CONCOURS BLANC JANVIER 2024

Corrigé de l'épreuve de Mathématiques

— Problème 1 — Une équation différentielle linéaire d'ordre 3 —

L'objectif de ce problème est de prouver l'existence et l'unicité d'une fonction $\psi \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ solution du problème :

(P):
$$\begin{cases} \forall x \in \mathbb{R}, \quad y^{(3)}(x) - y^{(2)}(x) - \frac{3}{2}y^{(1)}(x) - y^{(0)}(x) = 0 \\ y^{(0)}(0) = 1; \ y^{(1)}(0) = 0; \ \text{et } y \text{ est born\'ee sur } \mathbb{R}_+ \end{cases}$$

Partie 1 - Nombres complexes

Dans cette partie, on pose : $\alpha = -\frac{1}{2} + \frac{1}{2}$ i.

1/ Ecrire α sous forme exponentielle.*

On a :
$$\alpha = \frac{1}{2} (-1 + i)$$
. Conclusion. $\alpha = \frac{\sqrt{2}}{2} e^{3i\pi/4}$

2/ Déterminer les formes algébriques de α^2 et α^3 .

D'après la question précédente :
$$\alpha^2 = \frac{1}{2} e^{3i\pi/2} = -\frac{1}{2} i$$
.

D'après la question précédente :
$$\alpha^3 = \frac{\sqrt{2}}{4} e^{9i\pi/4} = \frac{\sqrt{2}}{4} e^{i\pi/4} = \frac{\sqrt{2}}{4} \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \frac{1}{4} + \frac{1}{4}i$$
.

Conclusion.
$$\alpha^2 = -\frac{1}{2}i$$
 et $\alpha^3 = \frac{1}{4} + \frac{1}{4}i$

3/ Soit n un entier naturel.

a/ Etablir que :
$$\alpha^{2n+1} = \frac{1}{2^{2n+1}} \sum_{k=0}^{2n+1} {2n+1 \choose k} (-1)^{k-1} i^k$$

On a : $\alpha = \frac{1}{2} (-1+i)$. D'où : $\alpha^{2n+1} = \frac{1}{2^{2n+1}} (-1+i)^{2n+1}$.

Selon le binôme de Newton, on en déduit que :
$$\alpha^{2n+1} = \frac{1}{2^{2n+1}} \sum_{k=0}^{2n+1} \binom{2n+1}{k} i^k (-1)^{2n+1-k}$$

Or : $(-1)^{2n+1-k} = (-1)^{1-k}$ (puisque $(-1)^{2n} = 1$). Et $(-1)^{k-1} = (-1)^{1-k}$ (par exemple car les entiers (k-1) et (1-k) ont la même parité).

Conclusion.
$$\alpha^{2n+1} = \frac{1}{2^{2n+1}} \sum_{k=0}^{2n+1} {2n+1 \choose k} (-1)^{k-1} i^k$$

^{*.} La forme exponentielle d'un complexe z non-nul est : $z = |z| \times e^{iarg(z)}$

b/ En déduire que :

$$\operatorname{Re}\left(\alpha^{2n+1}\right) = \frac{-1}{2^{2n+1}} \sum_{k=0}^{n} (-1)^k \binom{2n+1}{2k} \quad \text{et} \quad \operatorname{Im}\left(\alpha^{2n+1}\right) = \frac{1}{2^{2n+1}} \sum_{k=0}^{n} (-1)^k \binom{2n+1}{2k+1}$$

D'après la question précédente, on a :
$$\alpha^{2n+1} = \frac{1}{2^{2n+1}} \underbrace{\sum_{k=0}^{2n+1} \binom{2n+1}{k} (-1)^{k-1} i^k}_{S}$$

En écrivant S comme la somme de la somme de ses termes de rang pair et celle de ses termes de rang impair, on obtient :

$$S = \sum_{k=0}^{n} {2n+1 \choose 2k} (-1)^{2k-1} i^{2k} + \sum_{k=0}^{n} {2n+1 \choose 2k+1} (-1)^{2k} i^{2k+1}$$

On peut alors observer que : $(-1)^{2k-1} = -1$; $\mathbf{i}^{2k} = (-1)^k$; $(-1)^{2k} = 1$ et $\mathbf{i}^{2k+1} = (-1)^k$ i. D'où :

$$S = -\sum_{k=0}^{n} {2n+1 \choose 2k} (-1)^k + i \sum_{k=0}^{n} {2n+1 \choose 2k+1} (-1)^k$$

On en déduit que :

$$\alpha^{2n+1} = \frac{-1}{2^{2n+1}} \sum_{k=0}^{n} {2n+1 \choose 2k} (-1)^k + i \times \frac{1}{2^{2n+1}} \sum_{k=0}^{n} {2n+1 \choose 2k+1} (-1)^k$$

CONCLUSION. Re
$$(\alpha^{2n+1}) = \frac{-1}{2^{2n+1}} \sum_{k=0}^{n} (-1)^k {2n+1 \choose 2k}$$
 et Im $(\alpha^{2n+1}) = \frac{1}{2^{2n+1}} \sum_{k=0}^{n} (-1)^k {2n+1 \choose 2k+1}$

Partie 2 - Quelques solutions de $y^{(3)} - y^{(2)} - \frac{3}{2}y^{(1)} - y^{(0)} = 0$

Dans cette partie, on note (E) l'équation différentielle : $y^{(3)} - y^{(2)} - \frac{3}{2}y^{(1)} - y^{(0)} = 0$.

On définit par ailleurs trois fonctions g_0 , g_1 et g_2 sur \mathbb{R} en posant pour tout réel x:

$$g_0(x)=\mathrm{e}^{2x}\,; \hspace{0.5cm} g_1(x)=\mathrm{e}^{-x/2}\cos\left(rac{x}{2}
ight); \hspace{0.5cm} g_2(x)=\mathrm{e}^{-x/2}\sin\left(rac{x}{2}
ight);$$

4/ Vérifier que g_0 est solution de (E).

La fonction g_0 est de classe \mathscr{C}^{∞} sur \mathbb{R} , et pour tout réel x on a :

$$g_0^{(0)}(x) = e^{2x}; \quad g_0^{(1)}(x) = 2e^{2x}; \quad g_0^{(2)}(x) = 4e^{2x}; \quad \text{et } g_0^{(3)}(x) = 8e^{2x}$$

On en déduit que pour tout réel x on a :

$$g_0^{(3)}(x) - g_0^{(2)}(x) - \frac{3}{2}g_0^{(1)}(x) - g_0^{(0)}(x) = 8e^{2x} - 4e^{2x} - 3e^{2x} - e^{2x} = 0$$

CONCLUSION. g_0 est solution de (E).

5/ Pour tout réel x, on pose : $G(x) = e^{\left(-\frac{1}{2} + \frac{1}{2}i\right)x}$. Calculer $G^{(k)}(x)$ pour tout réel x et pour tout entier $k \in [0,3]$.

Soit x un réel. Observons que $G(x) = e^{\alpha x}$.

On en déduit que G est de classe \mathscr{C}^{∞} sur \mathbb{R} , et que : $\forall k \in [0,3]$, $G^{(k)}(x) = \alpha^k e^{\alpha x}$

6/ Soit x un réel. Montrer que $g_1(x) = \text{Re}(G(x))$; puis déduire de la question précédente les expressions de $g_1^{(k)}(x)$ pour tout entier $k \in [0,3]$ (on pourra utiliser les calculs de la partie 1).

Soit x un nombre réel.

On a:
$$G(x) = e^{\left(-\frac{1}{2} + \frac{1}{2}i\right)x} = e^{-x/2}e^{ix/2} = e^{-x/2}\left(\cos\left(\frac{x}{2}\right) + i\sin\left(\frac{x}{2}\right)\right)$$

Ainsi :
$$G(x) = e^{-x/2} \cos\left(\frac{x}{2}\right) + ie^{-x/2} \sin\left(\frac{x}{2}\right)$$
.

Il s'ensuit que : $\operatorname{Re}(G(x)) = e^{-x/2} \cos\left(\frac{x}{2}\right)$. Autrement écrit : $g_1(x) = \operatorname{Re}(G(x))$.

Par conséquent : $\forall k \in [0,3], g_1^{(k)}(x) = \text{Re}(G^{(k)}(x)).$

On en déduit, avec la question précédente, que : $\forall k \in [0,3], \ g_1^{(k)}(x) = \text{Re}\left(\alpha^k G(x)\right)$ (\$\infty\$)

Par ailleurs:
$$G(x) = e^{\left(-\frac{1}{2} + \frac{1}{2}i\right)x} \iff G(x) = e^{-x/2}\left(\cos\left(\frac{x}{2}\right) + i\sin\left(\frac{x}{2}\right)\right)$$
 (4)

D'après (♠), (♣) et les calculs de la question 2 on a :

•
$$g_1^{(0)}(x) = g_1(x) = e^{-x/2} \cos\left(\frac{x}{2}\right)$$

•
$$g_1^{(1)}(x) = \operatorname{Re}\left(\alpha G(x)\right) = \operatorname{Re}\left(\frac{1}{2}\left(-1+\mathrm{i}\right)\mathrm{e}^{-x/2}\left(\cos\left(\frac{x}{2}\right)+\mathrm{i}\sin\left(\frac{x}{2}\right)\right)\right)$$

Ainsi:
$$g_1^{(1)}(x) = -\frac{e^{-x/2}}{2} \left(\cos \left(\frac{x}{2} \right) + \sin \left(\frac{x}{2} \right) \right)$$

•
$$g_1^{(2)}(x) = \operatorname{Re}\left(\alpha^2 G(x)\right) = \operatorname{Re}\left(-\frac{1}{2}\operatorname{i} e^{-x/2}\left(\cos\left(\frac{x}{2}\right) + \operatorname{i} \sin\left(\frac{x}{2}\right)\right)\right)$$

Ainsi:
$$g_1^{(2)}(x) = \frac{e^{-x/2}}{2} \sin\left(\frac{x}{2}\right)$$

•
$$g_1^{(3)}(x) = \operatorname{Re}\left(\alpha^3 G(x)\right) = \operatorname{Re}\left(\frac{1}{4}\left(1 + \mathrm{i}\right) \,\mathrm{e}^{-x/2}\left(\cos\left(\frac{x}{2}\right) + \mathrm{i}\sin\left(\frac{x}{2}\right)\right)\right)$$

Ainsi:
$$g_1^{(3)}(x) = \frac{e^{-x/2}}{4} \left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)$$

CONCLUSION. Pour tout réel
$$x$$
, on $a: g_1^{(0)}(x) = e^{-x/2} \cos\left(\frac{x}{2}\right); \quad g_1^{(1)}(x) = -\frac{e^{-x/2}}{2} \left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)$

$$g_1^{(2)}(x) = \frac{e^{-x/2}}{2} \sin\left(\frac{x}{2}\right); \text{ et } g_1^{(3)}(x) = \frac{e^{-x/2}}{4} \left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)$$

7/A l'aide de la question précédente, vérifier que g_1 est solution de (E).

Soit x un nombre réel. On a :

$$g_1^{(3)}(x) - g_1^{(2)}(x) - \frac{3}{2}g_1^{(1)}(x) - g_1^{(0)}(x)$$

$$= e^{-x/2} \left(\frac{1}{4} \cos\left(\frac{x}{2}\right) - \frac{1}{4} \sin\left(\frac{x}{2}\right) - \frac{1}{2} \sin\left(\frac{x}{2}\right) + \frac{3}{4} \cos\left(\frac{x}{2}\right) + \frac{3}{4} \sin\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right) \right)$$

D'où:
$$g_1^{(3)}(x) - g_1^{(2)}(x) - \frac{3}{2}g_1^{(1)}(x) - g_1^{(0)}(x) = 0.$$

Conclusion. g_1 est solution de (E)

Dans la suite, on pourra admettre que g_2 est également solution de (E).

8/ Jusqu'à la fin du problème, on note $\mathbf{F} = \{C_0g_0 + C_1g_1 + C_2g_2, (C_0, C_1, C_2) \in \mathbb{R}^3\}$. Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Montrer que : $[f \in \mathbf{F}] \Longrightarrow [f \text{ solution de } (\mathbf{E})]$

Supposons que f est un élément de \mathbf{F} . Alors il existe $(C_0, C_1, C_2) \in \mathbb{R}^3$ tel que : $f = C_0 g_0 + C_1 g_1 + C_2 g_2$. Par linéarité de la dérivation, on a :

$$f^{(3)} - f^{(2)} - \frac{3}{2}f^{(1)} - f^{(0)}$$

$$=C_0g_0^{(3)}+C_1g_1^{(3)}+C_2g_2^{(3)}-C_0g_0^{(2)}-C_1g_1^{(2)}-C_2g_2^{(2)}-C_0\frac{3}{2}g_0^{(1)}-C_1\frac{3}{2}g_1^{(1)}-C_2\frac{3}{2}g_2^{(1)}-C_0g_0^{(0)}-C_1g_1^{(0)}-C_2g_2^{(0)}-C_1g_1^{(0)}-C_2g_2^{(0)}-C_1g_1^$$

$$D'où: \quad f^{(3)} - f^{(2)} - \frac{3}{2}f^{(1)} - f^{(0)}$$

$$= C_0 \left(\underbrace{g_0^{(3)} - g_0^{(2)} - \frac{3}{2}g_0^{(1)} - g_0^{(0)}}_{=0 \text{ d'après q. 4}} \right) + C_1 \left(\underbrace{g_1^{(3)} - g_1^{(2)} - \frac{3}{2}g_1^{(1)} - g_1^{(0)}}_{=0 \text{ d'après q. 7}} \right) + C_2 \left(\underbrace{g_2^{(3)} - g_2^{(2)} - \frac{3}{2}g_2^{(1)} - g_2^{(0)}}_{=0 \text{ selon l'énoncé}} \right)$$

Il s'ensuit que : $f^{(3)} - f^{(2)} - \frac{3}{2}f^{(1)} - f^{(0)} = 0$. On en déduit que f est solution de **(E)**.

Conclusion. $[f \in \mathbf{F}] \Longrightarrow [f \text{ solution de } (\mathbf{E})]$

Partie 3 - Solution générale de
$$y^{(3)} - y^{(2)} - \frac{3}{2}y^{(1)} - y^{(0)} = 0$$

L'objectif de cette partie est de prouver l'implication réciproque de celle établie dans la question 8; donc de montrer que toute solution f de (E) s'écrit $f = C_0g_0 + C_1g_1 + C_2g_2$ pour un certain triplet de réels (C_0, C_1, C_2) .

9/ Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On pose : $\varphi = f^{(2)} + f^{(1)} + \frac{1}{2}f^{(0)}$. Démontrer que :

$$[f \text{ solution de } (\mathbf{E})] \iff [\varphi \text{ solution de } (\mathbf{E}_0)] \quad \text{en ayant posé } (\mathbf{E}_0): \quad y^{(1)} - 2y^{(0)} = 0$$

Avec les notations de l'énoncé, on a :

 $\iff f \text{ solution de } (\mathbf{E})$

$$\varphi \text{ solution de } (\mathbf{E}_0)$$

$$\iff \varphi' - 2\varphi = 0$$

$$\iff \left(f^{(2)} + f^{(1)} + \frac{1}{2} f^{(0)} \right)' - 2 \left(f^{(2)} + f^{(1)} + \frac{1}{2} f^{(0)} \right) = 0$$

$$\iff f^{(3)} + f^{(2)} + \frac{1}{2} f^{(1)} - 2f^{(2)} - 2f^{(1)} - f^{(0)} = 0$$

$$\iff f^{(3)} - f^{(2)} - \frac{3}{2} f^{(1)} - f^{(0)} = 0$$

CONCLUSION. [f solution de (E)] \iff [φ solution de (E₀)]

10 / Donner sans justification la solution générale de (E_0) .

D'après le cours, la solution générale de (\mathbf{E}_0) est : $\forall x \in \mathbb{R}, \ s(x) = Ke^{2x}$ (avec K réel)

11/ Soit K un réel. Déterminer l'ensemble des fonctions $f\in\mathscr{C}^\infty(\mathbb{R},\mathbb{R})$ solutions de :

(**E**₁):
$$f^{(2)}(x) + f^{(1)}(x) + \frac{1}{2}f^{(0)}(x) = Ke^{2x}$$

L'équation (\mathbf{E}_1) est une EDL2 à coefficients constants.

L'équation homogène associée à (\mathbf{E}_1) est $(\mathbf{H}): f^{(2)} + f^{(1)} + \frac{1}{2}f^{(0)} = 0$.

L'équation caractéristique associée à (H) est (EC) : $r^2 + r + \frac{1}{2} = 0$.

Celle-ci possède deux racines complexes conjuguées : $\alpha = -\frac{1}{2} + \frac{1}{2}$ i et $\overline{\alpha}$.

D'après le cours, on en déduit que la solution générale de (H) est :

$$\forall x \in \mathbb{R}, f_H(x) = \left(C_1 \cos\left(\frac{x}{2}\right) + C_2 \sin\left(\frac{x}{2}\right)\right) e^{-x/2} \text{ (avec } C_1, C_2 \text{ réels)}$$

Autrement écrit, la solution générale de (H) est :

$$\forall x \in \mathbb{R}, f_H(x) = C_1 g_1(x) + C_2 g_2(x) \text{ (avec } C_1, C_2 \text{ réels)}$$

Déterminons une solution particulière de (\mathbf{E}_1) . Posons pour tout réel $x: f_P(x) = a\mathrm{e}^{2x}$ (avec $a \in \mathbb{R}$).

On a:

 f_P solution de (\mathbf{E}_1)

$$\iff \forall x \in \mathbb{R}, \quad f_P^{(2)}(x) + f_P^{(1)}(x) + \frac{1}{2} f_P^{(0)}(x) = K e^{2x}$$

$$\iff \forall x \in \mathbb{R}, \quad a e^{2x} \left(4 + 2 + \frac{1}{2} \right) = K e^{2x}$$

$$\iff \frac{13}{2} a = K \iff a = \frac{2K}{13}$$

CONCLUSION. D'après (\spadesuit) , (\clubsuit) et le cours, la solution générale de (\mathbf{E}_1) est :

$$\forall x \in \mathbb{R}, \ s(x) = \frac{2K}{13} e^{2x} + C_1 g_1(x) + C_2 g_2(x) \text{ (avec } C_1, C_2 \text{ réels)}$$

Autrement écrit : $\forall x \in \mathbb{R}, \ s(x) = \frac{2K}{13}g_0(x) + C_1g_1(x) + C_2g_2(x)$ (avec C_1, C_2 réels)

12/ Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Montrer que : $[f \text{ solution de } (\mathbf{E})] \Longrightarrow [f \in \mathbf{F}]$

Supposons que f est solution de (E). D'après les questions 9 et 10, il existe un réel K tel que :

$$\forall x \in \mathbb{R}, \ f^{(2)}(x) + f^{(1)}(x) + \frac{1}{2} f^{(0)}(x) = Ke^{2x}$$

D'après la question précédente, on en déduit qu'il existe deux réels C_1 et C_2 tels que :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{2K}{13}g_0(x) + C_1g_1(x) + C_2g_2(x)$$

Ce qui signifie en particulier que f est un élément de \mathbf{F} .

Conclusion. $[f \text{ solution de } (\mathbf{E})] \Longrightarrow [f \in \mathbf{F}]$

Avec l'implication de la question 8, on a ainsi établi l'équivalence : $[f \text{ solution de } (\mathbf{E})] \iff [f \in \mathbf{F}].$ Ce qui signifie que \mathbf{F} est exactement l'ensemble des solutions de l'équation différentielle (\mathbf{E}) .

Partie 4 - Résolution du problème (P)

On veut prouver l'existence et l'unicité d'une fonction ψ solution du problème (**P**), que l'on rappelle cidessous :

(P):
$$\begin{cases} \forall x \in \mathbb{R}, \quad y^{(3)}(x) - y^{(2)}(x) - \frac{3}{2}y^{(1)}(x) - y^{(0)}(x) = 0 \\ y^{(0)}(0) = 1; \ y^{(1)}(0) = 0; \ \text{et } y \text{ est born\'ee sur } \mathbb{R}_+ \end{cases}$$

Supposons que $\psi \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ est solution du problème (P).

Alors ψ est en particulier solution de (\mathbf{E}) , et on sait selon la partie 3 qu'il existe trois réels C_0 , C_1 et C_2 tels que pour tout $x \in \mathbb{R}$ on a :

$$\psi(x) = C_0 g_0(x) + C_1 g_1(x) + C_2 g_2(x) \qquad \text{càd} \qquad \psi(x) = C_0 e^{2x} + C_1 e^{-x/2} \cos\left(\frac{x}{2}\right) + C_2 e^{-x/2} \sin\left(\frac{x}{2}\right)$$

13/ Nullité de C_0 .

a/ Justifier que $\lim_{x \to +\infty} \frac{g_1(x)}{g_0(x)} = 0$ et $\lim_{x \to +\infty} \frac{g_2(x)}{g_0(x)} = 0$.

Pour tout réel x on a : $\frac{g_1(x)}{g_0(x)} = \frac{e^{-x/2}\cos\left(\frac{x}{2}\right)}{e^{2x}} = e^{-5x/2}\cos\left(\frac{x}{2}\right).$

Or la fonction $x \mapsto \cos\left(\frac{x}{2}\right)$ est bornée, et $\lim_{x \to +\infty} e^{-5x/2} = 0$.

On en déduit que : $\lim_{x \to +\infty} \frac{g_1(x)}{g_0(x)} = 0$. Raisonnement analogue pour la seconde limite.

Conclusion.
$$\lim_{x \to +\infty} \frac{g_1(x)}{g_0(x)} = 0$$
 et $\lim_{x \to +\infty} \frac{g_2(x)}{g_0(x)} = 0$

 $\mathbf{b}/$ En déduire que : $[C_0 \neq 0] \Longrightarrow \left[\lim_{x \to +\infty} |\psi(x)| = +\infty\right]$

Supposons que $C_0 \neq 0$. Alors pour tout réel x on a :

$$\psi(x) = C_0 g_0(x) + C_1 g_1(x) + C_2 g_2(x) = g_0(x) \left(C_0 + C_1 \frac{g_1(x)}{g_0(x)} + C_2 \frac{g_2(x)}{g_0(x)} \right)$$

soit encore:

$$\psi(x) = e^{2x} \left(C_0 + C_1 \frac{g_1(x)}{g_0(x)} + C_2 \frac{g_2(x)}{g_0(x)} \right)$$

Or $\lim_{x \to +\infty} e^{2x} = +\infty$ et d'après la question précédente : $\lim_{x \to +\infty} C_0 + C_1 \frac{g_1(x)}{g_0(x)} + C_2 \frac{g_2(x)}{g_0(x)} = C_0$

On en déduit que $\lim_{x\to +\infty} \psi(x) = +\infty$ (si $C_0 > 0$) ou $\lim_{x\to +\infty} \psi(x) = -\infty$ (si $C_0 < 0$).

Dans les deux cas on a : $\lim_{x \to +\infty} |\psi(x)| = +\infty$

Conclusion. $[C_0 \neq 0] \Longrightarrow \left[\lim_{x \to +\infty} |\psi(x)| = +\infty \right]$

 \mathbf{c} / En utilisant le fait que ψ est bornée sur \mathbb{R}_+ , déduire de la question précédente que $C_0 = 0$.

Puisque ψ est solution du problème (**P**), ψ est bornée sur \mathbb{R}_+ . Ceci est incompatible avec l'assertion suivant laquelle $\lim_{x\to+\infty} |\psi(x)| = +\infty$. On en déduit que le réel C_0 ne peut pas être différent de 0.

Conclusion. $C_0 = 0$; donc $\psi = C_1 g_1 + C_2 g_2$.

14/ Détermination de C_1 et C_2 .

Selon la question précédente, on a : $\forall x \in \mathbb{R}$, $\psi(x) = C_1 e^{-x/2} \cos\left(\frac{x}{2}\right) + C_2 e^{-x/2} \sin\left(\frac{x}{2}\right)$.

En utilisant l'hypothèse suivant laquelle $\psi(0) = 1$ et $\psi'(0) = 0$, déterminer les valeurs de C_1 et C_2 .

Soit x un nombre réel. D'après l'énoncé, on a : $\psi(x) = e^{-x/2} \left(C_1 \cos \left(\frac{x}{2} \right) + C_2 \sin \left(\frac{x}{2} \right) \right)$.

Il s'ensuit que : $\psi'(x) = \frac{e^{-x/2}}{2} \left(-C_1 \cos\left(\frac{x}{2}\right) - C_2 \sin\left(\frac{x}{2}\right) - C_1 \sin\left(\frac{x}{2}\right) + C_2 \cos\left(\frac{x}{2}\right) \right)$

On en déduit que : $\psi(0) = C_1$ et $\psi'(0) = C_2 - C_1$.

Or, comme ψ est solution du problème (**P**), on a : $\psi(0) = 1$ et $\psi'(0) = 0$.

Il s'ensuit que $C_1=1$ et $C_2-C_1=0$. D'où : $C_1=1$ et $C_2=1$.

CONCLUSION. $C_1 = 1$ et $C_2 = 1$; l'expression de la fonction ψ est donc

$$\forall x \in \mathbb{R}, \quad \psi(x) = e^{-x/2} \left(\cos \left(\frac{x}{2} \right) + \sin \left(\frac{x}{2} \right) \right)$$

15/ Conclusion. En déduire que l'unique solution ψ du problème (P) est telle que :

$$\forall x \in \mathbb{R}, \ \psi(x) = Ae^{-x/2}\cos\left(\frac{x}{2} - \theta\right)$$

où A et θ sont deux réels strictement positifs à préciser.

D'après la question précédente, le problème (P) admet une unique solution, qui est la fonction ψ définie plus haut.

Explicitement, d'après la question 14 on a pour tout x réel :

$$\psi(x) = e^{-x/2} \left(\cos \left(\frac{x}{2} \right) + \sin \left(\frac{x}{2} \right) \right)$$

$$\iff \psi(x) = \sqrt{2} e^{-x/2} \left(\frac{\sqrt{2}}{2} \cos \left(\frac{x}{2} \right) + \frac{\sqrt{2}}{2} \sin \left(\frac{x}{2} \right) \right)$$

$$\iff \psi(x) = \sqrt{2} e^{-x/2} \left(\cos \left(\frac{x}{2} \right) \cos \left(\frac{\pi}{4} \right) + \sin \left(\frac{x}{2} \right) \sin \left(\frac{\pi}{4} \right) \right)$$

CONCLUSION. L'unique solution du problème (P) est la fonction ψ définie par :

$$\forall x \in \mathbb{R}, \quad \psi(x) = \sqrt{2} e^{-x/2} \cos\left(\frac{x}{2} - \frac{\pi}{4}\right) \qquad \left(A = \sqrt{2} \text{ et } \theta = \frac{\pi}{4}\right)$$

— Problème 2 — Irrationnalité de π —

On se propose ici de démontrer que π est irrationnel, en utilisant un raisonnement par l'absurde.

Tout au long de ce problème, on suppose donc qu'il existe deux entiers naturels non nuls a et b tels que : $\pi = \frac{a}{b}$.

L'objectif principal de cet énoncé est de prouver que cette hypothèse conduit à une contradiction.

On pose:

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ P_n(x) = \frac{x^n (a - bx)^n}{n!}$$
 et: $\forall x \in \mathbb{R}, \ P_0(x) = 1$

Et on pose:

$$\forall n \in \mathbb{N}, \quad \mathbf{I}_n = \int_0^{\pi} P_n(x) \sin(x) \, \mathrm{d}x$$

Partie 1 - Etude des variations de P_n

Dans cette partie, n désigne un entier naturel non nul.

1/ Etablir que : $\forall x \in [0, \pi], P_{n-1}(x) \ge 0$

Si
$$n = 1$$
, alors $\forall x \in [0, \pi]$, $P_{n-1}(x) = P_0(x) = 1 \ge 0$.

Si
$$n \ge 2$$
, alors $\forall x \in [0, \pi]$, $P_{n-1}(x) = \frac{x^{n-1} (a - bx)^{n-1}}{(n-1)!}$.

Or : $a - bx \ge 0 \iff x \le \frac{a}{b} \iff x \le \pi$. On en déduit que $(a - bx)^{n-1}$ est positif sur $[0, \pi]$.

Par suite :
$$\forall x \in [0, \pi], \quad P_{n-1}(x) = \frac{x^{n-1} (a - bx)^{n-1}}{(n-1)!} \ge 0.$$

Conclusion.
$$\forall x \in [0, \pi], \quad P_{n-1}(x) \geqslant 0$$

2/ Exprimer la dérivée de P_n en fonction de P_{n-1} .

On a:
$$\forall x \in \mathbb{R}$$
, $P_n(x) = \frac{1}{n!}x^n (a - bx)^n$.

Il s'ensuit que P_n est dérivable sur \mathbb{R} (P_n est polynomiale), et que pour tout réel x:

$$P_n'(x) = \frac{1}{n!} \left[nx^{n-1} (a - bx)^n - nbx^n (a - bx)^{n-1} \right] = \frac{x^{n-1} (a - bx)^n}{(n-1)!} - \frac{bx^n (a - bx)^{n-1}}{(n-1)!}$$
$$= (a - bx)P_{n-1}(x) - bxP_{n-1}(x) = (a - 2bx)P_{n-1}(x)$$

Conclusion.
$$\forall x \in \mathbb{R}, \quad {P_n}'(x) = (a - 2bx) P_{n-1}(x)$$

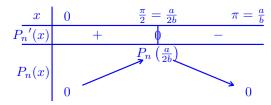
3/ Etablir que:

$$\forall x \in [0, \pi], \quad 0 \leqslant P_n(x) \leqslant \frac{1}{n!} \times \frac{a^{2n}}{4^n b^n}$$

D'après les questions 1 et 2, $P_n'(x)$ est du signe de (a-2bx) sur $[0,\pi]$.

Et:
$$a - 2bx \geqslant 0 \iff x \leqslant \frac{a}{2b} \iff x \leqslant \frac{\pi}{2}$$
.

On en déduit le tableau de variation de P_n :



On en déduit que la fonction P_n est positive sur $[0, \pi]$, et qu'elle admet sur cet intervalle un maximum égal à :

$$P_n\left(\frac{a}{2b}\right) = \frac{\left(\frac{a}{2b}\right)^n \left(a - b\frac{a}{2b}\right)^n}{n!} = \frac{\left(\frac{a}{2b}\right)^n \left(\frac{a}{2}\right)^n}{n!} = \frac{1}{n!} \times \frac{a^{2n}}{4^n b^n}$$

Conclusion. $\forall x \in [0, \pi], \quad 0 \leqslant P_n(x) \leqslant \frac{1}{n!} \times \frac{a^{2n}}{4^n b^n}$

PARTIE 2 - UN CALCUL DE LIMITE

Dans cette partie, A désigne un réel strictement positif.

4/ On pose : $n_0 = \lfloor A \rfloor + 1$. Etablir que pour tout entier naturel $n > n_0$ on a :

$$0 \leqslant \frac{A^n}{n!} \leqslant \frac{A^{n_0}}{n_0!} \times \left(\frac{A}{n_0+1}\right)^{n-n_0}$$

Avec les notations de l'énoncé, on a :

$$\frac{A^n}{n!} = \prod_{k=1}^n \frac{A}{k} = \prod_{k=1}^{n_0} \frac{A}{k} \times \prod_{k=n_0+1}^n \frac{A}{k} = \frac{A^{n_0}}{n_0!} \times \prod_{k=n_0+1}^n \frac{A}{k}$$
 (4)

Par ailleurs, pour tout entier $k \ge n_0 + 1$, on a : $0 \le \frac{A}{k} \le \frac{A}{n_0 + 1}$.

Il s'ensuit que :
$$0 \leqslant \prod_{k=n_0+1}^n \frac{A}{k} \leqslant \left(\frac{A}{n_0+1}\right)^{n-n_0}$$
 (4)

CONCLUSION. D'après (
$$\spadesuit$$
) et (\clubsuit), on a : $0 \leqslant \frac{A^n}{n!} \leqslant \frac{A^{n_0}}{n_0!} \times \left(\frac{A}{n_0+1}\right)^{n-n_0}$

5/ En déduire que : $\forall A \in \mathbb{R}_+^*$, $\lim_{n \to +\infty} \frac{A^n}{n!} = 0$

Observons que $0 \le \frac{A}{n_0 + 1} < 1$ (puisque $A < \lfloor A \rfloor$).

On en déduit que :
$$\lim_{n \to +\infty} \left(\frac{A}{n_0+1}\right)^{n-n_0} = 0. \text{ D'où : } \lim_{n \to +\infty} \frac{A^{n_0}}{n_0!} \times \left(\frac{A}{n_0+1}\right)^{n-n_0} = 0 \qquad (\clubsuit).$$

CONCLUSION. D'après (\spadesuit), la question 4 et le théorème d'encadrement : $\forall A \in \mathbb{R}_+^*$, $\lim_{n \to +\infty} \frac{A^n}{n!} = 0$

Partie 3 - Quelques propriétés de l'intégrale \mathbf{I}_n

6/ Démontrer que : $\forall n \in \mathbb{N}^*, \quad 0 \leqslant \mathbf{I}_n \leqslant \frac{\pi}{n!} \times \left(\frac{a^2}{4b}\right)^n$

Soit $n \in \mathbb{N}^*$.

D'après la question 3 : $\forall x \in [0, \pi], \quad 0 \leqslant P_n(x) \leqslant \frac{1}{n!} \times \frac{a^{2n}}{4^n b^n}$

Par ailleurs: $\forall x \in [0, \pi], \quad 0 \leq \sin(x) \leq 1$

D'où: $\forall x \in [0, \pi], \quad 0 \leqslant P_n(x)\sin(x) \leqslant \frac{1}{n!} \times \frac{a^{2n}}{4^n b^n}$

Par croissance de l'intégrale, on en déduit que : $0 \leqslant \int_0^\pi P_n(x) \sin(x) dx \leqslant \int_0^\pi \frac{1}{n!} \times \frac{a^{2n}}{4^n b^n} dx$

Conclusion. $\forall n \in \mathbb{N}^*, \quad 0 \leqslant \mathbf{I}_n \leqslant \frac{\pi}{n!} \times \left(\frac{a^2}{4b}\right)^r$

7/ En déduire la limite de la suite (\mathbf{I}_n) .

D'après la question 5 (appliquée avec $A = \frac{a^2}{4b}$), on a : $\lim_{n \to +\infty} \frac{\pi}{n!} \times \left(\frac{a^2}{4b}\right)^n = 0$ (\spadesuit)

CONCLUSION. D'après (\spadesuit), la question 6 et le théorème d'encadrement : $\lim_{n\to+\infty} \mathbf{I}_n = 0$

- 8/ Dans cette question, on souhaite prouver que l'intégrale \mathbf{I}_n est <u>strictement</u> positive pour tout entier naturel n.
 - \mathbf{a} / Calculer \mathbf{I}_0 , et vérifier que $\mathbf{I}_0 \in \mathbb{N}^*$.

On a:
$$\mathbf{I}_0 = \int_0^{\pi} P_0(x) \sin(x) dx = \int_0^{\pi} \sin(x) dx = [-\cos(x)]_0^{\pi} = 2$$

Conclusion. $\mathbf{I}_0 = 2 \; (\mathrm{donc} \; \mathbf{I}_0 \in \; \mathbb{N}^*)$

 \mathbf{b} Soit $n \in \mathbb{N}^*$. En utilisant notamment la relation de Chasles pour les intégrales, établir que :

$$\mathbf{I}_n \geqslant \int_{\pi/4}^{\pi/2} P_n(x) \sin(x) \, \mathrm{d}x$$

D'après la relation de Chasles pour les intégrales, on a :

$$\mathbf{I}_n = \int_0^{\pi/4} P_n(x) \sin(x) \, dx + \int_{\pi/4}^{\pi/2} P_n(x) \sin(x) \, dx + \int_{\pi/2}^{\pi} P_n(x) \sin(x) \, dx$$

Or les intégrales $\int_0^{\pi/4} P_n(x) \sin(x) dx$ et $\int_{\pi/2}^{\pi} P_n(x) \sin(x) dx$ sont positives (par positivité de l'intégrale essentiellement).

Conclusion.
$$I_n \geqslant \int_{\pi/4}^{\pi/2} P_n(x) \sin(x) dx$$

 $\mathbf{c}/$ Soit $n \in \mathbb{N}^*$. Etablir que :

$$\mathbf{I}_n \geqslant \frac{\pi\sqrt{2}}{8} \times P_n\left(\frac{\pi}{4}\right)$$

 $\operatorname{Sur}\left[\frac{\pi}{4},\frac{\pi}{2}\right], \text{ la fonction sin est croissante, d'où}: \quad \forall \, x \in \left[\frac{\pi}{4},\frac{\pi}{2}\right], \, \sin(x) \geqslant \frac{\sqrt{2}}{2}$

 $\operatorname{Sur}\left[\frac{\pi}{4},\frac{\pi}{2}\right], \text{ la fonction } P_n \text{ est croissante (q3), d'où : } \forall \, x \in \left[\frac{\pi}{4},\frac{\pi}{2}\right], \,\, P_n(x) \geqslant P_n\left(\frac{\pi}{4}\right)$

Il s'ensuit que : $\forall x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right], \ P_n(x)\sin(x) \geqslant \frac{\sqrt{2}}{2} \times P_n\left(\frac{\pi}{4}\right)$

Par croissance de l'intégrale : $\int_{\pi/4}^{\pi/2} P_n(x) \sin(x) \, \mathrm{d}x \geqslant \int_{\pi/4}^{\pi/2} \frac{\sqrt{2}}{2} \times P_n\left(\frac{\pi}{4}\right) \, \mathrm{d}x$

D'où: $\int_{\pi/4}^{\pi/2} P_n(x) \sin(x) dx \geqslant \frac{\pi}{4} \times \frac{\sqrt{2}}{2} \times P_n\left(\frac{\pi}{4}\right)$

Ainsi: $\int_{\pi/4}^{\pi/2} P_n(x) \sin(x) dx \geqslant \frac{\pi\sqrt{2}}{8} \times P_n\left(\frac{\pi}{4}\right) \qquad (\spadesuit)$

CONCLUSION. D'après (\spadesuit) et la question 8-b, on a : $\mathbf{I}_n \geqslant \frac{\pi\sqrt{2}}{8} \times P_n\left(\frac{\pi}{4}\right)$

d/ Déduire de ce qui précède que :

$$\forall n \in \mathbb{N}, \quad \mathbf{I}_n > 0$$

Soit $n \in \mathbb{N}^*$.

D'après la question précédente : $\mathbf{I}_n \geqslant \frac{\pi\sqrt{2}}{8} \times P_n\left(\frac{\pi}{4}\right)$.

Or $P_n\left(\frac{\pi}{4}\right) > 0$ (cf tableau de variation de P_n , question 3).

Il s'ensuit que : $\frac{\pi\sqrt{2}}{8} \times P_n\left(\frac{\pi}{4}\right) > 0$. A fortiori : $\mathbf{I}_n > 0$.

Ainsi : $\forall n \in \mathbb{N}^*, \ \mathbf{I}_n > 0$. Puisque par ailleurs $\mathbf{I}_0 > 0$ (question 8-a), on peut conclure.

Conclusion. $\forall n \in \mathbb{N}, \ \mathbf{I}_n > 0$

Partie 4 - Dérivées successives de P_n

Dans cette partie, n désigne un entier naturel non nul, et x un réel de $[0,\pi]$.

On note $f(x) = x^n$ et $g(x) = (a - bx)^n$.

9/ Soit k un entier naturel dans [0, n]. Etablir que : $\frac{n!}{k!} \in \mathbb{Z}$

<u>Indication</u>. On pourra distinguer deux cas : k = n, et $k \in [0, n-1]$. Dans le second, on pourra utiliser <u>la relation</u> de Chasles pour les produits.

Soit k un entier naturel dans [0, n]. Distinguons deux cas, comme le suggère - gentiment - l'énoncé.

Premier cas: k = n. Alors: $\frac{n!}{k!} = \frac{n!}{n!} = 1 \in \mathbb{Z}$

Second cas : $k \in [0, n-1]$. Alors :

$$\frac{n!}{k!} = \frac{\prod_{j=1}^{n} j}{k!} = \frac{\left(\prod_{j=1}^{k} j\right) \times \left(\prod_{j=k+1}^{n} j\right)}{k!} = \frac{k! \times \left(\prod_{j=k+1}^{n} j\right)}{k!} = \prod_{j=k+1}^{n} j$$

Or $\prod_{j=k+1}^n j$ est un produit d'entiers relatifs ; à ce titre : $\prod_{j=k+1}^n j \in \mathbb{Z}$. D'où : $\forall k \in \llbracket 0, n-1 \rrbracket$, $\frac{n!}{k!} \in \mathbb{Z}$

Conclusion. $\forall k \in [0, n], \frac{n!}{k!} \in \mathbb{Z}$

10/ Soit k un entier naturel dans [0, n]. Etablir que :

$$f^{(k)}(x) = \frac{n!}{(n-k)!} \times x^{n-k}$$

Raisonnement par récurrence finie sur k.

Pour tout entier $k \in [0, n]$, notons A(k) l'assertion : $f^{(k)}(x) = \frac{n!}{(n-k)!} \times x^{n-k}$.

D'une part : $f^{(0)}(x) = f(x) = x^n$. D'autre part : $\frac{n!}{(n-0)!} \times x^{n-0} = x^n$. D'où : A(0) est vraie.

Supposons à présent que A(k) est vraie pour un certain entier $k \in [0, n-1]$.

Alors:
$$f^{(k)}(x) = \frac{n!}{(n-k)!} \times x^{n-k}$$

Il s'ensuit que :

$$f^{(k+1)}(x) = \frac{n!}{(n-k)!} \times (n-k)x^{n-k-1} = \frac{n!}{(n-k-1)!} \times x^{n-k-1} = \frac{n!}{(n-(k+1))!} \times x^{n-(k+1)}$$

Ce qui signifie que l'assertion A(k+1) est vraie. Récurrence établie.

Conclusion.
$$\forall k \in [0, n], \quad f^{(k)}(x) = \frac{n!}{(n-k)!} \times x^{n-k}$$

11/ Soit k un entier naturel supérieur ou égal à (n+1). Etablir que : $f^{(k)}(x) = 0$.

D'après la question précédente : $f^{(n)}(x) = \frac{n!}{(n-n)!} \times x^{n-n}$ d'où $f^{(n)}(x) = n!$.

En particulier, $f^{(n)}$ est constante sur $[0,\pi]$. Il s'ensuit que toutes les dérivées de f d'ordre strictement plus grand que n sont nulles.

CONCLUSION. Pour tout entier naturel k supérieur ou égal à (n+1), on a : $f^{(k)}(x) = 0$

12/ A l'aide des questions précédentes, établir que :

$$f^{(n)}(0) = n!$$
 et $\forall k \in \mathbb{N}, [k \neq n] \Longrightarrow [f^{(k)}(0) = 0]$

D'après la question précédente : $f^{(n)}(0) = n!$.

Par ailleurs, d'après la question 11, pour tout entier k > n, on a : $f^{(k)}(0) = 0$

Enfin, d'après la question 10, pour tout entier k < n, on a : $f^{(k)}(0) = \frac{n!}{(n-k)!} \times 0^{n-k}$.

Puisque dans ce cas on a n-k>0, on en déduit que : $0^{n-k}=0$. D'où : $f^{(k)}(0)=0$.

Conclusion. $f^{(n)}(0) = n!$ et $\forall k \in \mathbb{N}, [k \neq n] \Longrightarrow [f^{(k)}(0) = 0]$

Dans la suite, on pourra **admettre** que les dérivées successives de g sont données par des formules analogues :

$$\forall k \in \mathbb{N}, \quad g^{(k)}(x) = \begin{cases} (-1)^k b^k \times \frac{n!}{(n-k)!} \times (a-bx)^{n-k} & \text{si } k \in [0, n] \\ 0 & \text{si } k > n \end{cases}$$

13/ Justifier brièvement que :
$$\forall k \in \mathbb{N}, \quad P_n^{(k)}(x) = \frac{1}{n!} \sum_{j=0}^k \binom{k}{j} f^{(j)}(x) g^{(k-j)}(x)$$

Selon l'énoncé :
$$\forall x \in \mathbb{R}, \ P_n(x) = \frac{x^n (a - bx)^n}{n!}$$
. Ainsi : $\forall x \in \mathbb{R}, \ P_n(x) = \frac{1}{n!} f(x) g(x)$

Les fonctions f et g étant de classe \mathscr{C}^{∞} sur \mathbb{R} (toutes deux sont polynomiales de degré n), on peut appliquer la formule de Leibniz pour calculer la dérivée k-ème de P_n (pour tout entier naturel k).

Conclusion.
$$\forall k \in \mathbb{N}, \quad P_n^{(k)}(x) = \frac{1}{n!} \sum_{j=0}^k \binom{k}{j} f^{(j)}(x) g^{(k-j)}(x)$$

- 14/ L'objectif de cette question est d'établir que pour tout entier naturel k, le réel $P_n^{(k)}(0)$ est un entier relatif. Pour y parvenir, on distingue 3 cas suivant la valeur de l'entier naturel k.
 - $\mathbf{a}/$ Premier cas : $k \in [0, n-1]$. Etablir que : $P_n^{(k)}(0) = 0$.

Soit
$$k \in [0, n-1]$$
. D'après la question $13: P_n^{(k)}(0) = \frac{1}{n!} \sum_{j=0}^k {k \choose j} f^{(j)}(0) g^{(k-j)}(0)$

Dans cette somme, l'entier j prend des valeurs différentes de n (j est compris entre 0 et k, et k < n).

Il s'ensuit que pour tout entier j entre 0 et k, on a $f^{(j)}(0) = 0$ (question 12).

Par suite :
$$\sum_{j=0}^{k} {k \choose j} f^{(j)}(0) g^{(k-j)}(0) = 0$$
. Conclusion. $\forall k \in [0, n-1], P_n^{(k)}(0) = 0$

$$\mathbf{b}/\ \underline{\text{Deuxième cas}}: k \in \llbracket n, 2n \rrbracket. \quad \text{Etablir que}: P_n^{(k)}(0) = (-1)^{k-n}b^{k-n} \times \binom{k}{n} \times \frac{n!}{(2n-k)!} \times a^{2n-k}$$

En déduire que : $P_n^{(k)}(0) \in \mathbb{Z}$.

Soit
$$k \in [n, 2n]$$
. D'après la question $13: P_n^{(k)}(0) = \frac{1}{n!} \sum_{j=0}^k \binom{k}{j} f^{(j)}(0) g^{(k-j)}(0)$

Dans cette somme, l'entier $f^{(j)}(0)$ est nul pour tout $j \neq n$.

Il s'ensuit que :
$$P_n^{(k)}(0) = \frac{1}{n!} {k \choose n} f^{(n)}(0) g^{(k-n)}(0)$$
.

On en déduit avec la question 12 que : $P_n^{(k)}(0) = \frac{1}{n!} \binom{k}{n} n! (-1)^{k-n} b^{k-n} \times \frac{n!}{(2n-k)!} \times a^{2n-k}$

D'où :
$$P_n^{(k)}(0) = (-1)^{k-n}b^{k-n} \times \binom{k}{n} \times \frac{n!}{(2n-k)!} \times a^{2n-k}$$

Il reste à observer que $(-1)^{k-n}b^{k-n}$ est un entier relatif, car $b \in \mathbb{N}$ (énoncé) et $k-n \geqslant 0$ (hypothèse); $\binom{k}{n}$ est un entier relatif (c'est un nombre de combinaisons); $\frac{n!}{(2n-k)!}$ est un entier relatif car par hypothèse $0 \leqslant 2n-k \leqslant n$, et (2n-k)! est donc un diviseur de n!; enfin, a^{2n-k} est un entier relatif car $a \in \mathbb{N}$ (énoncé) et 2n-k est un entier positif (hypothèse).

Puisque \mathbb{Z} est stable par produit, on peut conclure.

Conclusion.
$$\forall k \in [n, 2n], P_n^{(k)}(0) \in \mathbb{Z}$$

 $\mathbf{c}/$ Troisième cas : $k \in \mathbb{N}, \ k > 2n$. Justifier brièvement que : $P_n^{(k)}(0) = 0$.

La fonction P_n est polynomiale de degré 2n (en tant que produit de deux fonctions polynomiales de degré n). Il s'ensuit que toutes ses dérivées d'ordre strictement supérieur à 2n sont nulles.

Conclusion.
$$\forall k \in \mathbb{N}, [k > 2n] \Longrightarrow \left[P_n^{(k)}(0) = 0 \right]$$

Conclusion de la partie 4. On a ainsi prouvé que :

$$\forall (k,n) \in \mathbb{N}^2, \quad P_n^{(k)}(0) \in \mathbb{Z}$$

Dans la suite, on pourra admettre que l'on a aussi :

$$\forall (k,n) \in \mathbb{N}^2, \quad P_n^{(k)}\left(\frac{a}{b}\right) \in \mathbb{Z} \qquad c\grave{a}d: \quad \forall (k,n) \in \mathbb{N}^2, \quad P_n^{(k)}(\pi) \in \mathbb{Z}$$

Partie 5 - Lien entre \mathbf{I}_n et les dérivées successives de P_n

Dans cette partie, n désigne un entier naturel non nul.

15/ A l'aide de deux intégrations par parties successives, établir que :

$$\mathbf{I}_n = P_n\left(\frac{a}{b}\right) + P_n(0) - \int_0^{\pi} P''_n(x)\sin(x)\,\mathrm{d}x$$

On a :
$$\mathbf{I}_n = \int_0^{\pi} P_n(x) \sin(x) dx = [-\cos(x)P_n(x)]_0^{\pi} + \int_0^{\pi} P_n'(x) \cos(x) dx$$

D'où :
$$\mathbf{I}_n = \int_0^{\pi} P_n(x) \sin(x) dx = P_n(\pi) + P_n(0) + \int_0^{\pi} P_n'(x) \cos(x) dx$$

Une seconde IPP donne :
$$\mathbf{I}_n = \int_0^{\pi} P_n(x) \sin(x) dx = P_n(\pi) + P_n(0) + \underbrace{\left[P_n'(x)\sin(x)\right]_0^{\pi}}_{=0} - \int_0^{\pi} P_n''(x)\sin(x) dx$$

D'où :
$$\mathbf{I}_n = \int_0^{\pi} P_n(x) \sin(x) dx = P_n(\pi) + P_n(0) - \int_0^{\pi} P_n''(x) \sin(x) dx$$

CONCLUSION. Puisque
$$\pi = \frac{a}{b}$$
, on peut conclure : $\mathbf{I}_n = P_n\left(\frac{a}{b}\right) + P_n(0) - \int_0^{\pi} P''_n(x)\sin(x)\,\mathrm{d}x$

16/ En déduire que :

$$\mathbf{I}_n = \sum_{k=0}^{n-1} (-1)^k \left(P_n^{(2k)} \left(\frac{a}{b} \right) + P_n^{(2k)}(0) \right) + (-1)^n \int_0^{\pi} P_n^{(2n)}(x) \sin(x) \, \mathrm{d}x$$

En reprenant le principe de la question précédente, on obtient à l'issue de n intégrations par parties :

$$\mathbf{I}_n = \sum_{k=0}^{n-1} (-1)^k \left(P_n^{(2k)} \left(\frac{a}{b} \right) + P_n^{(2k)} (0) \right) + (-1)^n \int_0^{\pi} P_n^{(2n)} (x) \sin(x) \, \mathrm{d}x$$

17/ En utilisant des résultats de la partie 4, établir que :

$$\forall x \in [0, \pi], \quad P_n^{(2n)}(x) = (-1)^n b^n \times \frac{(2n)!}{n!}$$

D'après la question 13, on a : $\forall x \in [0, \pi], \ \forall k \in \mathbb{N}, \quad P_n^{(k)}(x) = \frac{1}{n!} \sum_{j=0}^k \binom{k}{j} f^{(j)}(x) g^{(k-j)}(x)$

En particulier :
$$\forall x \in [0, \pi], \quad P_n^{(2n)}(x) = \frac{1}{n!} \sum_{j=0}^{2n} \binom{2n}{j} f^{(j)}(x) g^{(2n-j)}(x)$$

Dans cette somme, le terme $f^{(j)}(x)$ est nul pour $j \ge n+1$ (d'après q11), et le terme $g^{(2n-j)}(x)$ est nul pour $j \le n+1$ (d'après l'indication suivant la question 12). Cette somme ne contient donc qu'un terme non nul, pour j=n.

Ainsi:
$$\forall x \in [0, \pi], \quad P_n^{(2n)}(x) = \frac{1}{n!} {2n \choose n} f^{(n)}(x) g^{(n)}(x)$$

On en déduit, avec la question 10 et l'indication suivant la question 12 que :

$$\forall x \in [0, \pi], \quad P_n^{(2n)}(x) = \frac{1}{n!} \frac{(2n)!}{n! \, n!} \, n! \, n! \, (-1)^n b^n = (-1)^n b^n \times \frac{(2n)!}{n!}$$

CONCLUSION.
$$\forall x \in [0, \pi], \quad P_n^{(2n)}(x) = (-1)^n b^n \times \frac{(2n)!}{n!}$$

18/ En déduire que : $\int_0^\pi P_n^{(2n)}(x) \sin(x) \, \mathrm{d}x \text{ est un entier relatif.}$

D'après la question 17 on a :
$$\int_0^{\pi} P_n^{(2n)}(x) \sin(x) dx = \int_0^{\pi} (-1)^n b^n \times \frac{(2n)!}{n!} \sin(x) dx$$

Il s'ensuit que :
$$\int_0^{\pi} P_n^{(2n)}(x) \sin(x) dx = (-1)^n b^n \times \frac{(2n)!}{n!} \int_0^{\pi} \sin(x) dx = 2 \times (-1)^n b^n \times \frac{(2n)!}{n!}$$

Or 2, $(-1)^n$ et b^n sont des entiers relatifs; et $\frac{(2n)!}{n!}$ est un entier car n! est un diviseur de (2n)!.

Il s'ensuit que :
$$\left((-1)^n \int_0^\pi (-1)^n b^n \times \frac{(2n)!}{n!} \sin(x) dx\right) \in \mathbb{Z}.$$

CONCLUSION. $\int_0^{\pi} P_n^{(2n)}(x) \sin(x) dx$ est un entier relatif.

Partie 6 - Conclusion

19/ A l'aide des parties 4 et 5, établir que : $\forall n \in \mathbb{N}, \mathbf{I}_n \in \mathbb{Z}$.

Soit
$$n \in \mathbb{N}^*$$
. D'après la question 16 on a : $\mathbf{I}_n = \sum_{k=0}^{n-1} (-1)^k \left(P_n^{(2k)} \left(\frac{a}{b} \right) + P_n^{(2k)}(0) \right) + (-1)^n \int_0^{\pi} P_n^{(2n)}(x) \sin(x) \, \mathrm{d}x$

Observons que pour tout entier k, les réels $P_n^{(2k)}\left(\frac{a}{b}\right)$ et $P_n^{(2k)}(0)$ sont des entiers relatifs (d'après la question 14-c).

Il s'ensuit que :
$$\left(\sum_{k=0}^{n-1} (-1)^k \left(P_n^{(2k)}\left(\frac{a}{b}\right) + P_n^{(2k)}(0)\right)\right) \in \mathbb{Z}$$

Par ailleurs, $\int_0^{\pi} P_n^{(2n)}(x) \sin(x) dx$ est un entier relatif d'après la question précédente.

Il s'ensuit que
$$\left(\sum_{k=0}^{n-1} (-1)^k \left(P_n^{(2k)} \left(\frac{a}{b}\right) + P_n^{(2k)}(0)\right) + (-1)^n \int_0^{\pi} P_n^{(2n)}(x) \sin(x) dx\right)$$
 est un entier relatif.

Ainsi : $\forall n \in \mathbb{N}^*, \mathbf{I}_n \in \mathbb{Z}$.

Il reste à rappeler que $I_0 \in \mathbb{Z}$ (car $I_0 = 2$ d'après la question 8-a) pour conclure.

Conclusion. $\forall n \in \mathbb{N}, \mathbf{I}_n \in \mathbb{Z}$

20/ A l'aide de la question précédente et de résultats extraits de la partie 3, aboutir à une contradiction; en déduire que π est irrationnel.

D'après la question précédente, la suite (\mathbf{I}_n) est une suite d'entiers relatifs.

Plus précisément, la suite (\mathbf{I}_n) est une suite d'entiers supérieurs ou égaux à 1 (puisque \mathbf{I}_n est un entier, et que $\mathbf{I}_n > 0$ selon la question 8-d).

De plus, la suite (\mathbf{I}_n) converge vers 0 (selon la question 6).

Ainsi, la suite (\mathbf{I}_n) est une suite extraordinaire, dont le terme général est $\geqslant 1$, mais qui a pour limite 0 : c'est absurde!!!

CONCLUSION. Il résulte de la contradiction ci-dessus que notre hypothèse de départ $(\pi \in \mathbb{Q})$ est erronée.

On peut donc conclure que π est irrationnel.