Dycee Jean Dari - MF31 - 4 octobre 2025

Colle 4 – Questions de cours

QUESTION DE COURS N⁰1 — **Exercice** : résoudre dans \mathbb{R} l'équation $\operatorname{ch}(x) = 2$.

Soit x un nombre réel. On a :

$$ch(x) = 2 \iff \frac{e^x + e^{-x}}{2} = 2 \iff e^x + e^{-x} = 4 \iff e^x - 4 + e^{-x} = 0 \iff e^{2x} - 4e^x + 1 = 0$$
 (4)

Posons alors : $X = e^x$. L'équation se réécrit : $X^2 - 4X + 1 = 0$. C'est une équation du second degré, de discriminant $\Delta = 12 = \left(2\sqrt{3}\right)^2$. Elle possède donc exactement deux racines réelles :

$$\frac{4 \pm 2\sqrt{3}}{2} \qquad \text{càd} \qquad 2 \pm \sqrt{3}$$

Par suite:

$$ch(x) = 2 \Longleftrightarrow e^x = 2 \pm \sqrt{3}$$

Après avoir observé que $2+\sqrt{3}$ et $2-\sqrt{3}$ sont des réels strictement positifs, on peut conclure :

$$ch(x) = 2 \iff x = \ln(2 + \sqrt{3})$$
 ou $x = \ln(2 - \sqrt{3})$

QUESTION DE COURS N⁰2 — **Propriété**: soient f et g deux fonctions à valeurs réelles définies sur un intervalle ouvert I de \mathbb{R} , et soit $a \in I$. Si f et g sont dérivables en a, alors (fg) est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a).

Puisque f et g sont dérivables en a, elles admettent un DL1 en a. Pour tout réel h (tel que $(a+h) \in I$) on a donc :

$$f(a+h) = f(a) + hf'(a) + h\varepsilon_1(h)$$
 et $g(a+h) = g(a) + hg'(a) + h\varepsilon_2(h)$ avec $\lim_{h\to 0} \varepsilon_1(h) = \lim_{h\to 0} \varepsilon_2(h) = 0$

D'où pour tout h (tque $(a+h) \in I$) : $(fg)(a+h) = [f(a) + hf'(a) + h\varepsilon_1(h)] \times [g(a) + hg'(a) + h\varepsilon_2(h)]$

Ainsi :
$$(fg)(a+h) = f(a)g(a) + hf(a)g'(a) + hf(a)\varepsilon_2(h) + hf'(a)g(a) + h^2f'(a)g'(a)$$

$$+h^2f'(a)\varepsilon_2(h)+hg(a)\varepsilon_1(h)+h^2g'(a)\varepsilon_1(h)+h^2\varepsilon_1(h)\varepsilon_2(h)$$

D'où:
$$(fg)(a+h) = (fg)(a) + h(f'(a)g(a) + f(a)g'(a)) + h\varepsilon_3(h)$$
 (\spadesuit)

(en ayant posé :
$$\varepsilon_3(h) = f(a)\varepsilon_2(h) + hf'(a)g'(a) + hf'(a)\varepsilon_2(h) + g(a)\varepsilon_1(h) + hg'(a)\varepsilon_1(h) + h\varepsilon_1(h)\varepsilon_2(h)$$
)

Puisque qu'il est clair que $\lim_{h\to 0} \varepsilon_3(h) = 0$, on en déduit que la fonction (fg) admet un DL1 en a. A ce titre,

elle est dérivable en a, et on déduit de (\spadesuit) que : (fg)'(a) = f'(a)g(a) + f(a)g'(a).

QUESTION DE COURS N⁰4 — **Exercice**.
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

En effet, pour tout
$$n \in \mathbb{N}^*$$
, on a : $\left(1 + \frac{1}{n}\right)^n = e^{n\ln\left(1 + \frac{1}{n}\right)}$ (\spadesuit).

Par ailleurs: $\forall h > -1$, $\ln(1+h) = h + h\varepsilon(h)$ avec $\lim_{h\to 0} \varepsilon(h) = 0$.*

En posant h=1/n (avec $n\in\mathbb{N}^*$), le réel h tend vers 0 lorsque n tend vers $+\infty$, et il s'ensuit que :

$$\forall n \in \mathbb{N}^*, \ln\left(1+\frac{1}{n}\right) = \frac{1}{n} + \frac{1}{n} \varepsilon\left(\frac{1}{n}\right) \text{ avec } \lim_{n \to +\infty} \varepsilon\left(\frac{1}{n}\right) = 0$$

^{*.} C'est le développement limité (DL) à l'ordre 1 en 0 de $\ln(1+h)$, qui est un DL de référence. Vous pouvez donc l'écrire sans avoir à le démontrer. Je vous conseille néanmoins de savoir que c'est une application du théorème faisant l'objet de la question de cours 3.

D'où pour tout entier naturel n non nul : $n \ln \left(1 + \frac{1}{n}\right) = 1 + \varepsilon \left(\frac{1}{n}\right)$ avec $\lim_{n \to +\infty} \varepsilon \left(\frac{1}{n}\right) = 0$.

Par suite : $\lim_{n \to +\infty} n \ln \left(1 + \frac{1}{n} \right) = 1 \ (\heartsuit)$. On déduit de (\clubsuit) et (\heartsuit) que : $\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$.

QUESTION DE COURS N⁰3 — **Théorème** : f est dérivable en a SSI il existe un réel ℓ et une fonction ε définie au voisinage de zéro tels que :

 $\forall h \in \mathbb{R}, \ (a+h) \in I, \ f(a+h) = f(a) + \ell h + h \varepsilon(h) \text{ avec } \lim_{h \to 0} \varepsilon(h) = 0.$

Càd : f est dérivable en a SSI f admet un **développement limité à l'ordre** 1 au voisinage de a

On raisonne par double implication pour établir l'équivalence de l'énoncé.

 \triangleright Sens direct : supposons que f soit dérivable en a.

On écrit, pour tout réel h (tel que $(a+h) \in I$):

$$f(a+h) = f(a) + hf'(a) + f(a+h) - f(a) - hf'(a)^{\dagger}$$

D'où:
$$f(a+h) = f(a) + hf'(a) + h\left(\frac{f(a+h) - f(a)}{h} - f'(a)\right)$$
 d'où:
$$\frac{f(a+h) - f(a)}{h} = \frac{f(a+h) - f(a)}{h} = \frac{f(a+h) - f(a)}{h}$$

en ayant posé : $\varepsilon(h) = \frac{f(a+h) - f(a)}{h} - f'(a)$.

Or, f étant dérivable en a, on a : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$ et donc $\lim_{h\to 0} \varepsilon(h) = 0$.

En résumé, on a établi l'implication :

$$[f \text{ est d\'erivable en } a] \Longrightarrow \Big[\forall h \in \mathbb{R}, \ (a+h) \in I, \ f(a+h) = f(a) + \ell h + h \varepsilon(h) \text{ avec } \lim_{h \to 0} \varepsilon(h) = 0 \Big] \quad (\heartsuit)$$

▶ Réciproquement : supposons qu'il existe un réel ℓ tel que f vérifie : $f(a+h) = f(a) + \ell h + h\varepsilon(h)$ avec $\lim_{h\to 0} \varepsilon(h) = 0$.

Alors pour tout réel h non nul tel que $(a+h) \in I$, on a : $\frac{f(a+h)-f(a)}{h} = \ell + \varepsilon(h)$.

D'où : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \ell$. Ce qui signifie que la fonction f est dérivable en a (et que $f'(a)=\ell$). Ce qui assure que :

$$\left[\forall\,h\in\mathbb{R},\;(a+h)\in I,\;f(a+h)=f(a)+\ell h+h\varepsilon(h)\;\mathrm{avec}\;\lim_{h\to 0}\varepsilon(h)=0\right]\Longrightarrow [f\;\mathrm{est}\;\mathrm{d\acute{e}rivable}\;\mathrm{en}\;a]$$

Conclusion. f est dérivable en a SSI il existe un réel ℓ et une fonction ε définie au voisinage de zéro tels que :

$$\forall h \in \mathbb{R}, \ (a+h) \in I, \ f(a+h) = f(a) + \ell h + h \varepsilon(h) \text{ avec } \lim_{h \to 0} \varepsilon(h) = 0.$$

^{†.} Diabolique, n'est-ce pas?