Colle 13 - Questions de cours

QUESTION DE COURS N°1 — Somme des termes d'une suite géométrique. Soit $q \in \mathbb{C}$, $q \neq 1$. On a :

$$\forall\,n\in\,\mathbb{N},\quad \sum_{k=0}^nq^k=\frac{1-q^{n+1}}{1-q}.$$

On peut refaire la preuve par récurrence vue en septembre, c'est une solution.

Voici une autre preuve, pour changer. Soient $q \in \mathbb{C} \setminus \{1\}$, et $n \in \mathbb{N}$. On pose : $S_n = \sum_{k=0}^n q^k$. On a :

$$(q-1) S_n = qS_n - S_n = \sum_{k=0}^n q^{k+1} - \sum_{k=0}^n q^k = \sum_{k=0}^n (q^{k+1} - q^k) \underset{telescop.}{=} q^{n+1} - 1$$

Ainsi : $(q-1)S_n = q^{n+1} - 1$. D'où (puisque $q \neq 1$) : $S_n = \frac{q^{n+1} - 1}{q-1} = \frac{1 - q^{n+1}}{1 - q}$.

Question de cours $\mathbb{N}^0 2$ — Application du binôme de Newton. $\forall n \in \mathbb{N}, \sum_{k=0}^n \binom{n}{k} = 2^n$ et $\sum_{k=0}^n k \binom{n}{k} = n2^{n-1}$

Soit n un entier naturel $\geqslant 2$. On définit sur $\mathbb R$ une fonction f en posant : $\forall x \in \mathbb R, \ f(x) = (1+x)^n \ (\spadesuit)$

D'après la formule du binôme de Newton : $\forall x \in \mathbb{R}, \ f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k \ (\heartsuit)$

En calculant f(1) à l'aide des formules (\spadesuit) et (\heartsuit) , on obtient : $\left|\sum_{k=0}^{n} \binom{n}{k}\right| = 2^n$

La fonction f est dérivable (TG) sur \mathbb{R} , et on obtient deux expressions pour sa dérivée en utilisant les formules (\spadesuit) et (\heartsuit).

D'une part : $\forall x \in \mathbb{R}, \ f'(x) = n(1+x)^{n-1} \ (\diamondsuit)$ Et d'autre part : $\forall x \in \mathbb{R}, \ f'(x) = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1} \ (\clubsuit)$

En calculant f'(1) à l'aide des formules (\diamondsuit) et (\clubsuit) , on obtient : $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1} = \sum_{k=0}^{n} k \binom{n}{k}$

QUESTION DE COURS N°3 — Exercice classique. Calcul de $\sum_{k=0}^{n} \cos{(k\theta)}$.

Soient n et k deux entiers naturels et θ un réel. On a : $\cos{(k\theta)} = \text{Re}\left(e^{\mathrm{i}k\theta}\right)$.

Par conséquent :

$$\sum_{k=0}^{n} \cos(k\theta) = \sum_{k=0}^{n} \operatorname{Re}\left(e^{ik\theta}\right) \iff \sum_{k=0}^{n} \cos(k\theta) = \operatorname{Re}\left(\sum_{k=0}^{n} e^{ik\theta}\right)$$

Il "ne reste plus qu'à" calculer la somme entre parenthèses pour achever la question de cours. En effet, en posant :

$$S_n = \sum_{k=0}^n e^{ik\theta}$$
, on a donc : $\sum_{k=0}^n \cos(k\theta) = \text{Re}(S_n)$ (\spadesuit)

Or:
$$S_n = \sum_{k=0}^n e^{ik\theta} \iff S_n = \sum_{k=0}^n (e^{i\theta})^k$$

 S_n est une somme géométrique de raison $e^{i\theta}$. On peut donc lui appliquer la formule que vous connaissez bien¹, sous réserve que $e^{i\theta} \neq 1$, c'est-à-dire si $\theta \neq 0$ [2 π].

^{1.} Celle de la question de cours 1 de cette colle.

On suppose donc $\theta \neq 0$ [2 π]. Alors :

$$S_n = \frac{1 - \left(e^{\mathrm{i}\theta}\right)^{n+1}}{1 - e^{\mathrm{i}\theta}} \iff S_n = \frac{1 - e^{\mathrm{i}(n+1)\theta}}{1 - e^{\mathrm{i}\theta}} \iff S_n = \frac{e^{\mathrm{i}\left(\frac{n+1}{2}\right)\theta} \left(e^{-\mathrm{i}\left(\frac{n+1}{2}\right)\theta} - e^{\mathrm{i}\left(\frac{n+1}{2}\right)\theta}\right)}{e^{\mathrm{i}\frac{\theta}{2}} \left(e^{-\mathrm{i}\frac{\theta}{2}} - e^{\mathrm{i}\frac{\theta}{2}}\right)}$$
 (technique de "l'angle-moitié")

$$\iff S_n = e^{\mathrm{i}\left(\frac{n\theta}{2}\right)} \ \frac{-2\mathrm{i}\sin\left(\frac{n+1}{2}\ \theta\right)}{-2\mathrm{i}\sin\left(\frac{\theta}{2}\right)} \ \mathrm{d'où\ finalement} : \boxed{S_n = e^{\mathrm{i}\left(\frac{n\theta}{2}\right)} \ \frac{\sin\left(\frac{n+1}{2}\ \theta\right)}{\sin\left(\frac{\theta}{2}\right)} \ \ (\heartsuit)}$$

On déduit de (\spadesuit) , (\clubsuit) et (\heartsuit) que :

$$\forall n \in \mathbb{N}, \ \forall \ \theta \in \mathbb{R}, \ \theta \neq 0 \ [2\pi], \ \sum_{k=0}^{n} \cos\left(k\theta\right) = \cos\left(\frac{n\theta}{2}\right) \ \frac{\sin\left(\frac{n+1}{2}\theta\right)}{\sin\left(\frac{\theta}{2}\right)}$$

Dans le cas où
$$\theta = 0$$
 $[2\pi]$, on a $\cos \theta = 1$ d'où : $\forall n \in \mathbb{N}, \ \forall \ \theta \in \mathbb{R}, \ \theta = 0$ $[2\pi]$, $\sum_{k=0}^{n} \cos(k\theta) = n+1$

Question de cours n°4 — Une limite de référence. $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$

Pour tout $n \ge 10^{37}$, on a : $\left(1 + \frac{1}{n}\right)^n = e^{n \ln(1 + \frac{1}{n})}$.

$$\mathrm{Or}: \ln\left(1+\frac{1}{n}\right) \sim_{+\infty} \frac{1}{n} \text{ (usuel)}. \qquad \mathrm{D'où}: n\ln\left(1+\frac{1}{n}\right) \sim_{+\infty} 1. \qquad \mathrm{D'où}: \lim_{n \to +\infty} n\ln\left(1+\frac{1}{n}\right) = 1.$$

Conclusion. $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$

QUESTION DE COURS N^0 5 — Formule de Leibniz. Si f et g sont n fois dérivables sur I, alors (fg) l'est également et :

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$
 ou $(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$

Prouvons le théorème par récurrence sur l'entier naturel n.

Posons $P(n): (fg)^{(n)} = \sum_{k=0}^{\infty} \binom{n}{k} f^{(k)} g^{(n-k)}$ (où f et g désignent deux fonctions n fois dérivables sur I).

►Initialisation: pour
$$n = 0$$
, on a $(fg)^{(0)} = fg$ et $\sum_{k=0}^{0} {0 \choose k} f^{(k)} g^{(0-k)} = {0 \choose 0} f^{(0)} g^{(0)} = fg$. P(0) est vraie.

ightharpoonup: on suppose P(n) vraie pour un certain entier naturel n. Soient f et g deux fonctions (n+1) fois dérivables sur I. Alors:

$$(fg)^{(n+1)} = \left((fg)^{(n)} \right)' = \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k)} g^{(n-k)} \right)' = \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)} g^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n+1-k)}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(k)} g^{(n+1-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n+1-k)} = f^{(n+1)} g^{(0)} + \left[\sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k} \right) f^{(k)} g^{(n+1-k)} \right] + f^{(0)} g^{(n+1)}$$

D'où, en appliquant la relation de Pascal²: $(fg)^{(n+1)} = \sum_{k=1}^{n+1} \binom{n+1}{k} f^{(k)} g^{(n+1-k)}$

Cette relation assure que la propriété P(n+1) est vraie. Récurrence établie.

2.
$$\forall n \in \mathbb{N}^*, \ \forall k \in [1, n], \ \binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

QUESTION DE COURS N^06 — **Propriété**. La composée de deux applications injectives (resp. surjectives) est injective (resp. surjective).

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

ightharpoonup Supposons f et g injectives. Soient x et x' deux éléments de E. Alors :

$$\left[\left(g\circ\ f\right)\left(x\right)=\left(g\circ\ f\right)\left(x'\right)\right]\Longleftrightarrow\left[g\left(f(x)\right)=g\left(f\left(x'\right)\right)\right]\underset{g\ \text{injective}}{\Longrightarrow}\left[f(x)=f\left(x'\right)\right]\underset{f\ \text{injective}}{\Longrightarrow}\left[x=x'\right]$$

Ce qui prouve l'injectivité de $g \circ f$. **Conclusion** : si f et g sont injectives, alors $g \circ f$ est injective.

▶ Supposons à présent f et g surjectives. Soit $z \in G$.

Alors, l'application g étant surjective : $\exists y \in F$, g(y) = z.

Et puisque f est surjective : $\exists x \in E, f(x) = y$.

En exploitant ces deux relations, on a : g(f(x)) = z.

Puisque z est un élément arbitraire de G, on vient d'établir que : $\forall z \in G, \exists x \in E, (g \circ f)(x) = z$.

Ce qui prouve la surjectivité de $g \circ f$. | Conclusion : si f et g sont surjectives, alors $g \circ f$ est surjective.

Corollaire immédiat. Si f et g sont bijectives, alors $g \circ f$ est bijective.

Question de cours N^07 — **Exercice**. Etablir que $\forall x \in [-1,1]$, $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$.

Posons: $\forall x \in [-1,1]$, $f(x) = \arccos(x) + \arcsin(x)$. La fonction f est dérivable sur]-1,1[, et: $\forall x \in [-1,1]$, f'(x) = 0. Il s'ensuit que f est constante sur]-1,1[, égale (par exemple) à $f(0) = \arccos(0) + \arcsin(0) = \frac{\pi}{2}$.

On a donc établi que : $\forall x \in]-1,1[$, $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$

Il ne reste plus qu'à fermer les crochets. Pour ce faire, il suffit de calculer f(1) et f(-1)...

Finalement, on en déduit que : $\forall x \in [-1, 1], \arccos(x) + \arcsin(x) = \frac{\pi}{2}$

QUESTION DE COURS 8 — Intégrale et parité. Soit $f \in \mathcal{C}^0([-a, a], \mathbb{R})$ (avec $a \in \mathbb{R}_+$).

Si f est paire, alors : $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ Si f est impaire, alors : $\int_{-a}^{a} f(x) dx = 0$

D'après la relation de Chasles pour les intégrales, on a : $\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx \quad (\spadesuit)$

Le changement de variable u=-x donne : $\int_{-a}^{0} f(x) \, \mathrm{d}x = \int_{a}^{0} f(-u) \, \left(-\mathrm{d}u\right) \quad \text{Soit : } \boxed{\int_{-a}^{0} f(x) \, \mathrm{d}x = \int_{0}^{a} f(-u) \, \mathrm{d}u \ (\clubsuit)}$

- ➤ Si f est paire : $\int_0^a f(-u) du = \int_0^a f(u) du$. On en déduit, avec (♣) et (♠) que : $\int_{-a}^a f(x) dx = \int_0^a f(x) dx + \int_0^a f(u) du$. Par conséquent : $[f \text{ paire}] \Longrightarrow \left[\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx\right]$
- ➤ Si f est impaire : $\int_0^a f(-u) du = \int_0^a -f(u) du = -\int_0^a f(u) du$. On en déduit, avec (♣) et (♠) que :

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) dx - \int_{0}^{a} f(u) du. \text{ Par conséquent : } \left[f \text{ impaire} \right] \Longrightarrow \left[\int_{-a}^{a} f(x) dx = 0 \right]$$

QUESTION DE COURS N⁰9 — Intégrales de Wallis (relation de récurrence).

Pour tout
$$n \in \mathbb{N}$$
, on pose : $I_n = \int_0^{\pi/2} \cos^n(t) dt$. Montrer que : $\forall n \in \mathbb{N}$, $I_{n+2} = \frac{n+1}{n+2} I_n$

Soit
$$n \in \mathbb{N}$$
. On a: $I_{n+2} = \int_0^{\pi/2} \cos^{n+2}(t) dt = \int_0^{\pi/2} \cos(t) \cos^{n+1}(t) dt$

$$\text{Posons}: \forall t \in \left[0, \pi/2\right], \ \left\{ \begin{array}{ll} u(t) = \sin(t) \\ \\ v(t) = \cos^{n+1}(t) \end{array} \right. \ \text{d'où}: \forall t \in \left[0, \pi/2\right], \ \left\{ \begin{array}{ll} u'(t) = \cos(t) \\ \\ v'(t) = -\left(n+1\right)\sin(t)\cos^{n}(t) \end{array} \right.$$

Selon la formule d'IPP (u et v sont de classe \mathscr{C}^1 sur $[0, \pi/2]$)

$$I_{n+2} = \underbrace{\left[\sin(t)\cos^{n+1}(t)\right]_0^{\pi/2}}_{=0} + (n+1)\int_0^{\pi/2}\sin^2(t)\cos^n(t)dt$$

D'où :
$$I_{n+2} = (n+1) \int_0^{\pi/2} (1 - \cos^2(t)) \cos^n(t) dt = (n+1) \int_0^{\pi/2} \cos^n(t) dt - (n+1) \int_0^{\pi/2} \cos^{n+2}(t) dt$$

C'est-à-dire :
$$I_{n+2} = (n+1) I_n - (n+1) I_{n+2}$$
 d'où : $I_{n+2} = \frac{n+1}{n+2} I_n$

QUESTION DE COURS N⁰10 — **Propriété**. Soient a, b et α trois scalaires. On note (E) l'EDL2 : $y'' + ay' + by = e^{\alpha x}$; et on note encore (EC) $r^2 + ar + b = 0$ l'équation caractéristique associée à (E).

Si α n'est pas racine de (EC), alors l'équation (E) possède une solution particulière f_P avec : $\forall x \in \mathbb{R}, f_P(x) = K e^{\alpha x}$, pour un certain $K \in \mathbb{K}$.

Avec les notations et hypothèses de l'énoncé, α n'est pas racine de (EC). Alors : $\alpha^2 + a\alpha + b \neq 0$.

Soit K un scalaire. Posons : $\forall x \in \mathbb{R}$, $f_P(x) = K e^{\alpha x}$. La fonction f_P est de classe \mathscr{C}^2 sur \mathbb{R} et pour tout réel x on a : $f_P'(x) = K \alpha e^{\alpha x}$ et $f_P''(x) = K \alpha^2 e^{\alpha x}$.

Ainsi, pour tout réel x on a : $f_P''(x) + af_P'(x) + bf_P(x) = Ke^{\alpha x} (\alpha^2 + a\alpha + b)$.

Puisque $e^{\alpha x}$ est non nul pour tout réel x, on en déduit que :

$$[f_P \text{ est solution de } (E)] \iff \left[K\left(\alpha^2 + a\alpha + b\right) = 1\right] \iff \left[K = \frac{1}{\alpha^2 + a\alpha + b}\right]$$

La dernière égalité étant rendue légitime par le fait que α n'est pas racine de (EC) (donc $\alpha^2 + a\alpha + b \neq 0$).

On peut alors conclure que la fonction f_P définie en posant : $\forall x \in \mathbb{R}, f_P(x) = \frac{1}{\alpha^2 + a\alpha + b} e^{\alpha x}$, est solution de (E).

Question de cours $n^o 11$ — Relation d'équivalence sur $\mathbb{R}^\mathbb{N}$

Deux suites réelles (u_n) et (v_n) sont **équivalentes** (ce que l'on note $(u_n) \sim (v_n)$) s'il existe une suite réelle (φ_n) telle que :

$$\forall n \in \mathbb{N}, \quad v_n = \varphi_n u_n \quad \text{et} \quad \lim_{n \to +\infty} \varphi_n = 1$$

Etablir que la relation \sim est une relation d'équivalence sur $\mathbb{R}^{\mathbb{N}}$.

Il suffit de vérifier les 3 axiomes caractérisant les relations d'équivalence : réflexivité, symétrie, transitivité.

P Réflexivité. Soit (u_n) une suite réelle. Alors : $\forall n \in \mathbb{N}, u_n = 1 \times u_n$ ("la suite (φ_n) constante égale à 1 convient"). Donc : $(u_n) \sim (u_n)$.

Ainsi : $\forall (u_n) \in \mathbb{R}^{\mathbb{N}}$, $(u_n) \sim (u_n)$. La relation \sim est donc réflexive.

Symétrie. Soient (u_n) et (v_n) deux suites réelles. Supposons que : $(u_n) \sim (v_n)$. Alors il existe une suite réelle (φ_n) telle que :

$$\forall n \in \mathbb{N}, \quad v_n = \varphi_n u_n \qquad \text{et} \qquad \lim_{n \to +\infty} \varphi_n = 1$$

Puisque la suite (φ_n) a pour limite 1, ses termes sont strictement positifs à partir d'un certain rang. On a donc :

$$\forall n \in \mathbb{N}, \quad u_n = \frac{1}{\varphi_n} v_n \quad \text{et} \quad \lim_{n \to +\infty} \frac{1}{\varphi_n} = 1$$

On en déduit que : $(v_n) \sim (u_n)$.

Ainsi: $\forall ((u_n), (v_n)) \in (\mathbb{R}^{\mathbb{N}})^2$, $((u_n) \sim (v_n)) \Longrightarrow ((v_n) \sim (u_n))$. La relation \sim est donc symétrique.

Transitivité. Soient (u_n) , (v_n) et (w_n) trois suites réelles. Supposons que : $(u_n) \sim (v_n)$ et $(v_n) \sim (w_n)$. Alors il existe deux suites réelles (φ_n) et (ψ_n) telles que :

$$\forall n \in \mathbb{N}, \quad v_n = \varphi_n u_n \quad \text{et} \quad \lim_{n \to +\infty} \varphi_n = 1$$

et

$$\forall n \in \mathbb{N}, \quad w_n = \psi_n v_n \qquad \text{et} \qquad \lim_{n \to +\infty} \psi_n = 1$$

On en déduit que :

$$\forall n \in \mathbb{N}, \quad w_n = (\psi_n \varphi_n) u_n \quad \text{et} \quad \lim_{n \to +\infty} (\psi_n \varphi_n) = 1$$

En d'autres termes : $(u_n) \sim (w_n)$.

Ainsi: $\forall ((u_n), (v_n), (w_n)) \in (\mathbb{R}^{\mathbb{N}})^3$, $((u_n) \sim (v_n) \text{ et } (v_n) \sim (w_n)) \Longrightarrow ((u_n) \sim (w_n))$. La relation \sim est donc transitive.

Conclusion. La relation \sim est réflexive, symétrique et transitive. C'est donc une relation d'équivalence sur $\mathbb{R}^{\mathbb{N}}$.

QUESTION DE COURS N°12 — Propriété fondamentale des suites extraites. Si u converge vers $\ell \in \mathbb{C}$, toute suite extraite de u converge vers ℓ .

La preuve du théorème repose sur le lemme suivant (qui pourra être admis lors de cette colle 13).

Lemme. Si $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ est strictement croissante, alors : $\forall n \in \mathbb{N}, \ \varphi(n) \geqslant n$.

Prouvons le lemme. On note P(n) l'assertion : $\varphi(n) \ge n$, et on montre par récurrence sur \mathbb{N} que l'assertion P(n) est vraie pour tout $n \in \mathbb{N}$.

P(0) est vraie car un entier naturel est positif ou nul...

Cette remarquable vérification faite, passons à l'hérédité : on suppose P(n) vraie pour un certain entier naturel n. Alors : $\varphi(n+1) > \varphi(n) \ge n$ d'où $\varphi(n+1) \ge n+1$.

Ce qui signifie que P(n+1) est vraie. Récurrence établie. Fin de la preuve du lemme.

▶ Retour à la preuve du théorème. Soit (u_n) une suite convergente de limite $\ell \in \mathbb{C}$; et soit (v_n) une suite extraite de n; il existe donc une application $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $\forall n \in \mathbb{N}, v_n = u_{\varphi(n)}$.

Considérons un réel $\varepsilon > 0$.

Par hypothèse, il existe un entier n_0 tel que pour tout entier n on a : $(n \ge n_0) \Longrightarrow (|u_n - \ell| < \varepsilon)$.

Or l'hypothèse faite sur φ implique que : $\forall n \in \mathbb{N}, \ \varphi(n) \geqslant n$. ³

Il s'ensuit que : $(n \ge n_0) \Longrightarrow (|u_{\varphi(n)} - \ell| < \varepsilon)$.

En recollant tous les morceaux du raisonnement précédent :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geqslant n_0) \Longrightarrow (|u_{\varphi(n)} - \ell| < \varepsilon).$$

Conclusion. La suite $(u_{\varphi(n)})$ est convergente et a pour limite $\ell = \lim u$. En d'autres termes, toute suite extraite de u converge vers ℓ .

^{3.} Voir lemme énoncé un peu plus haut.

BANQUE D'EXERCICES

EXERCICE 1. — (CCINP-MP 2022). On note H la fonction définie par l'expression $H(x) = \int_0^x e^{t^2} dt$.

- 1/ Démontrer que H est définie et de classe \mathscr{C}^{∞} sur \mathbb{R}
- 2/ Donner une expression de H'(x).
- 3/ Ecrire le développement limité à l'ordre 1 en 0 de la fonction H.

EXERCICE 2. (E3A-MP 2022). Pour tout entier $n \ge 2$, on note $\omega = \exp\left(\frac{2i\pi}{n}\right)$.

- 1/ Soit $z\in\mathbb{C}^*$. Démontrer que |z|=1 si, et seulement si, $\overline{z}=\frac{1}{z}$.
- 2/ Soit $k\in [\![\ 0,n-1\]\!].$ Déterminer $p\in [\![\ 0,n-1\]\!]$ tel que $\overline{\omega^k}=\omega^p.$

3/ Calculer
$$S_n = \sum_{k=0}^{n-1} \omega^k$$
 et $P_n = \prod_{k=0}^{n-1} \omega^k$

EXERCICE 3. — **(E3A-PC 2022).** Pour tout $n \in \mathbb{N}$, on pose : $u_n = \int_0^{\pi/2} \cos^n(t) dt$

- 1/ Montrer que (u_n) est décroissante.
- 2/ Montrer que (u_n) est convergente.

EXERCICE 4. — (CCINP-PSI 2022). Pour tout $m \in \mathbb{N}$, on pose : $I_m = \int_0^1 (1-t^2)^{\frac{m}{2}} dt$

- 1/ Montrer que la suite $(I_m)_{m\in\,\mathbb{N}}$ est décroissante
- 2/ Montrer que pour tout $m \in \mathbb{N}$: $I_{m+2} = \frac{m+2}{m+3}I_m$

Exercice 5. — (ATS 2022). Résoudre sur \mathbb{R}_+^* l'équation différentielle :

$$y'(x) + \frac{y(x)}{x} = \frac{1}{x(1+x^2)}$$

Exercice 6. — (CAPES externe 2022). Soit f une fonction à valeurs réelles, définie sur un intervalle I.

- 1/ Traduire à l'aide de quantificateurs que f est croissante sur I.
- 2/ Traduire à l'aide de quantificateurs que f n'est pas croissante sur I.
- 3/ Traduire à l'aide de quantificateurs que f est une fonction affine sur I.

EXERCICE 7. — (EPITA-MP 2021).

- 1/ Déterminer les racines complexes de l'équation $z^5+1=0$.

 Calculer leur somme, puis en déduire que $\cos\left(\frac{\pi}{5}\right)+\cos\left(\frac{3\pi}{5}\right)=\frac{1}{2}$.
- 2/ En déduire que $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$ sont racines du polynôme $4X^2 2X 1$, puis expliciter à l'aide du réel $\sqrt{5}$ des expressions de $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$.
- 3/ Non-exigible en colle. Etablir que $\sqrt{5}$ est irrationnel. En déduire que $\cos\left(\frac{\pi}{5}\right)$ est irrationnel.

EXERCICE 8. — (Centrale-TSI 2021).

Montrer que pour tout $(n,k) \in \mathbb{N}^2$ tel que k < n on a : $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

EXERCICE 9. — (CCP-TSI 2021).

 $1/\ \mbox{Pour}\ \theta\in \mathbb{R},$ démontrer l'égalité : $1-e^{\mathrm{i}2\theta}=-2\mathrm{i}e^{\mathrm{i}\theta}\sin(\theta)$

Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R} \backslash \pi\mathbb{Z}$, on a :

$$\sum_{k=-n}^{n} e^{2ikx} = \frac{\sin((2n+1)x)}{\sin(x)}$$

EXERCICE 10. — (E3A-MP 2020). Calculer $\int_0^x \frac{1}{\operatorname{ch}(t)} dt$

EXERCICE 11. — (CCINP-PSI 2019).

- 1/ Soit a un nombre complexe. Rappeler la formule donnant la dérivée n-ième de la fonction $f: x \longmapsto \frac{1}{x+a}$.
- 2/ On considère à présent la fonction φ définie sur \mathbb{R} en posant : $\forall x \in \mathbb{R}, \ \varphi(x) = \frac{1}{x^2 + 1}$.
 - **a**/ Déterminer deux nombres complexes λ et μ tels que :

$$\forall x \in \mathbb{R}, \quad \frac{1}{x^2 + 1} = \frac{\lambda}{x - i} + \frac{\mu}{x + i}$$

b/ Pour tout entier naturel n et pour tout réel x, calculer $\varphi^{(n)}(x)$, et montrer que :

$$\varphi^{(n)}(x) = \frac{a_n}{(x^2 + 1)^{n+1}} P_n(x)$$

où a_n est un imaginaire pur et $P_n(x)$ un polynôme à préciser.

EXERCICE 12. — (CAPES externe 2022).

Pour tout $n \in \mathbb{N}^*$, on pose : $H_n = \sum_{k=1}^n \frac{1}{k}$.

1/ Démontrer que pour tout entier $k \ge 2$,

$$\int_{k}^{k+1} \frac{1}{x} \, \mathrm{d}x \leqslant \frac{1}{k} \leqslant \int_{k-1}^{k} \frac{1}{x} \, \mathrm{d}x$$

2 En déduire que pour tout entier $n \in \mathbb{N}^*$,

$$\ln(n+1) \leqslant H_n \leqslant 1 + \ln(n)$$

- 3/ A l'aide de la relation précédente :
 - a/ Démontrer que la suite $(H_n)_{n\geqslant 1}$ diverge vers $+\infty$.
 - b/ Démontrer que

$$H_n \sim_{+\infty} \ln(n)$$

BANQUE D'EXERCICES - CORRIGÉS

EXERCICE 1. — (CCINP-MP 2022). On note H la fonction définie par l'expression $H(x) = \int_0^x e^{t^2} dt$.

1/ Démontrer que H est définie et de classe \mathscr{C}^{∞} sur \mathbb{R} .

Par construction, la fonction H est la primitive s'annulant en 0 de la fonction $f: t \in \mathbb{R} \longmapsto e^{t^2}$.

Puisque f est de classe \mathscr{C}^{∞} sur \mathbb{R} (et que H'=f), on en déduit que : $H\in\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$.

2/ Donner une expression de H'(x).

Par construction: $\forall x \in \mathbb{R}, \ H'(x) = e^{x^2}$

3/ Ecrire le développement limité à l'ordre 1 en 0 de la fonction H.

D'après ce qui précède, H est dérivable en 0, donc admet un DL à l'ordre 1 en 0, donné par la célebrissime formule :

$$\forall x \in \mathbb{R}, \ H(x) = H(0) + xH'(0) + x\varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Or
$$H(0)=0$$
 et $H'(0)=1$, d'où : $\forall x\in\mathbb{R},\ H(x)=x+x\varepsilon(x)$ avec $\lim_{x\to 0}\varepsilon(x)=0$

EXERCICE 2. — (E3A-MP 2022). Pour tout entier $n \ge 2$, on note $\omega = \exp\left(\frac{2i\pi}{n}\right)$.

1/ Soit $z \in \mathbb{C}^*$. Démontrer que |z| = 1 si, et seulement si, $\overline{z} = \frac{1}{z}$.

Soit
$$z \in \mathbb{C}^*$$
. On a : $|z| = 1 \Longrightarrow |z|^2 = 1 \Longleftrightarrow z\overline{z} = 1 \Longleftrightarrow \overline{z} = \frac{1}{z}$.

2/ Soit $k\in [\![0,n-1]\!].$ Déterminer $p\in [\![0,n-1]\!]$ tel que $\overline{\omega^k}=\omega^p$

Soit $k \in [0, n-1]$. On distingue deux cas : k = 0 et $k \in [1, n-1]$.

Si k=0, alors $\overline{\omega^0}=1=\omega^0$ (p=0 convient dans ce cas).

Si $k \in [\![1, n-1]\!]$, alors : $\overline{\omega^k} = \frac{1}{\omega^k}$ (puisque $|\omega^k| = 1$, et d'après 1). Dans ce cas, on a : $\overline{\omega^k} = \omega^{n-k}$, puisque $\omega^k \times \omega^{n-k} = \omega^n = 1$. D'où : p = n-k convient.

- 3/ Calculer $S_n = \sum_{k=0}^{n-1} \omega^k$ et $P_n = \prod_{k=0}^{n-1} \omega^k$
 - On a: $S_n = \sum_{k=0}^{n-1} \omega^k = \frac{1 \omega^n}{1 \omega} = 0$ (puisque $\omega^n = 1$).

Par ailleurs:

$$P_n = \prod_{k=0}^{n-1} \omega^k = \prod_{k=0}^{n-1} \exp\left(\frac{2ik\pi}{n}\right) = \exp\left(\sum_{k=0}^{n-1} \frac{2ik\pi}{n}\right) = \exp\left(\frac{2i\pi}{n} \sum_{k=0}^{n-1} k\right) = \exp\left(\frac{2i\pi}{n} \times \frac{n(n-1)}{2}\right)$$
$$= \exp\left(i\pi(n-1)\right) = (-1)^{n-1}.$$

Conclusion. Pour tout entier
$$n \ge 2$$
, $S_n = \sum_{k=0}^{n-1} \omega^k = 0$ et $P_n = \prod_{k=0}^{n-1} \omega^k = (-1)^{n-1}$

EXERCICE 3. — (E3A-PC 2022). Pour tout $n \in \mathbb{N}$, on pose : $u_n = \int_0^{\pi/2} \cos^n(t) dt$

1/ Montrer que (u_n) est décroissante.

Soit $n \in \mathbb{N}$. On a :

$$u_{n+1} - u_n \int_0^{\pi/2} \cos^{n+1}(t) dt - \int_0^{\pi/2} \cos^n(t) dt = \int_0^{\pi/2} \cos^{n+1}(t) - \cos^n(t) dt = \int_0^{\pi/2} \underbrace{\cos^n(t)(\cos(t) - 1)}_{\leq 0} dt$$

Par croissance de l'intégrale, on en déduit que : $\forall n \in \mathbb{N}, u_{n+1} - u_n \leq 0$. D'où : (u_n) est décroissante.

2 Montrer que (u_n) est convergente.

La suite (u_n) est décroissante (question 1), et minorée par 0 (par positivité de l'intégrale). Donc elle converge, selon le théorème de la limite monotone.

EXERCICE 4. — (CCINP-PSI 2022). Pour tout $m \in \mathbb{N}$, on pose : $I_m = \int_0^1 (1-t^2)^{\frac{m}{2}} dt$

1/ Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante.

Soit
$$m \in \mathbb{N}$$
. On a : $I_{m+1} - I_m = \int_0^1 \left(1 - t^2\right)^{\frac{m+1}{2}} dt - \int_0^1 \left(1 - t^2\right)^{\frac{m}{2}} dt = \int_0^1 \left(1 - t^2\right)^{\frac{m}{2}} \left(\sqrt{1 - t^2} - 1\right) dt$

Or, pour tout réel $t \in [0,1]$, on a : $(1-t^2)^{\frac{m}{2}} \geqslant 0$ et $\sqrt{1-t^2}-1 \leqslant 0$. Il s'ensuit que la fonction $t \longmapsto (1-t^2)^{\frac{m}{2}} \left(\sqrt{1-t^2}-1\right)$ est négative sur [0,1].

Par croissance (ou positivité) de l'intégrale, on en déduit que : $I_{m+1} - I_m \leq 0$

L'entier naturel m étant arbitraire dans le raisonnement précédent, on en déduit que : $\forall m \in \mathbb{N}, I_{m+1} - I_m \leq 0$. La suite (I_m) est donc décroissante.

2/ Montrer que pour tout $m \in \mathbb{N}$: $I_{m+2} = \frac{m+2}{m+3}I_m$

Soit
$$m$$
 un entier naturel. On a : $I_{m+2} = \int_0^1 (1 - t^2)^{\frac{m+2}{2}} dt = \int_0^1 (1 - t^2)^{\frac{m}{2} + 1} dt$

Ainsi:
$$I_{m+2} = \int_0^1 (1 - t^2)^{\frac{m}{2}} (1 - t^2) dt = \int_0^1 (1 - t^2)^{\frac{m}{2}} dt - \int_0^1 t^2 (1 - t^2)^{\frac{m}{2}} dt$$

Soit :
$$I_{m+2} = I_m - \int_0^1 t^2 \left(1 - t^2\right)^{\frac{m}{2}} dt$$
, càd : $I_{m+2} = I_m - K_m$ en ayant posé : $K_m = \int_0^1 t^2 \left(1 - t^2\right)^{\frac{m}{2}} dt$ (\spadesuit)

Ecrivons judicieusement : $K_m = \int_0^1 \frac{-t}{2} \times \left(-2t\left(1-t^2\right)^{\frac{m}{2}}\right) dt$

$$\text{Posons à présent pour tout réel t dans } [0,1]: \left\{ \begin{array}{l} u(t) = \frac{1}{\frac{m}{2}+1} \left(1-t^2\right)^{\frac{m}{2}+1} \\ \\ v(t) = -\frac{t}{2} \end{array} \right. \\ \Longrightarrow \left\{ \begin{array}{l} u'(t) = -2t \left(1-t^2\right)^{\frac{m}{2}+1} \\ \\ v'(t) = -\frac{1}{2} \end{array} \right.$$

Selon la formule d'intégration par parties :

$$K_{m} = \underbrace{\left[-\frac{t}{2} \times \frac{1}{\frac{m}{2} + 1} \left(1 - t^{2} \right)^{\frac{m}{2} + 1} \right]_{0}^{1}}_{=0} + \frac{1}{2} \times \frac{1}{\frac{m}{2} + 1} \int_{0}^{1} \left(1 - t^{2} \right)^{\frac{m}{2} + 1} dt \iff K_{m} = \frac{1}{m + 2} I_{m+2} \quad (\clubsuit)$$

D'après (\spadesuit) et (\clubsuit) on a :

$$I_{m+2} = I_m - \frac{1}{m+2} I_{m+2} \Longleftrightarrow \left(1 + \frac{1}{m+2}\right) I_{m+2} = I_m \Longleftrightarrow \frac{m+3}{m+2} I_{m+2} = I_m \Longleftrightarrow I_{m+2} = \frac{m+2}{m+3} I_{m+3} = \frac{m+2}{m+3} I_{m$$

Conclusion.
$$\forall m \in \mathbb{N}, \ I_{m+2} = \frac{m+2}{m+3} I_m$$

Exercice 5. — (ATS 2022). Résoudre sur \mathbb{R}_+^* l'équation différentielle :

$$y'(x) + \frac{y(x)}{x} = \frac{1}{x(1+x^2)}$$

Pour tout réel $x \in \mathbb{R}_+^*$, posons : a(x) = 1, $b(x) = \frac{1}{x}$ et $c(x) = \frac{1}{x(1+x^2)}$.

Selon les TG, les fonctions a, b et c sont de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} (en particulier continues sur \mathbb{R}_{+}^{*}).

Il s'ensuit que la solution générale de l'équation homogène associée à celle de l'énoncé est :

$$\forall \in \mathbb{R}_+^*, f_H(x) = Ke^{-A(x)}$$
 avec A une primitive sur \mathbb{R}_+^* de b/a ; $A = \ln$ convient.

Ainsi, la solution générale de $y'(x) + \frac{y(x)}{x} = 0$ est :

$$\forall \in \mathbb{R}_+^*, \ f_H(x) = \frac{K}{x} \ (\text{avec } K \in \mathbb{R}) \quad (\spadesuit)$$

Posons pour tout réel x strictement positif : $f_P(x) = \frac{K(x)}{x}$ avec $K \in \mathscr{C}^1(\mathbb{R}_+^*, \mathbb{R})$.

La fonction f_P est dérivable (H+TG) sur \mathbb{R}_+^* , et pour tout réel x > 0 on a : $f'_P(x) = \frac{xK'(x) - K(x)}{x^2}$.

On en déduit que f_P est solution de l'EDL1 de l'énoncé si et seulement si :

$$\forall \, x > 0, \quad \frac{xK'(x) - K(x)}{x^2} + \frac{K(x)}{x^2} = \frac{1}{x(x^2 + 1)} \Longleftrightarrow \forall \, x > 0, \quad \frac{K'(x)}{x} = \frac{1}{x(x^2 + 1)} \Longleftrightarrow \forall \, x > 0, \quad K'(x) = \frac{1}{x^2 + 1} \Longleftrightarrow \forall \, x > 0$$

On peut donc choisir $K = \arctan$, et affirmer que la fonction f_P définie en posant $\forall x > 0$, $f_P(x) = \frac{\arctan(x)}{x}$, est une solution (particulière) de l'EDL1 de l'énoncé (\clubsuit).

Conclusion. D'après (\spadesuit), (\clubsuit) et le cours, la solution générale sur \mathbb{R}_+^* de $y'(x) + \frac{y(x)}{x} = \frac{1}{x(1+x^2)}$ est :

$$\forall x > 0, \ f(x) = \frac{\arctan(x) + K}{x} \text{ (avec } K \text{ r\'eel arbitraire)}$$

EXERCICE 6. — (CAPES externe 2022). Soit f une fonction à valeurs réelles, définie sur un intervalle I.

1/ Traduire à l'aide de quantificateurs que f est croissante sur I.

$$\forall (x,y) \in I^2, (x \leqslant y) \Longrightarrow (f(x) \leqslant f(y))$$

2/ Traduire à l'aide de quantificateurs que f n'est pas croissante sur I.

$$\exists (x,y) \in I^2, (x \leqslant y) \land (f(x) > f(y))$$

3/ Traduire à l'aide de quantificateurs que f est une fonction affine sur I.

$$\exists (a,b) \in \mathbb{R}^2, \ \forall x \in I, \ f(x) = ax + b$$

EXERCICE 7. — (EPITA-MP 2021).

1/ Déterminer les racines complexes de l'équation $z^5 + 1 = 0$.

Calculer leur somme, puis en déduire que $\cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}$.

Soit z un nombre complexe. On a :

$$z^5 + 1 = 0 \iff z^5 = -1 \iff z^5 = \left(e^{i\pi/5}\right)^5 \iff \left(\frac{z}{e^{i\pi/5}}\right)^5 \iff \frac{z}{e^{i\pi/5}} \in \mathbb{U}_5$$

Or:

$$\frac{z}{\mathrm{e}^{\mathrm{i}\pi/5}} \in \, \mathbb{U}_5 \Longleftrightarrow \exists \, k \in \llbracket \, 0,4 \, \rrbracket, \,\, \frac{z}{\mathrm{e}^{\mathrm{i}\pi/5}} = \mathrm{e}^{2\mathrm{i}k\pi/5} \Longleftrightarrow \exists \, k \in \llbracket \, 0,4 \, \rrbracket, \,\, z = \mathrm{e}^{\mathrm{i}(2k+1)\pi/5}$$

$$\text{MPSI} - \text{Questions de cours de la colle n}^0 \\ 13 - 25/12/23$$
 En résumé : $\left[z^5 + 1 = 0\right] \Longleftrightarrow \left[z \in \left\{e^{\mathrm{i}\pi/5}, e^{3\mathrm{i}\pi/5}, e^{5\mathrm{i}\pi/5}, e^{5\mathrm{i}\pi/5}, e^{9\mathrm{i}\pi/5}\right\}\right] \Longleftrightarrow \left[z \in \left\{e^{\mathrm{i}\pi/5}, e^{3\mathrm{i}\pi/5}, -1, \overline{e^{3\mathrm{i}\pi/5}}, \overline{e^{\mathrm{i}\pi/5}}\right\}\right]$

Conclusion intermédiaire. Les racines dans \mathbb{C} de l'équation $z^5+1=0$ sont exactement les éléments de l'ensemble

$$E = \left\{ e^{i\pi/5}, e^{3i\pi/5}, e^{5i\pi/5}, e^{7i\pi/5}, e^{9i\pi/5} \right\}$$

Notons S la somme de ces racines. D'une part, S étant la somme des termes d'une suite géométrique de raison $e^{2i\pi/5}$ (et de premier terme $e^{i\pi/5}$, avec 5 termes), on a :

$$S = e^{i\pi/5} \times \frac{1 - \left(e^{2i\pi/5}\right)^5}{1 - e^{2i\pi/5}} = e^{i\pi/5} \times \frac{1 - e^{2i\pi}}{1 - e^{2i\pi/5}} = 0 \quad (\clubsuit)$$

 $\ \, \text{D'autre part, on a: } S = \mathrm{e}^{\mathrm{i}\pi/5} + \mathrm{e}^{3\mathrm{i}\pi/5} + -1 + \overline{\mathrm{e}^{3\mathrm{i}\pi/5}} + \overline{\mathrm{e}^{\mathrm{i}\pi/5}} = -1 + 2\mathrm{Re}\left(\mathrm{e}^{\mathrm{i}\pi/5}\right) + 2\mathrm{Re}\left(\mathrm{e}^{3\mathrm{i}\pi/5}\right) + 2\mathrm{Re}\left(\mathrm{e}^{3\mathrm{i}\pi/$

Finalement:
$$S = -1 + 2\cos\left(\frac{\pi}{5}\right) + 2\cos\left(\frac{3\pi}{5}\right)$$
 (\$\infty\$)

D'après (
$$\spadesuit$$
) et (\clubsuit), on a : $-1 + 2\cos\left(\frac{\pi}{5}\right) + 2\cos\left(\frac{3\pi}{5}\right) = 0$.

Conclusion.
$$\cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{3\pi}{5}\right) = \frac{1}{2}$$

2 En déduire que $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$ sont racines du polynôme $4X^2 - 2X - 1$, puis expliciter à l'aide du réel $\sqrt{5}$ des expressions de $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$

Observons que :
$$\cos\left(\frac{3\pi}{5}\right) = \cos\left(\pi - \frac{2\pi}{5}\right) = -\cos\left(\frac{2\pi}{5}\right) = -2\cos^2\left(\frac{\pi}{5}\right) + 1$$

On déduit de cette trigonométrique observation et de la question précédente que :

$$\cos\left(\frac{\pi}{5}\right) - 2\cos^2\left(\frac{\pi}{5}\right) + 1 = \frac{1}{2} \Longleftrightarrow 4\cos^2\left(\frac{\pi}{5}\right) - 2\cos\left(\frac{\pi}{5}\right) - 1 = 0$$

Ainsi : $\cos\left(\frac{\pi}{5}\right)$ est racine du polynôme du second degré $4X^2-2X-1$. On en déduit (relation coefficients-racines) que l'autre racine de ce polynôme est le réel α tel que : $\alpha + \cos\left(\frac{\pi}{5}\right) = \frac{1}{2}$. En vertu de la question précédente : $\alpha = \cos\left(\frac{3\pi}{5}\right).$

Conclusion intermédiaire. Le polynôme $4X^2 - 2X - 1$ possède exactement 2 racines réelles : $\cos\left(\frac{\pi}{5}\right)$ et $\cos\left(\frac{3\pi}{5}\right)$.

Un calcul aisé permet par ailleurs d'obtenir les expressions algébriques de ces racines : $\frac{1 \pm \sqrt{5}}{4}$.

Puisque $\cos\left(\frac{\pi}{5}\right) > 0$ et $\cos\left(\frac{3\pi}{5}\right) < 0$, on peut conclure :

$$\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$$
 et $\cos\left(\frac{\pi}{5}\right) = \frac{1-\sqrt{5}}{4}$

3/ Non-exigible en colle. Etablir que $\sqrt{5}$ est irrationnel. En déduire que $\cos\left(\frac{\pi}{5}\right)$ est irrationnel.

On prouve que $\sqrt{5}$ est irrationnel en faisant un copier-coller-adapter de la preuve de l'irrationnalité de $\sqrt{2}$ vue au cours du chapitre 1.

On en déduit, avec la question précédente, que $\cos\left(\frac{\pi}{5}\right)$ est irrationnel (via un petit raisonnement par l'absurde analogue à celui fait sur la non-périodicité de $(\cos(n))_n$, vue dans la colle précédente).

EXERCICE 8. — (Centrale-TSI 2021).

Montrer que pour tout $(n,k) \in \mathbb{N}^2$ tel que k < n on a : $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Soit $(n, k) \in \mathbb{N}^2$ avec k < n. On a:

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n!(k+1) + n!(n-k)}{(k+1)!(n-k)!} = \frac{(n+1)!}{(k+1)!(n-k)!} = \binom{n+1}{k+1}$$

Conclusion. Pour tout $(n,k) \in \mathbb{N}^2$ tel que k < n on a : $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

EXERCICE 9. — (CCP-TSI 2021).

- $1/ \ \, \text{Pour} \,\, \theta \in \, \mathbb{R}, \,\, \text{démontrer l'égalité} : 1 e^{\mathrm{i}2\theta} = -2\mathrm{i}\mathrm{e}^{\mathrm{i}\theta} \sin(\theta)$ Selon la formule d'Euler pour le sinus, on a : $-2\mathrm{i}\sin(\theta) = \mathrm{e}^{-\mathrm{i}\theta} \mathrm{e}^{\mathrm{i}\theta}. \,\, \text{D'où} : \forall \, \theta \in \, \mathbb{R}, \,\, 1 \mathrm{e}^{\mathrm{i}2\theta} = -2\mathrm{i}\mathrm{e}^{\mathrm{i}\theta} \sin(\theta)$
- 2/ Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R} \setminus \pi\mathbb{Z}$, on a :

$$\sum_{k=-n}^{n} e^{2ikx} = \frac{\sin((2n+1)x)}{\sin(x)}$$

Soit n un entier naturel, et soit $x \in \mathbb{R} \setminus \pi\mathbb{Z}$: x est donc un réel tel que $x \neq 0$ [π].

On a :
$$\sum_{k=-n}^{n} e^{2ikx} = \sum_{k=-n}^{n} \left(e^{2ix}\right)^{k}$$
. L'hypothèse faite sur x implique : $e^{2ix} \neq 1$.

$$\text{Ainsi}: \sum_{k=-n}^{n} \mathrm{e}^{2\mathrm{i}kx} = \mathrm{e}^{-2\mathrm{i}nx} \times \frac{1 - \left(\mathrm{e}^{2\mathrm{i}x}\right)^{2n+1}}{1 - \mathrm{e}^{2\mathrm{i}x}} = \mathrm{e}^{-2\mathrm{i}nx} \times \frac{1 - \mathrm{e}^{2(2n+1)\mathrm{i}x}}{1 - \mathrm{e}^{2\mathrm{i}x}} = \underbrace{\mathrm{e}^{-2\mathrm{i}nx} \times \frac{\mathrm{e}^{(2n+1)\mathrm{i}x}}{\mathrm{e}^{2\mathrm{i}x}}}_{-1} \times \frac{-2\mathrm{i}\sin\left((2n+1)x\right)}{-2\mathrm{i}\sin\left(x\right)}$$

Conclusion. Pour tout
$$n \in \mathbb{N}$$
 et pour tout $x \in \mathbb{R} \setminus \pi\mathbb{Z}$:
$$\sum_{k=-n}^{n} e^{2ikx} = \frac{\sin((2n+1)x)}{\sin(x)}$$

EXERCICE 10. — (E3A-MP 2020). Calculer
$$\int_0^x \frac{1}{\operatorname{ch}(t)} dt$$

La fonction che st continue et ne s'annule pas sur \mathbb{R} . Il s'ensuit que la fonction $1/\mathrm{ch}$ est continue sur \mathbb{R} ; d'après le théorème fondamental de l'Analyse, elle admet donc des primitives sur \mathbb{R} .

Soit x un nombre réel. On a :

$$\int_0^x \frac{1}{\operatorname{ch}(t)} dt = \int_0^x \frac{2}{e^t + e^{-t}} dt \underbrace{=}_{u = e^t} \int_1^{e^x} \frac{2}{u + u^{-1}} \times \frac{1}{u} du = \int_1^{e^x} \frac{2}{u^2 + 1} du = [2\arctan(u)]_1^{e^x} = 2\arctan(e^x) - 2\arctan(1)$$

Conclusion.
$$\forall x \in \mathbb{R}, \quad \int_0^x \frac{1}{\operatorname{ch}(t)} dt = 2 \arctan(e^x) - \frac{\pi}{2}$$

En d'autres termes, la fonction $x \in \mathbb{R} \longmapsto 2\arctan(e^x) - \frac{\pi}{2}$ est la primitive sur \mathbb{R} s'annulant en 0 de la fonction $\frac{1}{\operatorname{ch}}$.

EXERCICE 11. — (CCINP-PSI 2019).

1/ Soit a un nombre complexe. Rappeler la formule donnant la dérivée n-ième de la fonction $f: x \longmapsto \frac{1}{x+a}$.

Selon le cours :
$$\forall n \in \mathbb{N}, \ \forall x \neq a, \ f^{(n)}(x) = \frac{(-1)^n \times n!}{(x+a)^{n+1}}$$

- 2/ On considère à présent la fonction φ définie sur \mathbb{R} en posant : $\forall x \in \mathbb{R}, \ \varphi(x) = \frac{1}{x^2 + 1}$.
 - **a**/ Déterminer deux nombres complexes λ et μ tels que :

$$\forall x \in \mathbb{R}, \quad \frac{1}{x^2 + 1} = \frac{\lambda}{x - i} + \frac{\mu}{x + i}$$

Par la méthode de votre choix (identification ou multiplication/évaluation), on obtient : $\lambda = -\frac{\mathrm{i}}{2}$ et $\mu = \frac{\mathrm{i}}{2}$.

Conclusion.
$$\forall x \in \mathbb{R}, \ \frac{1}{x^2 + 1} = \frac{i}{2} \left(\frac{1}{x + i} - \frac{1}{x - i} \right)$$

 $\mathbf{b}/$ Pour tout entier naturel n et pour tout réel x, calculer $\varphi^{(n)}(x)$, et montrer que :

$$\varphi^{(n)}(x) = \frac{a_n}{(x^2 + 1)^{n+1}} P_n(x)$$

où a_n est un imaginaire pur et $P_n(x)$ un polynôme à préciser.

Par linéarité de la dérivation, on a :

$$\forall x \in \mathbb{R}, \ \varphi^{(n)}(x) = \frac{\mathrm{i}}{2} \left(\left[\frac{1}{x+\mathrm{i}} \right]^{(n)} - \left[\frac{1}{x-\mathrm{i}} \right]^{(n)} \right) = \frac{\mathrm{i}}{2} \left(\frac{(-1)^n n!}{(x+\mathrm{i})^{n+1}} - \frac{(-1)^n n!}{(x-\mathrm{i})^{n+1}} \right)$$

$$= \frac{(-1)^n n! \mathrm{i}}{2} \times \frac{(x-\mathrm{i})^{n+1} - (x+\mathrm{i})^{n+1}}{(x^2+1)^{n+1}}$$

CONCLUSION.
$$\forall x \in \mathbb{R}, \ \varphi^{(n)}(x) = \frac{(-1)^n n! \mathrm{i}}{2(x^2+1)^{n+1}} \left((x-\mathrm{i})^{n+1} - (x+\mathrm{i})^{n+1} \right)$$

EXERCICE 12. — (CAPES externe 2022).

Pour tout $n \in \mathbb{N}^*$, on pose : $H_n = \sum_{k=1}^n \frac{1}{k}$.

1/ Démontrer que pour tout entier $k \geqslant 2$,

$$\int_{k}^{k+1} \frac{1}{x} \, \mathrm{d}x \leqslant \frac{1}{k} \leqslant \int_{k-1}^{k} \frac{1}{x} \, \mathrm{d}x$$

Soit k un entier ≥ 2 .

 \succ La fonction inverse étant décroissante sur [k, k+1], elle admet sur cet intervalle un maximum, égal à $\frac{1}{k}$.

Ainsi: $\forall x \in [k, k+1], \frac{1}{x} \leqslant \frac{1}{k}$.

Par croissance de l'intégrale : $\int_{k}^{k+1} \frac{1}{x} dx \leqslant \int_{k}^{k+1} \frac{1}{k} dx. \quad \text{D'où} : \int_{k}^{k+1} \frac{1}{x} dx \leqslant \frac{1}{k}.$

 \triangleright La fonction inverse étant décroissante sur [k-1,k], elle admet sur cet intervalle un minimum, égal à $\frac{1}{k}$

Ainsi : $\forall x \in [k-1, k], \frac{1}{x} \geqslant \frac{1}{k}$.

Par croissance de l'intégrale : $\int_{k-1}^{k} \frac{1}{x} dx \ge \int_{k-1}^{k} \frac{1}{k} dx$. D'où : $\int_{k-1}^{k} \frac{1}{x} dx \ge \frac{1}{k}$

Conclusion. Selon les calculs précédents, pour tout entier $k \geqslant 2$: $\int_{k}^{k+1} \frac{1}{x} \, \mathrm{d}x \leqslant \frac{1}{k} \leqslant \int_{k-1}^{k} \frac{1}{x} \, \mathrm{d}x$

2/ En déduire que pour tout entier $n \in \mathbb{N}^*$,

$$\ln(n+1) \leqslant H_n \leqslant 1 + \ln(n)$$

Soit $n \in \mathbb{N}^*$.

D'une part :
$$\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx \leqslant \sum_{k=1}^{n} \frac{1}{k} \iff \int_{1}^{n+1} \frac{1}{x} dx \leqslant H_{n}. \text{ D'où : } \ln(n+1) \leqslant H_{n} \quad (\spadesuit)$$

D'autre part :
$$H_n = 1 + \sum_{k=2}^{n} \frac{1}{k} \le 1 + \sum_{k=2}^{n} \int_{k=1}^{k} \frac{1}{x} dx$$
.

Par suite :
$$H_n \le 1 + \int_1^n \frac{1}{x} dx$$
. Ainsi : $H_n \le 1 + \ln(n)$ (\$\infty\$).

Conclusion. D'après (
$$\spadesuit$$
) et (\clubsuit): $\forall n \in \mathbb{N}^*$, $\ln(n+1) \leqslant H_n \leqslant 1 + \ln(n)$

- 3/ A l'aide de la relation précédente :
 - a/ Démontrer que la suite $(H_n)_{n\geqslant 1}$ diverge vers $+\infty$.

D'après la question précédente, $H_n \ge \ln(n+1)$ à partir d'un certain rang. D'où la conclusion, par comparaison.

b/ Démontrer que

$$H_n \sim_{+\infty} \ln(n)$$

Soit $n \ge 1515$. On a, selon l'encadrement de la question 2 :

$$\frac{\ln(n+1)}{\ln(n)} \leqslant \frac{H_n}{\ln(n)} \leqslant \frac{1 + \ln(n)}{\ln(n)}$$

d'où:

$$1 + \frac{\ln(1+1/n)}{\ln(n)} \le \frac{H_n}{\ln(n)} \le 1 + \frac{1}{\ln(n)}$$

Puisqu'il est immédiat que les deux termes "extrêmes" de cet encadrement tendent vers 1 lorsque n tend vers $+\infty$, on peut conclure par encadrement que : $\lim_{n\to+\infty}\frac{H_n}{\ln(n)}=1$.

Conclusion.
$$\lim_{n \to +\infty} \frac{H_n}{\ln(n)} = 1$$
 càd : $H_n \sim_{+\infty} \ln(n)$

Un équivalent de H_n au voisinage de $+\infty$ est $\ln(n)$.

Interprétation. La série harmonique diverge vers $+\infty$ "à la même vitesse" que $\ln(n)$ (càd "en prenant son temps").