; $P_3 = X^2 - X$.

- 1/ Etablir que : $F \cap G = \{0_{\mathbb{K}_2[X]}\}.$
- 2/ En déduire que : $E = F \bigoplus G$.
- 3 Justifier que $\mathscr{B}' = \{P_1, P_2, P_3\}$ est une base de $\mathbb{K}_2[X]$.

EXERCICE 19. — On considère les sev de \mathbb{R}^4 suivants :

$$F = \{(x, y, z, t) \in \mathbb{R}^4, \quad x + y = 0 \text{ et } z + t = 0\} \quad \text{et} \quad G = \{(x, y, z, t) \in \mathbb{R}^4, \quad x = y \text{ et } z = t\}.$$

- 1/ Déterminer une base de ${\cal F},$ puis une base de ${\cal G}.$
- 2/ Montrer que F et G sont des sous-espaces supplémentaires de \mathbb{R}^4 .

EXERCICE 20. — Dans $E = \mathbb{R}_3[X]$, on considère la partie F constituée des polynômes P tels que P(1) = P(-1).

- 1/Montrer que F est un sev de E, en déterminer une base, et en déduire la dimension de F.
- 2/ Soit G = Vect(X). Montrer que : $E = F \bigoplus G$.

Exercice 21. — (Très très classique). Soit n un entier naturel non nul. Montrer que l'endomorphisme

$$f: \mathbb{K}_n[X] \longrightarrow \mathbb{K}_n[X]$$

$$P \longmapsto P - P'$$

est un automorphisme de $\mathbb{K}_n[X]$.

EXERCICE 22. — (Conséquence du "transport de bases"). Soient E et F deux \mathbb{K} -ev.

On suppose que $\dim(E) = n$, et que E et F sont isomorphes (càd qu'il existe un isomorphisme $\varphi : E \longrightarrow F$ de E dans F).

Etablir que $\dim(F) = n$

On prouve ainsi l'énoncé :

"Deux ev de dimension finie isomorphes ont la même dimension."

COORDONNÉES DANS UNE BASE, MATRICE DE PASSAGE

EXERCICE 23. — (Coordonnées dans $\mathbb{R}_3[X]$).

Quelles sont les coordonnées de $P = X^3 + 2X^2 - X + 1$ dans :

- 1/ la base canonique $\mathscr{B}_1=(1,X,X^2,X^3)$ de $\mathbb{R}_3[X]$?
- 2/ la base $\mathscr{B}_2 = (1, X 1, (X 1)^2, (X 1)^3)$ de $\mathbb{R}_3[X]$?
- 3/ la base $\mathcal{B}_3=(L_0,L_1,L_2,L_3)$ de $\mathbb{R}_3[X]$, où les L_1 désignent les polynômes interpolateurs de Lagrange associés aux réels 0, 1, 2 et 3?

EXERCICE 24. — (Matrice de passage).

DÉFINITION. Soit E un $\overline{\mathbb{K}}$ -ev de dimension n $(n \neq 0)$, soient $\mathscr{B} = (v_1, \ldots, v_n)$ et $\mathscr{B}' = (w_1, \ldots, w_n)$ deux bases de E.

La matrice de passage de la base \mathscr{B} à la base \mathscr{B}' notée $P_{\mathscr{B}\mathscr{B}'}$ (ou $P_{\mathscr{B}}^{\mathscr{B}'}$) est la matrice de $M_n(\mathbb{K})$

$$P_{\mathscr{B}\mathscr{B}'} = (\alpha_{ij})_{1 \leqslant i \leqslant m, \ 1 \leqslant j \leqslant n}$$

les scalaires α_{ij} étant caractérisés par :

$$\forall j \in [1, n], \quad w_j = \sum_{i=1}^m \alpha_{ij} v_i$$

Traduction: $P_{\mathscr{B}\mathscr{B}'}$ est la matrice obtenue en écrivant en colonnes les coordonnées des vecteurs de \mathscr{B}' dans la base \mathscr{B} (attention à l'ordre!).

ILLUSTRATION : on reprend les notations de la définition.

$$\triangleright$$
 E est un ev de dimension n ;

$$\triangleright \mathscr{B} = (v_1, \dots, v_n)$$
 est une base de E ;

$$\nearrow \mathscr{B}' = (w_1, \dots, w_n)$$
 est une autre base de E ;

$$P_{\mathscr{B},\mathscr{B}'}=egin{array}{c} v_1 \ v_2 \ dots \ v_n \end{array}$$

 $w_1 \ w_2 \ \cdots \ w_n$

Exemple. Dans $E = \mathbb{R}_2[X]$, on considère la base canonique $\mathscr{B} = (1, X, X^2)$ et la base

$$\mathscr{B}' = (1, 2X - 1, 7X^2 + 3X - 5).$$

La matrice de passage de \mathcal{B} à \mathcal{B}' notée $P_{\mathcal{BB'}}$ est : $\begin{pmatrix} 1 & -1 & -5 \\ 0 & 2 & 3 \\ 0 & 0 & 7 \end{pmatrix}$

Questions.

On considère la famille $B' = (P_1, P_2, P_3)$ avec :

$$P_1 = X^2 - 1;$$
 $P_2 = (X - 1)^2;$ $P_3 = (X + 1)^2$

- 1/ Etablir que la famille B' est une base de $\mathbb{R}_2[X]$.
- 2/ Ecrire la matrice de passage P de la base B à la base B'.
- 3/ Après avoir brièvement justifié que P est inversible, calculer P^{-1} .*

EXERCICE 25. — (Changement de base) Dans cet exercice, on considère l'espace vectoriel $E = M_2(\mathbb{K})$ des matrices carrées d'ordre 2 à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

On rappelle que la base canonique de E est la base $\mathscr{B} = (E_{11}, E_{12}, E_{21}, E_{22})$ avec :

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \qquad E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \qquad E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; \qquad E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

1/ On considère la famille $\mathscr{B}'=(M_1,M_2,M_3,M_4)$ de $\mathrm{M}_2(\mathbb{K}),$ où l'on a posé :

$$M_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}; \qquad M_2 = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}; \qquad M_3 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}; \qquad M_4 = \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}$$

Montrer que \mathscr{B}' est une base de $M_2(\mathbb{K})$.

- 2/ Ecrire la matrice de passage $P = P_{\mathscr{B}\mathscr{B}'}$ de la base \mathscr{B} à la base \mathscr{B}' .
- 3/ Justifier brièvement que P est inversible, et calculer P^{-1} .

EXERCICE 26. — (Coordonnées dans \mathbb{R}^3).

On note $\mathscr{B}=(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ la base canonique de \mathbb{R}^3 .

Juste pour ôter tout doute :
$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

On pose:

$$\overrightarrow{u_1} = \overrightarrow{e_2} + 2\overrightarrow{e_3}, \qquad \overrightarrow{u_2} = \overrightarrow{e_1} + 2\overrightarrow{e_2} + 3\overrightarrow{e_3}, \qquad \overrightarrow{u_3} = \overrightarrow{e_1} - \overrightarrow{e_2} + \overrightarrow{e_3}$$

et on désigne par \mathscr{B}' la famille $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$.

- 1/ Montrer que \mathscr{B}' est une base de \mathbb{R}^3 .
- 2/ Ecrire la matrice de passage de la base ${\mathscr B}$ à la base ${\mathscr B}'.$
- 3/ On pose $\overrightarrow{V}=2\overrightarrow{e_1}+\overrightarrow{e_2}-\overrightarrow{e_3}$. Quelles sont les coordonnées de \overrightarrow{V} dans la base \mathscr{B}' ?

^{*.} On pourra vérifier que $P^{-1} = \frac{1}{4}R$, où $R \in M_3(\mathbb{R})$ est une matrice dont les coefficients appartiennent à $\{-2, -1, 0, 1, 2\}$.