CB2 — CORRIGÉ DE L'ÉPREUVE SPÉCIFIQUE "MP"

Problème 1 — Une application des polynômes de Bernstein : le théorème de Stone-Weierstraß

Partie I — Questions préliminaires

Les questions de cette partie sont indépendantes.

 $1/\operatorname{Soit} f$ une fonction continue sur [0,1] et à valeurs dans \mathbb{R} . D'après le théorème des bornes atteintes, la fonction f est bornée (et atteint ses bornes) sur le segment [0,1]. Donc : $\exists M \in \mathbb{R}_+, \ \forall x \in [0,1], \ |f(x)| \leq M$.

2/ Pour tout réel x on a : $\left(x - \frac{1}{2}\right)^2 \geqslant 0$. D'où : $x^2 - x + \frac{1}{4} \geqslant 0$. Par suite : $\forall x \in \mathbb{R}, \ x(1 - x) \leqslant \frac{1}{4}$. Par ailleurs, pour tout réel $x \in [0, 1]$, il est clair que : $x(1 - x) \geqslant 0$.

On en déduit que : $\forall x \in [0,1], \ 0 \leqslant x (1-x) \leqslant \frac{1}{4}$.

3/D'après le cours, si X suit la loi binomiale de taille n et de paramètre x, on a :

$$\mathrm{E}\left(X\right) = nx$$
; $\mathrm{Var}\left(X\right) = nx\left(1-x\right)$; $\mathrm{E}\left(\frac{X}{n}\right) = x$; $\mathrm{Var}\left(\frac{X}{n}\right) = \frac{x\left(1-x\right)}{n}$

Partie II — Théorème de Stone-Weierstraß

Soit f une fonction continue sur [0,1] et à valeurs dans \mathbb{R} . On note M un majorant de |f| sur [0,1].* Pour tout entier naturel n non nul et pour tout réel $x \in [0,1]$, on pose :

$$B_{f,n}(x) = \sum_{k=0}^{n} {n \choose k} x^{k} (1-x)^{n-k} f\left(\frac{k}{n}\right)$$

On choisit un réel $x \in [0,1]$ et un réel strictement positif ε , qui sont donc fixés tout au long de cette partie. Et on se propose d'établir que :

$$\exists n_0 \in \mathbb{N}, [n \geqslant n_0] \Longrightarrow [|f(x) - B_{f,n}(x)| < \varepsilon]$$

4/ Puisque f est continue sur le segment [0,1], elle est uniformément continue sur ce segment en vertu du théorème de Heine. Par suite : $\exists \alpha > 0, \ \forall \ (u,v) \in [0,1]^2, \ [|v-u| < \alpha] \Longrightarrow \left[|f(v)-f(u)| < \frac{\varepsilon}{2}\right]$

5/ Soit n un entier naturel. D'après la formule du binôme de Newton : $\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1.$

Par suite:
$$f(x) = \sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k} f(x).$$

 $[\]ast.$ L'existence d'un tel réel M est assurée par la question 1.

On en déduit que :
$$f(x) - B_{f,n}(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \left(f(x) - f\left(\frac{k}{n}\right) \right)$$
.

D'après l'inégalité triangulaire : $|f(x) - B_{f,n}(x)| \leq \sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k} \left| f(x) - f\left(\frac{k}{n}\right) \right| .$

6/ On a:

$$\Delta_n(x) = \underbrace{\sum_{k \in E} \binom{n}{k} x^k (1-x)^{n-k} \left(f(x) - f\left(\frac{k}{n}\right) \right)}_{=S_1(x)} + \underbrace{\sum_{k \in \overline{E}} \binom{n}{k} x^k (1-x)^{n-k} \left(f(x) - f\left(\frac{k}{n}\right) \right)}_{=S_2(x)}$$

D'après l'inégalité triangulaire : $|\Delta_n(x)| \le |S_1(x)| + |S_2(x)|$ (\spadesuit)

Par définition de l'ensemble E, et d'après la question précédente, on a :

$$|S_1(x)| \leqslant \sum_{k \in E} \binom{n}{k} x^k (1-x)^{n-k} \frac{\varepsilon}{2} \leqslant \frac{\varepsilon}{2} \underbrace{\sum_{k \in E} \binom{n}{k} x^k (1-x)^{n-k}}_{\leqslant 1}$$

D'où :
$$|S_1(x)| \leqslant \frac{\varepsilon}{2}$$
 (4)

Par ailleurs, pour tout couple de réels (u, v) dans [0, 1], on a : $|f(v) - f(u)| \le 2M$, puisque la valeur absolue de f est majorée par M. En particulier pour tout entier n non nul on a :

$$\left| f(x) - f\left(\frac{k}{n}\right) \right| \leqslant 2M.$$

Il s'ensuit que : $|S_2(x)| \leq 2M \sum_{k \in \overline{E}} \binom{n}{k} x^k (1-x)^{n-k}$ (\heartsuit)

On déduit de
$$(\spadesuit)$$
, (\clubsuit) et (\heartsuit) que : $|\Delta_n(x)| \leq \frac{\varepsilon}{2} + 2M \sum_{k \in \overline{E}} \binom{n}{k} x^k (1-x)^{n-k}$.

7/ Soit X une variable aléatoire suivant la loi binomiale de taille n et de paramètre x. On a, par définition de l'ensemble E (et de la loi binomiale) :

$$P\left(\left|\frac{X}{n} - x\right| \geqslant \alpha\right) = \sum_{k \in \overline{E}} P(X = k) \text{ d'où : } \left|P\left(\left|\frac{X}{n} - x\right| \geqslant \alpha\right) = \sum_{k \in \overline{E}} \binom{n}{k} x^k (1 - x)^{n - k}\right|.$$

8/ D'après l'inégalité de Bienaymé-Tchebytchev : $P(|X - E(X)| \ge \alpha) \le \frac{\text{Var}(X)}{\alpha^2}$ (pour tout réel $\alpha > 0$). En appliquant cette propriété à la variable aléatoire X/n, on obtient (d'après les rappels faits au cours de la question 3) :

$$P\left(\left|\frac{X}{n} - x\right| \geqslant \alpha\right) \leqslant \frac{x(1-x)}{n\alpha^2}$$

On en déduit, avec la question précédente, que : $\sum_{k \in \overline{E}} \binom{n}{k} x^k (1-x)^{n-k} \leqslant \frac{x(1-x)}{n\alpha^2}$

9/ D'après les questions 6 et 8, on a : $|\Delta_n(x)| \leq \frac{\varepsilon}{2} + \frac{2Mx(1-x)}{n\alpha^2}$.

Or :
$$0 \le x (1-x) \le \frac{1}{4}$$
 (d'après la question 2). On en déduit : $|\Delta_n(x)| \le \frac{\varepsilon}{2} + \frac{M}{2n\alpha^2}$.

10/ Dans l'inégalité précédente, les réels M et α sont indépendants de n, et il est donc immédiat que $\frac{M}{2n\alpha^2}$ tend vers 0 lorsque n tend vers $+\infty$.

Comme il est également clair que le réel $\frac{M}{2n\alpha^2}$ est positif, on peut affirmer qu'à partir d'un certain rang, on a : $0 \leqslant \frac{M}{2n\alpha^2} \leqslant \frac{\varepsilon}{2}$.

On en déduit, grâce à la question précédente, qu'à partir d'un certain rang : $|\Delta_n(x)| \leq \varepsilon$

Il s'ensuit que toute fonction continue sur le segment [0,1] peut être approchée arbitrairement près par une fonction polynomiale. Autrement dit, le sev des fonctions polynomiales sur [0,1] est dense dans l'ev des fonctions continues sur [0,1].

Problème 2 — Entiers sommes de deux carrés

Notations : tout au long du problème, on notera $\mathbb{Z}[i]$ l'anneau des **entiers de Gauss**, c'est-à-dire l'anneau des nombres complexes à parties réelle et imaginaire entières. Explicitement :

$$\mathbb{Z}[\mathrm{i}] = \{ a + \mathrm{i} \, b / \, (a, b) \in \mathbb{Z}^2 \}$$

Par ailleurs, on définit une "norme" sur \mathbb{C} , l'application $\begin{bmatrix} N: \mathbb{C} \longrightarrow \mathbb{R}_+ \\ z \longmapsto z\overline{z} \end{bmatrix}$

Partie I — Quelques propriétés de l'anneau des entiers de Gauss

- 1) Description des inversibles de $\mathbb{Z}[i]$.
- a) Soient u et v dans $\mathbb{Z}[i]$. On a : $N(uv) = uv\overline{uv} = u\overline{u}v\overline{v} = N(u)N(v)$. En outre : $\forall u \in \mathbb{Z}[i]$, $\exists (a,b) \in \mathbb{Z}^2$, u = a + ib. D'où : $N(u) = a^2 + b^2 \in \mathbb{N}$.

Conclusion.
$$\forall (u, v) \in \mathbb{Z}[i] \times \mathbb{Z}[i], \ N(uv) = N(u)N(v) \text{ et } \forall u \in \mathbb{Z}[i], \ N(u) \in \mathbb{N}$$

b) Si $u \in \mathbb{Z}$ [i] est inversible, alors il existe $v \in \mathbb{Z}$ [i] tel que : N(uv) = 1. D'après la question précédente, on en déduit que N(u) est un diviseur entier naturel de 1, ce qui implique : N(u) = 1.

Par conséquent, les entiers de Gauss u inversibles sont à rechercher parmi ceux vérifiant : N(u) = 1. Or $N(u) = 1 \Longrightarrow \operatorname{Re}^2(u) + \operatorname{Im}^2(u) = 1$. Par suite : u est inversible si et seulement si $\operatorname{Re}(u) = \pm 1$ et $\operatorname{Im}(u) = 0$; ou $\operatorname{Re}(u) = 0$ et $\operatorname{Im}(u) = \pm 1$. En résumé : $\mathbb{Z}[i]^* = \{\pm 1; \pm i\}$.

2) **Divisibilité dans** $\mathbb{Z}[\mathbf{i}]$. Soient u et v dans $\mathbb{Z}[\mathbf{i}]$, tels que u divise v dans $\mathbb{Z}[\mathbf{i}]$. Alors il existe $s \in \mathbb{Z}[\mathbf{i}]$ tel que : v = us. D'après la question 1-a, on en déduit que : N(v) = N(u)N(s), ce qui signifie que N(u) divise N(v) dans \mathbb{Z} .

Conclusion. $\forall (u, v) \in \mathbb{Z}[i] \times \mathbb{Z}[i], (u|v) \Longrightarrow (N(u)|N(v))$

3) a) Soit $z \in \mathbb{C}$. Posons $a = \lfloor \operatorname{Re}(z) \rfloor$ et a' = a + 1. On a alors : $|\operatorname{Re}(z) - a| \leq \frac{1}{2}$ ou (non exclusif) $|\operatorname{Re}(z) - a'| \leq \frac{1}{2}$. Appelons A un des deux entiers relatifs (a ou a') vérifiant cette condition.

De même, appelons B l'un des deux entiers relatifs b ou b' vérifiant $|\mathrm{Im}(z)-b|\leqslant \frac{1}{2}$ ou $|\mathrm{Im}(z)-b'|\leqslant \frac{1}{2}$.

Alors le nombre complexe $u = A + \mathrm{i} B$ est un entier de Gauss tel que : $N(z-u) \leqslant \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{2}$ d'où en particulier : N(z-u) < 1. Conclusion. $\forall z \in \mathbb{C}, \ \exists \, u \in \mathbb{Z} \, [\mathrm{i}], \ N(z-u) < 1$.

En général, on n'a pas unicité de l'entier de Gauss u: pour le complexe $z = \frac{1+\mathrm{i}}{2}$, les quatre entiers de Gauss $0, 1, \mathrm{i}$ et $1+\mathrm{i}$ conviennent.

b) Soient $u \in \mathbb{Z}[i]$ et $v \in \mathbb{Z}[i]^*$. On pose $z = \frac{u}{v}$, et on choisit $q \in \mathbb{Z}[i]$ tel que : $N\left(\frac{u}{v} - q\right) < 1$. On pose alors : r = u - qv. On a : u = qv + r, et $N(r) = N\left(\frac{u}{v} - q\right)N(v)$ donc N(r) < N(v) (l'inégalité est stricte puisque N(v) ne peut être nul).

Conclusion.
$$\forall (u, v) \in \mathbb{Z}[i] \times \mathbb{Z}[i]^*, \exists (q, r) \in \mathbb{Z}[i] \times \mathbb{Z}[i], [(u = vq + r) \land (N(r) < N(v))]$$

Remarque : on a ainsi prouvé qu'il existe une "pseudo"-division euclidienne dans $\mathbb{Z}[i]$. L'originalité de cette division par rapport à celle de \mathbb{Z} ou de $\mathbb{K}[X]$ est que l'on n'a pas unicité du quotient ni du reste, en vertu de la question précédente.

Partie II — PGCD dans l'anneau des entiers de Gauss

- 4) L'ensemble $A = \{N(w) / w \in I(u, v) \setminus \{0\}\}$ est non vide sous réserve que $(u, v) \neq (0, 0)$. En effet, dès lors que $u \neq 0$ on a $u \in I(u, v)$ et N(u) > 0 (de même si $v \neq 0$). De plus, A est une partie de \mathbb{N}^* ; elle possède donc un plus petit élément min A. On pose alors : $d = \min A > 0$.
- 5) Soient u et v deux entiers de Gauss, non simultanément nuls. Notons δ un élément de I(u,v) tel que $N(\delta) = d$. Notons que $\delta \neq 0$ puisque $(u,v) \neq (0,0)$.

Montrons que : $\delta \mathbb{Z}[i] \subset I(u,v)$. Puisque δ est un élément de I(u,v), il existe un couple d'entiers de Gauss (a,b) tel que : $\delta = au + bv$. Considérons alors un élément x quelconque de $\delta \mathbb{Z}[i]$. Il existe $c \in \mathbb{Z}[i]$ tel que : $x = c\delta$. Par suite : x = acu + bcv, d'où : $x \in I(u,v)$. D'où : $\delta \mathbb{Z}[i] \subset I(u,v)$.

Réciproquement, montrons que : $I(u,v) \subset \delta \mathbb{Z}[i]$. Soit x un élément de I(u,v). D'après la question 3-b, il existe un couple d'entiers de Gauss (q,r) tel que : $x=q\delta+r$, avec $N(r) < N(\delta)$.

Raisonnons par l'absurde et supposons que $r \neq 0$. Alors r est un élément de I(u,v) (puisque $r = x - \delta q$ et que x et δ sont dans I(u,v)), pour lequel : $0 < N(r) < N(\delta)$. Ce qui contredit la minimalité de $N(\delta)$. Par suite : r = 0. Donc : $x = q\delta$, ce qui assure que $x \in \delta \mathbb{Z}[i]$. D'où : $I(u,v) \subset \delta \mathbb{Z}[i]$.

D'après la règle de double inclusion : $I(u, v) = \delta \mathbb{Z}[i]$

Remarque : ce résultat permet de montrer que tout idéal de $\mathbb{Z}[i]$ est monogène ; on dit que l'anneau des entiers de Gauss est principal. On peut observer que le résultat tient encore dans le cas où u et v sont simultanément nuls, puisqu'alors : $I(u,v) = 0\mathbb{Z}[i] = \{0\}$.

6) Notons que $u \in I(u, v)$. D'après la question précédente, on a donc : $u \in \delta \mathbb{Z}$ [i]. Par suite, il existe un entier de Gauss a tel que : $u = \delta a$. En particulier : $\delta | u$. Le raisonnement s'appliquant également à v, on peut conclure : $\delta | u$ et $\delta | v$.

Soit w un entier de Gauss. Supposons que $w|\delta$. Puisqu'en outre $\delta|u$, la transitivité de la divisibilité permet d'affirmer que : w|u. On montre de façon analogue que w|v. Par suite : $[w|\delta] \Longrightarrow [w|u \wedge w|v]$.

Réciproquement, supposons que w|u et w|v. Alors il existe deux entiers de Gauss a et b tels que : u = aw et v = bw. De plus, $\delta \in \delta \mathbb{Z}[i]$ donc d'après la question précédente, $\delta \in I(u,v)$; il existe donc deux entiers de Gauss c et d tels que $\delta = cu + dv$. Par suite : $\delta = caw + dbw$ d'où $\delta = w(ca + db)$ donc : $w|\delta$. En résumé : $[w|u \wedge w|v] \Longrightarrow [w|\delta]$.

Conclusion. $[w|u \wedge w|v] \iff [w|\delta]$

Partie III — Entiers de Gauss premiers entre eux

7) Supposons que z et z' soient deux entiers de Gauss premiers entre eux. En reprenant les notations de la partie précédente, on a donc $\delta = \pm 1$ ou $\pm i$.

Par ailleurs, puisque $I(u,v) = \delta \mathbb{Z}$ [i] et que $\delta \in \delta \mathbb{Z}$ [i], il existe deux entiers de Gauss a et b tels que : $\delta = au + bv$.

En multipliant cette dernière égalité par $\bar{\delta}$ on obtient : $a(\bar{\delta}u) + b(\bar{\delta}v) = 1$. Il reste à voir que $\bar{\delta}u$ et $\bar{\delta}v$ sont deux entiers de Gauss, d'une part car l'anneau $\mathbb{Z}[i]$ est stable par conjugaison, et d'autre part car il est stable par produit (le produit étant une loi de composition interne dans $\mathbb{Z}[i]$).

En posant donc : $z = \overline{\delta}u$ et $z' = \overline{\delta}v$, on peut conclure :

Si u et v sont deux entiers de Gauss premiers entre eux, alors : $\exists (z, z') \in \mathbb{Z}[i]^2, uz + vz' = 1$.

8) Soit w un entier de Gauss tel que u|vw. D'après la question précédente, il existe un couple (z, z') d'entiers de Gauss tel que : uz + vz' = 1. D'où : uwz + vwz' = w. Il est immédiat que u|uwz, et par hypothèse on peut affirmer que u|vwz'. Donc u divise la somme de ces deux entiers, c'est à dire : u|w.

Conclusion. Si u et v sont deux entiers de Gauss premiers entre eux, alors : $[u|vw] \Longrightarrow [u|w]$.

Remarque : ce résultat est à mettre en parallèle avec le lemme de Gauss dans \mathbb{Z} : "soient a, b et c trois entiers. Si a|bc et a est premier avec b, alors a|c".

Partie IV — Entiers de Gauss irréductibles

9) Soit d un entier de Gauss, diviseur commun à u et v. Puisque d est en particulier un diviseur de u, et que u est irréductible, on a : $d = \pm 1$ ou $\pm i$ ou $\pm iu$.

Supposons que : $d = \pm u$ ou $\pm iu$. Alors $\pm u$ ou $\pm iu$ serait un diviseur de v (puisque d|v), ce qui impliquerait u|v : contradiction. Par suite : $d \pm 1$ ou $\pm i$; u et v sont donc premiers entre eux.

Conclusion. Si u est un entier de Gauss irréductible, et si u ne divise pas $v \in \mathbb{Z}[i]$, alors u et v sont premiers entre eux.

 $\frac{\text{Remarque}}{\text{avec tout entier qu'il ne divise pas}} : \text{\'en nombre premier est premier avec tout entier qu'il ne divise pas}".$

10) Soit u un entier de Gauss irréductible, et soit v un entier de Gauss. Prouvons la propriété de l'énoncé par disjonction des cas.

 $\underline{\text{Si }u|v}$: l'assertion est prouvée.

Si u ne divise pas v: d'après la question précédente, u et v sont premiers entre eux. D'après la question 7, il existe alors deux entiers de Gauss z et z' tels que : uz + vz' = 1. D'où : uwz + vwz' = w. Il est alors immédiat que u|uwz, et u|vwz' (par hypothèse). Donc u|uwz + vwz', soit : u|w.

Conclusion. Soient v et w dans $\mathbb{Z}[i]$. Si u est un entier de Gauss irréductible, et si u|vw, alors u|v ou u|w.

Remarque : énoncé à mettre en parallèle avec celui connu dans \mathbb{Z} : "soient a et b deux entiers, et p un nombre premier. Si p|ab, alors p|a ou p|b".

Partie V — Entiers sommes de deux carrés

On note $S = \{a^2 + b^2 / (a, b) \in \mathbb{Z}^2\}$. L'ensemble S est donc l'ensemble des entiers (naturels) s'écrivant comme sommes de deux carrés. L'objet de cette partie est de donner une description de S.

Questions 11) & 12): triviales.

- 13) Si $p \in S$, alors il existe deux entiers naturels a et b tels que $p = a^2 + b^2$. Or les valeurs possibles modulo 4 pour a^2 (ou b^2) sont 0 et 1. On en déduit que $a^2 + b^2$ est congru à 0, 1 ou 2 modulo 4. L'entier p étant supposé impair, on a donc nécessairement : $p \equiv 1$ [4].
- 14) a) Puisque $p \equiv 3$ [4], alors p est irréductible dans $\mathbb{Z}[i]$. Puisqu'en outre p divise n = (a + i b) (a i b), on en déduit que p divise (a + i b) ou (a i b) (d'après la question 10). Il reste à observer que p divise (a + i b) ou (a i b) dès lors qu'il divise l'un de ces deux entiers de Gauss pour conclure.
- b) D'après la question précédente, il existe un entier de Gauss u tel que : pu = a + ib. On a alors : $p\bar{u} = a ib$. Par suite : $p^2N(u) = n$. Donc p^2 divise n dans \mathbb{Z} .
- 15) On peut déjà s'assurer que tout entier de la forme décrite dans l'énoncé est effectivement dans S. Cela provient des observations suivantes :
- $ightharpoonup 2 = 1^2 + 1^2 \in S$. Par suite, d'après la question $12: 2^n \in S$ pour tout entier naturel n.
- ➤ Si p_i est un nombre premier tel que $p_i \equiv 1$ [4], alors $p_i \in S$ d'après l'indication de l'énoncé. Par suite, d'après la question $12: p_i^n \in S$ pour tout entier naturel n.
- ➤ Si p_i est un nombre premier tel que $p_i \equiv 3$ [4] et α_i pair. Alors il existe un entier naturel β_i tel que $\alpha_i = 2\beta_i$, d'où : $p_i^{\alpha_i} = (p_i^2)^{\beta_i}$. Or : $p_i^2 = p_i^2 + 0^2 \in S$. Par suite, d'après la question 12 : $p_i^{\alpha_i} \in S$ pour tout entier naturel n.

On en déduit que si n est de la forme proposée dans l'énoncé, alors $n \in S$.

Réciproquement, soit $n \in S$, avec $n \geqslant 1$. L'entier n admet une décomposition en facteurs premiers, que l'on peut écrire : $\prod_{i=1}^m p_i^{\alpha_i}$.

Le point à prouver est que la valuation p_i -adique de n est paire pour tout p_i est congru à 3 modulo 4. Ceci provient de la question précédente, puisque si un tel premier p_i divise n, alors p_i^2 divise n...