CONCOURS BLANC JUIN 2023

MATHÉMATIQUES

Durée: 4 heures

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Les résultats doivent être **soulignés** ou **encadrés**.
- Ecrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Le sujet est composé de 4 exercices indépendants.

EXERCICE 1 — **(PROBABILITÉS).** Soit $m \in \mathbb{N}$. On rappelle que :

$$\lim_{n \to +\infty} \left[\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{k}{n} \right)^m \right] = \frac{1}{m+1}$$

Soient k et n dans de \mathbb{N}^* . On dispose de k urnes contenant chacune n boules numérotées de 1 à n.

On tire une boule au hasard de chaque urne et on désigne par X_n la variable aléatoire égale au plus grand des numéros obtenus. On suppose que les tirages sont indépendants les uns des autres.

- 1. Donner l'ensemble J des valeurs prises par X_n .
- **2.** Soit $j \in J$. Calculer $P(X_n \leq j)$, et prouver que l'on a : $P(X_n = j) = \frac{j^k (j-1)^k}{n^k}$.
- 3. On admet que l'espérance de la variable aléatoire X_n peut s'écrire :

$$\mathbf{E}(X_n) = \sum_{j=0}^{n-1} P(X_n > j)$$

Etablir que : $\mathbf{E}(X_n) \sim_{+\infty} \frac{nk}{k+1}$

EXERCICE 2 — (ANALYSE). On rappelle que :

$$\forall n \in \mathbb{N}, \ \forall x \in]-1,1[, \frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n)$$

- 1. Calculer le développement limité à l'ordre 3 en 0 de la fonction arctan.
- 2. Etablir que:

$$\frac{1}{t} - \arctan\left(\frac{1}{t}\right) = O_{+\infty}\left(\frac{1}{t^3}\right)$$

3. Etablir que :

$$\forall t \in \mathbb{R}_+^*, \quad \arctan(t) + \arctan\left(\frac{1}{t}\right) = \frac{\pi}{2}$$

4. Pour tout réel A > 1, on pose :

$$I(A) = \int_{1}^{A} \frac{1}{t} - \arctan\left(\frac{1}{t}\right) dt$$

a. Etablir que :

$$I(A) = \frac{\pi}{4} - A \arctan\left(\frac{1}{A}\right) + \ln\left(\sqrt{\frac{2A^2}{1+A^2}}\right)$$

b. Calculer $L = \lim_{A \to +\infty} I(A)$

Exercice 3 — (Algèbre linéaire).

Contexte et notations. L'objectif de cet exercice est d'étudier quelques propriétés de l'application

$$f_n: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

$$P \longmapsto nP + (1-X)P' + XP''$$

où n désigne un entier naturel supérieur ou égal à 2.

On rappelle que :

- \triangleright $\mathbb{R}_n[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré au plus n, n étant un entier naturel;
- ➤ un polynôme unitaire désigne un polynôme de coefficient dominant égal à 1;
- \triangleright pour un \mathbb{R} -espace vectoriel $E, \mathcal{L}(E)$ désigne le \mathbb{R} -espace vectoriel des endomorphismes de E;
- ightharpoonup lorsque $f \in \mathcal{L}(E)$, on notera $\operatorname{Ker}(f)$ le noyau de f, et $\operatorname{Im}(f)$ son image;
- > on utilisera l'abréviation "sev" pour "sous-espace vectoriel".

Première partie

Dans cette partie seulement, on suppose n=2

On étudie donc, dans cette partie, l'application :

$$f_2: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto 2P + (1-X)P' + XP''$$

- **1.** Etablir que l'application f_2 est un endomorphisme de $\mathbb{R}_2[X]$.
- **2.** Déterminer le noyau de f_2 , et vérifier que Ker (f_2) est un sev de dimension 1 de $\mathbb{R}_2[X]$.
- 3. Calculer l'image de f_2 . Déterminer une base de $\operatorname{Im}(f_2)$, et en déduire sa dimension.
- 4. Démontrer que :

$$\mathbb{R}_2[X] = \operatorname{Ker}(f_2) \bigoplus \operatorname{Im}(f_2)$$

5. L'endomorphisme f_2 est-il un projecteur de $\mathbb{R}_2[X]$?

DEUXIÈME PARTIE

Dans cette partie, on revient au cas général où n désigne un entier naturel ≥ 2 .

On admet que $f_n \in \mathscr{L}(\mathbb{R}_n[X])$.

6. Etablir que :

$$\forall k \in [0, n-1], \operatorname{deg}(f_n(X^k)) = k$$

7. En déduire que la famille :

$$\mathscr{F}_{1} = \{f_{n}(1), f_{n}(X), \dots, f_{n}(X^{n-1})\}\$$

est libre.

- **8.** Justifier que la famille \mathscr{F}_1 est une base de $\mathbb{R}_{n-1}[X]$.
- 9. Etablir que la famille :

$$\mathscr{F}_{2} = \{f_{n}(1), f_{n}(X), \dots, f_{n}(X^{n-1}), f_{n}(X^{n})\}\$$

est liée.

- 10. A l'aide des questions 8 et 9, établir que :
 - **a.** Im $(f_n) = \mathbb{R}_{n-1}[X]$;
 - **b.** il existe un unique polynôme U_n unitaire et de degré n dans $\operatorname{Ker}(f_n)$.
- 11. Justifier que:

$$\dim (\operatorname{Ker} (f_n)) \geqslant 1$$

12. Etablir que :

$$\operatorname{Ker}(f_n) = \operatorname{Vect}(U_n)$$

13. Etablir que:

$$\mathbb{R}_n[X] = \operatorname{Ker}(f_n) \bigoplus \operatorname{Im}(f_n)$$

Exercice 4 — (Dérivation et polynômes).

NOTATIONS. Soit $n \in \mathbb{N}$. On pose, pour tout réel x:

$$\Phi_n(x) = x^n e^{-x}$$
 et $L_n(x) = \frac{e^x}{n!} \Phi_n^{(n)}(x)$

Pour toute fonction f de classe \mathscr{C}^n sur \mathbb{R} et pour tout réel x, on notera :

$$f^{(n)}(x) = \frac{\mathrm{d}^n(f(x))}{\mathrm{d}x^n}$$

la valeur de la dérivée n-ème de f en x.

1. Soit n un entier naturel. Etablir que :

$$\forall k \in [0, n], \qquad \frac{\mathrm{d}^k(x^n)}{\mathrm{d}x^k} = \frac{n!}{(n-k)!} x^{n-k}$$

2. Calculer L_0 , L_1 et L_2 .

Dans toute la suite, n est un entier naturel non nul.

3. En utilisant la formule de Leibniz, démontrer que la fonction L_n est polynomiale de degré n. Déterminer les coefficients $c_{n,k}$ tels que pour tout réel x:

$$L_n(x) = \sum_{k=0}^{n} c_{n,k} x^k$$

- **4.** Pour tout nombre réel x, exprimer $\Phi_n^{(n)}(x)$ et $\Phi_n^{(n+1)}(x)$ en fonction de $L_n(x)$ et $L'_n(x)$.
- **5.** Soit x un nombre réel. Justifier brièvement que :

$$\Phi_{n+1}^{(n+1)}(x) = \frac{\mathrm{d}^{n+1}(x\Phi_n(x))}{\mathrm{d}x^{n+1}}$$

6. Soit x un nombre réel. A l'aide de la question précédente, établir que :

$$L_{n+1}(x) = \left(1 - \frac{x}{n+1}\right)L_n(x) + \frac{x}{n+1}L_n'(x)$$

7. Soit x un nombre réel. Etablir que :

$$\Phi_{n+1}'(x) = (n+1)\Phi_n(x) - \Phi_{n+1}(x)$$

8. Soit x un nombre réel. A l'aide de la question précédente et de l'égalité

$$\Phi_{n+1}^{(n+2)}(x) = \frac{\mathrm{d}^{n+1} \left(\Phi_{n+1}'(x)\right)}{\mathrm{d}x^{n+1}}$$

que l'on pourra utiliser sans démonstration, établir que :

$$L_{n+1}'(x) = L_n'(x) - L_n(x)$$

9. En déduire que L_n est solution de l'équation différentielle :

$$ny(x) + (1 - x)y'(x) + xy''(x) = 0$$

10. En déduire qu'il existe un réel non nul α tel que $L_n = \alpha U_n$, où U_n est le polynôme introduit dans la question 10-b de l'exercice 3.