Colle 27 — Questions de cours

QUESTION DE COURS 1 — <u>Propriété</u>. Si la série $\sum u_n$ converge, alors $\lim_{n\to+\infty}u_n=0$

+ **RECIPROQUE FAUSSE!** La série $\sum \frac{1}{n}$ est divergente.

PREUVE. Avec les notations du cours, si la série de terme général u_n converge, alors il existe un réel ℓ telle que la suite des sommes partielles (S_N) converge vers ℓ . Il s'ensuit en particulier que $S_n - S_{n-1}$ tend vers 0 lorsque n tend vers $+\infty$, d'où la conclusion puisque : $S_n - S_{n-1} = u_n$.

Conclusion.
$$\left[\sum u_n \text{ converge}\right] \Longrightarrow \left[\lim_{n\to+\infty} u_n = 0\right]$$
.

Réciproque fausse. Posons pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{n}$.

Pour tout réel $x \in [n, n+1]$, on $a : \frac{1}{n} \geqslant \frac{1}{x}$.

En intégrant cette inégalité sur [n, n+1],* on obtient : $\frac{1}{n} \geqslant \int_{n}^{n+1} \frac{1}{x} dx$

D'où, pour tout $n \in \mathbb{N}^*$: $\frac{1}{n} \ge \ln(n+1) - \ln(n)$.

On en déduit "télescopiquement" que : $\forall N \in \mathbb{N}^*, \ \sum_{n=1}^N \frac{1}{n} \geqslant \ln(N+1).$

Il s'ensuit que la série $\sum \frac{1}{n}$ diverge.

Conclusion.
$$\left[\lim_{n\to+\infty}\frac{1}{n}=0\right]$$
 mais $\left[\sum\frac{1}{n}$ diverge $\right]$.

Exemple d'application. La série $\sum \left(\frac{n}{n+1}\right)^{-n^2}$ est divergente car $\lim_{n\to+\infty} \left(\frac{n}{n+1}\right)^{-n^2} = +\infty$.

QUESTION DE COURS 2 — <u>Exercice</u>. Montrer que la série $\sum \frac{1}{n(n+1)(n+2)}$ est convergente, puis calculer sa somme.

PREUVE. Posons : $u_n = \frac{1}{n(n+1)(n+2)}$. Il est clair que u_n est positif, et que $u_n \sim_{+\infty} \frac{1}{n^3}$. On en déduit que la série $\sum u_n$ converge, puisque son terme général est positif et équivalent au terme général d'une série de Riemann convergente ($\alpha = 3 > 1$).

Calculons sa somme. On commence par observer que : $\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{2} \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2} \right)$.

On en déduit que pour tout entier naturel N non nul on a :

$$S_N = \sum_{n=1}^N u_n = \frac{1}{2} \left[\sum_{n=1}^N \left(\frac{1}{n} - \frac{1}{n+1} \right) + \sum_{n=1}^N \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right] = \frac{1}{2} \left[1 - \frac{1}{N+1} + \frac{1}{2} - \frac{1}{N+2} \right]$$

^{*.} Et par croissance de l'intégrale.

Par suite : $\lim_{N \to +\infty} S_N = \frac{3}{4}$.

Conclusion. La série
$$\sum \frac{1}{n(n+1)(n+2)}$$
 est convergente, et $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{3}{4}$

QUESTION DE COURS 3 — Propriété (séries géométriques). Soit $q \in \mathbb{C}$.

La série $\sum q^n$ converge si et seulement si |q| < 1. Et dans ce cas : $\sum_{n \in \mathbb{N}} q^n = \frac{1}{1-q}$.

Preuve. Lorsque q est de module supérieur ou égal à 1, la série de terme général q^n diverge grossièrement.

 $\text{Lorsque } |q|<1, \text{ on a : } \sum_{n=0}^{N}q^n=\frac{1-q^{N+1}}{1-q}. \text{ Puisque : } \lim_{N\to+\infty}q^{N+1}=0, \text{ on en déduit que la série de terme}$

général q^n converge, et que : $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$. Conclusion. $\left[\sum q^n \text{ converge}\right] \iff [|q| < 1]$.

Exemple d'application. La série $\sum \frac{1}{2^n}$ est convergente et $\sum_{n=0}^{+\infty} \frac{1}{2^n} = 2$. En revanche, la série de terme général $\sum e^{in\theta}$ diverge (grossièrement) pour toute valeur du réel θ .

QUESTION DE COURS 4 — <u>Propriété (équivalents)</u>. Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \sim_{+\infty} v_n$. Les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

PREUVE. Puisque les suites u et v sont réelles positives, et que $u_n \sim_{+\infty} v_n$, il existe une suite (φ_n) réelle positive telle que :

$$[\forall n \in \mathbb{N}, u_n = \varphi_n v_n]$$
 et $\left[\lim_{n \to +\infty} \varphi_n = 1\right]$

En particulier, pour n suffisamment grand : $\frac{1}{2} \leqslant \varphi_n \leqslant \frac{3}{2}$

D'où, pour n suffisamment grand : $\frac{1}{2}v_n \leqslant u_n \leqslant \frac{3}{2}v_n$.

Si la série $\sum v_n$ converge, alors la série $\sum \frac{3}{2}v_n$ converge, et on en déduit que la série $\sum u_n$ converge d'après la propriété de comparaison pour les séries à termes positifs.

En revanche, si la série $\sum v_n$ diverge, alors la série $\sum \frac{1}{2}v_n$ diverge, et on en déduit que la série $\sum u_n$ diverge, encore une fois par comparaison.

Conclusion. Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \sim_{+\infty} v_n$. Les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Exemple d'application. La série $\sum \sin\left(\frac{1}{n}\right)$ est divergente; la série $\sum \ln\left(1 + \frac{1}{n^3}\right)$ est convergente.

QUESTION DE COURS 5 — Propriété (négligeabilité). Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n = o(v_n)$. Si $\sum v_n$ converge, alors $\sum u_n$ converge.

PREUVE. Puisque les suites u et v sont réelles positives, et que $u_n = o(v_n)$, il existe une suite (φ_n) réelle positive telle que :

$$[\forall n \in \mathbb{N}, u_n = \varphi_n v_n]$$
 et $\left[\lim_{n \to +\infty} \varphi_n = 0\right]$

En particulier, pour *n* suffisamment grand : $0 \le \varphi_n \le \frac{1}{2}$

D'où, pour n suffisamment grand : $0 \le u_n \le \frac{1}{2}v_n$.

La série $\sum v_n$ étant convergente par hypothèse, on en déduit que la série $\sum u_n$ converge d'après la propriété de comparaison pour les séries à termes positifs, d'où la conclusion.

Conclusion. Soient (u_n) et (v_n) deux suites réelles positives, telles que $u_n = o(v_n)$. Si $\sum v_n$ converge, alors $\sum u_n$ converge.

Exemple d'application. La série
$$\sum \underbrace{\frac{\ln(n)}{n^2}}_{=u_n}$$
 est convergente, puisque $u_n \geqslant 0$ et $\lim_{n \to +\infty} n^{3/2} u_n = 0$.

QUESTION DE COURS 6 — <u>Propriété ("AC \Longrightarrow C")</u>. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . Si la série $\sum u_n$ est absolument convergente, alors elle est convergente.

PREUVE. Soit (u_n) une suite à valeurs dans \mathbb{C} , telle que la série $\sum |u_n|$ converge.

- ightharpoonup 1er cas Si (u_n) est réelle positive. Alors $\sum u_n$ converge, puisque $|u_n|=u_n\ldots$
- > 2ème cas Si (u_n) est réelle. Posons pour tout entier n:

$$u_n^+ = \max(0, u_n)$$
 et $u_n^- = \min(0, u_n)$

Pour tout entier n, on a:

$$u_n = u_n^+ + u_n^-$$
 et $|u_n| = u_n^+ - u_n^-$

La série de terme général u_n^+ converge (hypothèse + positivité + comparaison), donc la série de terme général u_n^- converge (ce qui précède + linéarité). On en déduit que la série de terme général u_n converge.

> 3ème cas — Si (u_n) est complexe. Pour tout entier n, on a :

$$|\operatorname{Re}(u_n)| \leqslant |u_n|$$
 et $|\operatorname{Im}(u_n)| \leqslant |u_n|$

Puisque la série de terme général $|u_n|$ converge, on en déduit par comparaison que les séries de termes généraux respectifs $|\text{Re}(u_n)|$ et $|\text{Im}(u_n)|$ convergent, puis (d'après le second cas) que les séries de termes généraux respectifs $|\text{Re}(u_n)|$ et $|\text{Im}(u_n)|$ convergent, d'où la conclusion.

Exemple d'application. La série $\sum \frac{(-1)^n}{n^2}$ est convergente, car absolument convergente.