MPSI - Colle 27 (5 au 9 juin 2023) : Séries numériques

Chapitre 26 : Séries numériques

1 – Généralités

Dans ce paragraphe, on note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

<u>**Définition**</u>. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . Pour tout entier naturel N,

on appelle somme partielle de rang N (de (u_n)) le scalaire : $S_N = \sum_{n=0}^N u_n$.

Exemples: dans le cas où la suite (u_n) est télescopique, ie s'il existe une suite (v_n) telle que pour tout entier n on a $u_n = v_{n+1} - v_n$, alors pour tout entier naturel

N on a:
$$S_N = \sum_{n=0}^N u_n = \sum_{n=0}^N (v_{n+1} - v_n) = v_{N+1} - v_0.$$

Et dans celui où la suite (u_n) est géométrique, ie s'il existe un scalaire $q \neq 1$ tel que pour tout entier n on a $u_n = u_0 q^n$, alors pour tout entier naturel N on a :

$$S_N = \sum_{n=0}^{N} u_0 q^n = u_0 \times \frac{1 - q^{N+1}}{1 - q}.$$

<u>Définition (série)</u>. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . On appelle série de terme général u_n la suite des sommes partielles $(S_N)_N$ de la suite (u_n) .

Une série numérique n'est donc qu'un cas particulier de suite.

Notation. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . Dans ces lignes, on notera $\sum u_n$ la série de terme général u_n .

<u>Définition</u> (convergence, divergence). Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . La série $\sum u_n$ est convergente (resp. divergente) lorsque la suite de ses sommes partielles $(S_N)_N$ est convergente (resp. divergente).

On obtient comme conséquence immédiate de la propriété de convergence des suites extraites l'énoncé ci-dessous.

<u>Propriété</u>. Si la série $\sum u_n$ converge, alors $\lim_{n\to+\infty} u_n = 0$.

Remarque. La réciproque est évidemment <u>FAUSSE</u>. Il se peut très bien que $\lim_{n\to+\infty}u_n=0$, et que la série u_n soit divergente. L'exemple d'illustration le plus

fameux de cette situation est fourni par la série harmonique $\sum \frac{1}{n}$, puisque la somme partielle de rang N associée est minorée par une expression tendant vers

$$+\infty$$
, explicitement : $S_N = \sum_{n=1}^N \frac{1}{n} \geqslant \ln(N+1)$.

La contraposée de la propriété précédente donne naissance à la notion de divergence grossière.

<u>Propriété</u>. Si u_n ne tend pas vers 0, alors la série $\sum u_n$ diverge. On parle dans ce cas de **divergence grossière**.

Remarque. Ultime observation générale sur les séries : la notion de convergence d'une série $(\sum u_n)$ est une notion asymptotique, et ne dépend pas des premiers termes de (u_n) . En clair, on ne modifie pas la nature (convergente ou divergente) d'une série en modifiant un nombre fini de termes de la suite (u_n) .

2 - Premières séries de référence

<u>Propriété (séries géométriques)</u>. Soit $q \in \mathbb{C}$. La série $\sum q^n$ converge si et seulement si |q| < 1. Dans ce cas : $\sum_{n \in \mathbb{N}} q^n = \frac{1}{1-q}$.

<u>Propriété (séries télescopiques)</u>. Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. La série $\sum (u_{n+1} - u_n)$ converge si et seulement si $\lim_{t \to \infty} u_n = \ell \in \mathbb{R}$. Dans ce cas : $\sum_{n \in \mathbb{N}} (u_{n+1} - u_n) = \ell - u_0$.

<u>Propriété (séries de Riemann)</u>. Soit $\alpha \in \mathbb{R}$. La série $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

3 - Séries à termes positifs

Dans ce paragraphe, les séries considérées ont des termes généraux dans \mathbb{R}_+ . Dans ce contexte, les suites des sommes partielles seront positives et croissantes.

Propriété (comparaison). Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \leq v_n$ à partir d'un certain rang. Si la série $\sum v_n$ $(resp. \sum u_n)$ converge (resp. diverge), alors la série $\sum u_n$ $(resp. \sum v_n)$ converge (resp. diverge).

- ➤ Application 1. Pour $n \in \mathbb{N}^*$, on a : $\frac{1}{n\cos^2(n)} \ge \frac{1}{n}$. Il s'ensuit que la série $\sum \frac{1}{n\cos^2(n)}$ diverge.
- ➤ Application 2. Pour $n \in \mathbb{N}$, $n \ge 2$, on a : $\frac{1}{n^2+1} \le \frac{1}{n^2}$. Il s'ensuit que la série $\sum \frac{1}{n^2+1}$ converge.

Séries 2

Propriété (équivalents). Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \sim_{+\infty} v_n$. Les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Propriété (négligeabilité). Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n = o(v_n)$. Si $\sum v_n$ converge, alors $\sum v_n$ converge.

<u>Corollaire</u>. Soit (u_n) une suite réelle positive. Si $\lim_{+\infty} n^2 u_n = 0$, alors la série $\sum u_n$ converge.

Plus généralement d'ailleurs, si $\lim_{+\infty} n^{\alpha} u_n = 0$ pour un réel $\alpha > 1$, alors la série $\sum u_n$ converge.

<u>Propriété (domination)</u>. Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n = O(v_n)$. Si $\sum v_n$ converge, alors $\sum u_n$ converge.

<u>Propriété (comparaison série-intégrale)</u>. Soit f une fonction à valeurs réelles, continue, positive et décroissante sur \mathbb{R}_+ . La série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f$ sont de même nature.

4 - Convergence absolue

Dans ce paragraphe, on revient au cas général, en considérant des suites (u_n) à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

QUESTIONS DE COURS

- **Propriété**. Si la série $\sum u_n$ converge, alors $\lim_{n\to+\infty} u_n = 0 + \text{RECIPROQUE}$ FAUSSE!
- **Exercice**. Montrer que la série $\sum \frac{1}{n(n+1)(n+2)}$ est convergente, puis calculer sa somme.
- ▶ Propriété (séries géométriques). Soit $q \in \mathbb{C}$. La série $\sum q^n$ converge si et seulement si |q| < 1. Dans ce cas : $\sum_{n \in \mathbb{N}} q^n = \frac{1}{1 q}$.

Les suivantes sont sur le principe du volontariat

<u>Définition</u>. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . La série $\sum u_n$ est absolument convergente si la série $\sum |u_n|$ converge.

Exemple: pour tout réel θ , et pour tout réel $\alpha > 1$, la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$ est absolument convergente.

Propriété. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . Si la série $\sum u_n$ est absolument convergente, alors elle est convergente.

Remarque 1. Cette propriété est d'une grande importance pratique, puisqu'elle permet de ramener l'étude des séries en général à celle des séries à termes positifs (pour lesquelles on dispose d'un "arsenal" impressionnant, cf paragraphe précédent).

Remarque 2. La remarque précédente a cependant ses limites, dans le sens où la réciproque de la propriété est <u>fausse</u>. Il existe en effet des séries qui sont convergentes, mais non absolument convergentes; de telles séries sont dites **semiconvergentes**. L'exemple le plus célèbre de série semi-convergente est la série $\sum_{n\in\mathbb{N}^*} \frac{(-1)^{n+1}}{n} : \text{en effet, celle-ci converge et a pour somme ln 2 (conséquence de$

Taylor avec reste intégrale), mais elle n'est évidemment pas absolument convergente (la série des modules est la série harmonique).

- ▶ Propriété (équivalents). Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \sim_{+\infty} v_n$. Les séries $\sum u_n$ et $\sum v_n$ sont de même nature.
- Propriété (négligeabilité). Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n = o(v_n)$. Si $\sum v_n$ converge, alors $\sum v_n$ converge.
- ▶ Propriété ("AC \Longrightarrow C"). Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . Si la série $\sum u_n$ est absolument convergente, alors elle est convergente.