Colle 25 – Questions de cours

QUESTION DE COURS 1. — **Propriété** : Si A et B sont deux évènements d'un univers Ω , alors : $\mathbb{P}_A(\bar{B}) = 1 - \mathbb{P}_A(B)$ et $\mathbb{P}_A(B_1 \cup B_2) = \mathbb{P}_A(B_1) + \mathbb{P}_A(B_2) - \mathbb{P}_A(B_1 \cap B_2)$

Preuve. On se place dans un espace probabilisé (Ω, \mathbb{P}) , où Ω est un ensemble fini.

Soit A un évènement tel que $\mathbb{P}(A) \neq 0$.

Alors pour tout évènement B, on $a: \Omega = B \cup \overline{B}$. D'où : $A \cap \Omega = A \cap (B \cup \overline{B})$.

Or $A \cap \Omega = A$ (puisque $A \subset \Omega$); et $A \cap (B \cup \overline{B}) = (A \cap B) \cup (A \cap \overline{B})$ (distributivité de \cap par rapport à \cup). On en déduit que $\mathbb{P}(A) = \mathbb{P}((A \cap B) \cup (A \cap \overline{B}))$.

Or l'union $(A \cap B) \cup (A \cap \overline{B})$ est disjointe *, donc (par définition de probabilité) :

$$\mathbb{P}\left((A \cap B) \cup (A \cap \bar{B})\right) = \mathbb{P}\left(A \cap B\right) + \mathbb{P}\left(A \cap \bar{B}\right)$$

En résumé, on a établi que : $\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \bar{B})$, d'où en divisant tous les termes de cette égalité par $\mathbb{P}(A)$ (qui est non nulle) : $1 = \mathbb{P}_A(B) + \mathbb{P}_A(\bar{B})$, soit finalement : $\mathbb{P}_A(\bar{B}) = 1 - \mathbb{P}_A(B)$.

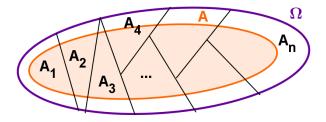
 \blacktriangleright Pour le second point, on considère B_1 et B_2 deux évènements arbitraires dans Ω . On a alors :

$$\mathbb{P}_{A}\left(B_{1} \cup B_{2}\right) = \frac{\mathbb{P}\left(\left(B_{1} \cup B_{2}\right) \cap A\right)}{\mathbb{P}\left(A\right)} = \frac{\mathbb{P}\left(\left(B_{1} \cap A\right) \cup \left(B_{2} \cap A\right)\right)}{\mathbb{P}\left(A\right)} = \frac{\mathbb{P}\left(B_{1} \cap A\right) + \mathbb{P}\left(B_{2} \cap A\right) - \mathbb{P}\left(\left(B_{1} \cap B_{2}\right) \cap A\right)}{\mathbb{P}\left(A\right)} = \frac{\mathbb{P}\left(A\right)}{\mathbb{P}\left(A\right)} = \frac{\mathbb{P}\left(B_{1} \cap A\right) + \mathbb{P}\left(B_{2} \cap A\right) - \mathbb{P}\left(\left(B_{1} \cap B_{2}\right) \cap A\right)}{\mathbb{P}\left(A\right)}$$

QUESTION DE COURS 2. — Théorème (formule des probabilités totales) : soit A un évènement, et soit $(A_i)_{i=1,\dots,n}$ un système complet d'évènements, alors :

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}_{A_i}(A) \times \mathbb{P}(A_i)$$

Illustration. Sur la figure ci-contre, on a fait apparaître le fait que la probabilité de l'évènement A est la somme des probabilités des "petits morceaux" qui composent A, càd la somme des probabilités des évènements $A \cap A_1, \ldots, A \cap A_n$.



Preuve. Soient donc A un évènement et $(A_i)_{i=1,\dots,n}$ un système complet d'évènements.

Le point-clef consiste ici à observer que les évènements $(A \cap A_i)$ sont deux à deux disjoints, et recouvrent A. En clair, il s'agit d'établir les deux faits suivants :

1)
$$\forall (i,j) \in [1, n]^2$$
, $i \neq j \Longrightarrow (A \cap A_i) \cap (A \cap A_j) = \emptyset$ et 2) $\bigcup_{i=1}^n (A \cap A_i) = A$

- Pour le point 1 : il suffit d'observer que pour tout couple (i,j) d'entiers (compris entre 1 et n), on a^{\dagger} : $(A \cap \overline{A_i}) \cap (A \cap \overline{A_j}) = A \cap (A_i \cap A_j)$. Or si $i \neq j$, alors $A_i \cap A_j = \emptyset$ puisque les A_i constituent un SCE par hypothèse. On en déduit le point 1).
- ightharpoonup Pour le point 2 : comme $(A_i)_{i=1,\dots,n}$ est un système complet d'évènements, on peut déjà affirmer que :

$$\Omega = \bigcup_{i=1}^{n} A_i$$
. On en déduit que : $A \cap \Omega = A \cap \left(\bigcup_{i=1}^{n} A_i\right)$. En utilisant encore une fois la distributivité de \cap par

rapport à \cup , on obtient : $A = \bigcup_{i=1}^{n} (A \cap A_i)$, ce qui établit le point 2.

^{*.} C'est-à-dire : $(A \cap B) \cap (A \cap \bar{B}) = \emptyset$. La preuve de ce fait est triviale, puisque si un élément appartient aux deux termes de l'intersection, alors il est à la fois dans B, et dans son complémentaire \bar{B} .

 $[\]dagger$. En utilisant l'associativité de l'intersection d'une part, et la propriété décoiffante selon laquelle $A \cap A = A$.

► <u>Conclusion</u>: d'après ce qui précède $\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{i=1}^{n} (A \cap A_i)\right)$. Et puisque d'après le 1), les évènements

 $(A \cap A_i)$ sont deux à deux disjoints, la probabilité de leur réunion est la somme de leurs probabilités individuelles, soit :

$$\mathbb{P}\left(\bigcup_{i=1}^{n} (A \cap A_i)\right) = \sum_{i=1}^{n} \mathbb{P}\left(A \cap A_i\right) \qquad \text{d'où} \qquad \boxed{\mathbb{P}\left(A\right) = \sum_{i=1}^{n} \mathbb{P}\left(A \cap A_i\right)}$$

Il reste à voir que pour tout $i \in [1, n]$ on a : $\sum_{i=1}^{n} \mathbb{P}(A \cap A_i) = \mathbb{P}_{A_i}(A) \times \mathbb{P}(A_i)$ (par définition de probabilité

conditionnelle) pour conclure : $\sum_{i=1}^{n} \mathbb{P}(A \cap A_i)$

QUESTION DE COURS 3. — Propriétés de l'espérance et de la variance Soit X une VAR sur un espace probabilisé (Ω, \mathbb{P}) . Alors :

$$\forall (a,b) \in \mathbb{R}^2, \ E(aX+b) = aE(X) + b$$
 et $V(aX+b) = a^2V(X)$

Preuve. Notons $\Omega = \{\omega_1, \ldots, \omega_n\}$, et pour tout entier i compris entre 1 et n notons : $x_i = X(\omega_i)$ et $p_i = P(X = x_i)$. Soient a et b deux réels arbitraires.

La variable aléatoire aX + b prend les valeurs : $ax_1 + b, ..., ax_n + b$ avec les probabilités $p_1, ..., p_n$. Il s'ensuit que :

$$E(aX + b) = \sum_{i=1}^{n} (ax_i + b) p_i = \sum_{i=1}^{n} (ax_i p_i + bp_i) = a \sum_{i=1}^{n} x_i p_i + b \sum_{i=1}^{n} p_i = aE(X) + b$$

Notons $\Omega = \{\omega_1, \dots, \omega_n\}$, et pour tout entier i compris entre 1 et n notons : $x_i = X(\omega_i)$ et $p_i = P(X = x_i)$. Soient a et b deux réels arbitraires.

La variable aléatoire aX + b prend les valeurs : $ax_1 + b, \ldots, ax_n + b$ avec les probabilités p_1, \ldots, p_n . D'où :

$$V(aX + b) = \sum_{i=1}^{n} (ax_i + b - E(aX + b))^2 p_i = \sum_{i=1}^{n} (ax_i + b - aE(X) - b))^2 p_i$$
$$= \sum_{i=1}^{n} a^2 (x_i - E(X))^2 p_i = a^2 \sum_{i=1}^{n} (x_i - E(X))^2 p_i = a^2 V(X)$$

QUESTION DE COURS 4. — Propriétés des probabilités. Soit Ω l'univers d'une expérience aléatoire, et soit \mathbb{P} une probabilité sur Ω .

- $1/ \mathbb{P}(\emptyset) = 0$
- 2/ Pour tout évènement $A \in \mathscr{P}(\Omega), \quad \mathbb{P}(\bar{A}) = 1 \mathbb{P}(A)$
- 3/ Pour tout couple (A,B) d'évènements de $\mathscr{P}(\Omega), \quad \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Preuve.Le point 1 est une conséquence de la définition. En effet, on a d'une part $\mathbb{P}(\Omega) = 1$; et d'autre part les évènements Ω et \emptyset sont disjoints. On en déduit que :

$$\mathbb{P}(\Omega \cup \emptyset) = \mathbb{P}\left(\Omega\right) + \mathbb{P}\left(\emptyset\right) \quad \text{d'où}: \mathbb{P}\left(\emptyset\right) = 1 - \mathbb{P}\left(\Omega\right) \quad \text{soit } \mathbb{P}\left(\emptyset\right) = 0.$$

Prouvons le point 2 : soit $A \in \mathscr{P}(\Omega)$. Les évènements A et \overline{A} étant disjoints, on a : $\mathbb{P}(A \cup \overline{A}) = \mathbb{P}(A) + \mathbb{P}(\overline{A})$. Par ailleurs, puisque $A \cup \overline{A} = \Omega$, on a : $\mathbb{P}(A \cup \overline{A}) = 1$. On déduit de ces deux relations que : $\mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A)$.

Prouvons le point 3 : soient A et B deux évènements dans Ω . On observe judicieusement que l'évènement $A \cup B$ est la réunion disjointe ‡ de $A \backslash B$ et de B.

Il s'ensuit que :

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B) \qquad (\spadesuit)$$

Par ailleurs, l'évènement A est aussi la réunion disjointe de $A \setminus B$ et de $A \cap B$. D'où :

$$\mathbb{P}(A) = \mathbb{P}(A \backslash B) + \mathbb{P}(A \cup B) \qquad (\clubsuit)$$

On déduit de (\spadesuit) et de (\clubsuit) que : $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

QUESTION DE COURS 5. — Théorème (formule de Koenig-Huygens) : avec les mêmes notations que ci-dessus, $V(X) = E(X^2) - [E(X)]^2$.

Preuve. Puisque l'univers Ω est supposé fini dans ce chapitre, on pourra noter x_i les valeurs prises par la $VAR\ X$, et p_i les probabilités correspondantes.

Avec les notations usuelles :

$$V(X) = \sum_{i=1}^{n} (x_i - E(X))^2 p_i = \underbrace{\sum_{i=1}^{n} x_i^2 p_i}_{=E(X^2)} - 2E(X) \underbrace{\sum_{i=1}^{n} x_i p_i}_{=E(X)} + E(X)^2 \underbrace{\sum_{i=1}^{n} p_i}_{=1} \text{d'où} : V(X) = E(X^2) - 2E(X)^2 + \underbrace{\sum_{i=1}^{n} x_i^2 p_i}_{=E(X)} - \underbrace{\sum_{i=1}^{n} x_i p_i}_{=E(X)} + \underbrace{\sum_{i=1}^{$$

 $E(X)^2$

soit
$$V(X) = E(X^2) - E(X)^2$$

QUESTION DE COURS 6. — Propriété (espérance de la loi binomiale) : si X suit la loi binomiale B(n,p), alors E(X)=np.

Preuve.On a:
$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$
, d'où : $E(X) = \sum_{k=1}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$.
Or pour tout $k \in \mathbb{N}^*$: $k \binom{n}{k} = k \frac{n!}{k! (n-k)!} = \frac{n!}{(k-1)! (n-k)!} = n \frac{(n-1)!}{(k-1)! (n-k)!} = n \binom{n-1}{k-1}$
Donc : $E(X) = \sum_{k=1}^{n} n \binom{n-1}{k-1} p^k (1-p)^{n-k} = n \sum_{k=1}^{n} \binom{n-1}{k-1} p^k (1-p)^{n-k} = n \sum_{k=0}^{n-1} \binom{n-1}{k} p^{k+1} (1-p)^{n-1-k}$

$$= np \sum_{k=0}^{n-1} {n-1 \choose 0} p^k (1-p)^{n-1-k} = np \underbrace{(p+(1-p))^{n-1}}_{=1} \operatorname{donc} \underbrace{E(X) = np}_{=1}$$

 $[\]ddagger$. Dire qu'une partie P est la réunion disjointe de deux parties P_1 et P_2 signifie que $P=P_1\cup P_2$, et que $P_1\cap P_2=\emptyset$.

BANQUE D'EXERCICES

EXERCICE 1. Un laboratoire pharmaceutique met au point un test de dépistage d'une maladie et fournit les renseignements suivants : "La population testé comporte 50% de personnes malades. Si une personne est malade, le test est positif dans 98% des cas ; si une personne n'est pas malade, le test est positif dans 0.2% des cas".

On note M l'évènement "la personne est malade", et T l'évènement "le test est positif".

- 1/ Donner les valeurs de $\mathbb{P}(M)$, $\mathbb{P}_{M}(T)$, $\mathbb{P}_{\overline{M}}(T)$.
- 2/ En déduire $\mathbb{P}(T)$.

EXERCICE 2. — Une variable aléatoire réelle X suit la loi binomiale de taille n et de paramètre p. Quelle est la loi suivie par la variable aléatoire Y = n - X?

EXERCICE 3. — Une variable aléatoire réelle X suit la loi binomiale de taille n et de paramètre $p \in]0;1[$. Pour quelle valeur de k, la probabilité $p_k = P(X = k)$ est-elle maximale?

EXERCICE 4. — Soit n un entier ≥ 2 , et soient X et Y deux variables aléatoires indépendantes suivant la loi binomiale $\mathcal{B}(n, 1/2)$.

Calculer la probabilité P(X = Y).

EXERCICE 5. — Soient n un entier ≥ 2 , et Y une VAR suivant la loi uniforme sur [0, n].

Calculer l'espérance et la variance de Y.

Exercice 6. — Formule de Vandermonde, révision. Etablir que :

$$\forall (n,m) \in \mathbb{N}^2, \ \binom{n+m}{n} = \sum_{k=0}^n \binom{n}{k} \binom{m}{n-k}$$

Banque d'exercices - Corrigés

EXERCICE 1. — Un laboratoire pharmaceutique met au point un test de dépistage d'une maladie et fournit les renseignements suivants : "La population testé comporte 50 % de personnes malades. Si une personne est malade, le test est positif dans 98 % des cas ; si une personne n'est pas malade, le test est positif dans 0,2 % des cas".

On note M l'évènement "la personne est malade", et T l'évènement "le test est positif".

1/ Donner les valeurs de $\mathbb{P}(M)$, $\mathbb{P}_{M}(T)$, $\mathbb{P}_{\overline{M}}(T)$.

D'après l'énoncé :
$$\mathbb{P}(M) = \frac{1}{2}$$
; $\mathbb{P}_{M}(T) = \frac{98}{100} = \frac{49}{50}$; $\mathbb{P}_{\overline{M}}(T) = \frac{2}{1000} = \frac{1}{500}$.

2/ En déduire $\mathbb{P}(T)$.

Les évènements M et \overline{M} constituent un SCE. D'après la formule des probabilités totales, on en déduit que :

$$\mathbb{P}(T) = \mathbb{P}_M(T) \times \mathbb{P}(M) + \mathbb{P}_{\overline{M}}(T) \times \mathbb{P}(\overline{M})$$

D'après la question précédente :

$$\mathbb{P}(T) = \frac{49}{50} \times \frac{1}{2} + \frac{1}{500} \times \frac{1}{2}$$

Conclusion.
$$\mathbb{P}(T) = \frac{491}{1000}$$

EXERCICE 2. Une variable aléatoire réelle X suit la loi binomiale de taille n et de paramètre p. Quelle est la loi suivie par la variable aléatoire Y = n - X?

Par hypothèse, $X(\Omega) = \llbracket 0, n \rrbracket$ et Y = n - X. Il s'ensuit que : $Y(\Omega) = \llbracket 0, n \rrbracket$.

En outre, pour tout entier $k \in [0, n]$, on a :

$$P(Y = k) = P(X = n - k) = \binom{n}{n - k} p^{n - k} (1 - p)^k = \binom{n}{k} (1 - p)^k p^{n - k}$$

Conclusion. $Y(\Omega) = [0, n]$ et $: \forall k \in [0, n]$, $P(Y = k) = \binom{n}{k} (1 - p)^k (1 - (1 - p))^{n - k}$. Donc Y suit la loi binomiale de taille n et de paramètre (1 - p).

EXERCICE 3. — Une variable aléatoire réelle X suit la loi binomiale de taille n et de paramètre $p \in]0;1[$. Pour quelle valeur de k, la probabilité $p_k = P(X = k)$ est-elle maximale?

Par hypothèse, $X(\Omega) = \llbracket 0, n \rrbracket$. Pour tout entier $k \in \llbracket 0, n \rrbracket$, on a : $p_k = P(X = k) > 0$ et :

$$\frac{p_{k+1}}{p_k} = \frac{\binom{n}{k+1}p^{k+1}(1-p)^{n-k-1}}{\binom{n}{k}p^k(1-p)^{n-k}} = \frac{\binom{n}{k+1}p}{\binom{n}{k}(1-p)} = \frac{(n-k)p}{(k+1)(1-p)}$$

On en déduit que :

$$p_{k+1} \geqslant p_k \Longleftrightarrow \frac{(n-k)p}{(k+1)(1-p)} \geqslant 1 \Longleftrightarrow (n-k)p \geqslant (k+1)(1-p) \Longleftrightarrow k \leqslant (n+1)p-1$$

D'où:

$$p_{k+1} \geqslant p_k \iff k \leqslant \lfloor (n+1)p-1 \rfloor$$

Conclusion. p_k est maximale lorsque $k = \lfloor (n+1)p \rfloor$.

EXERCICE 4. — Soit n un entier ≥ 2 , et soient X et Y deux variables aléatoires indépendantes suivant la loi binomiale $\mathcal{B}(n, 1/2)$.

Calculer la probabilité P(X = Y).

On a:
$$P(X = Y) = \sum_{k=0}^{n} P(X = k \cap Y = k) = \sum_{k=0}^{n} P(X = k) \times P(Y = k) = \sum_{k=0}^{n} [P(X = k)]^{2}$$
.

D'où:

$$P(X = Y) = \sum_{k=0}^{n} \left[\binom{n}{k} \frac{1}{2^k} \frac{1}{2^{n-k}} \right]^2 = \frac{1}{2^{2n}} \sum_{k=0}^{n} \binom{n}{k}^2$$

Or : $\sum_{k=0}^{n} \binom{n}{k}^2 = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}$ (la 1ère égalité provenant de la symétrie des coefficients

binomiaux; la seconde provenant de la formule de Vandermonde)

Conclusion.
$$P(X = Y) = \frac{1}{2^{2n}} \binom{2n}{n}$$

EXERCICE 5. — Soient n un entier ≥ 2 , et Y une VAR suivant la loi uniforme sur [0, n].

Calculer l'espérance et la variance de Y.

Puisque Y suit la loi $\mathscr{U}(\llbracket 0, n \rrbracket)$, on a $Y(\Omega) = \llbracket 0, n \rrbracket$, et pour tout entier k compris entre 0 et n, on a : $P(Y = k) = \frac{1}{n+1}$.

Il s'ensuit que :
$$E(Y) = \sum_{k=0}^{n} \frac{k}{n+1} = \frac{n(n+1)}{2(n+1)}$$
. D'où : $E(Y) = \frac{n}{2}$

D'après la formule de Koenig-Huygens : $V(Y) = E(Y^2) - E(Y)^2$.

D'après ce qui précède : $E(Y)^2 = \frac{n^2}{4}$.

D'après la formule de transfert : $E(Y^2) = \sum_{k=0}^{n} \frac{k^2}{n+1} = \frac{n(n+1)(2n+1)}{6(n+1)} = \frac{n(2n+1)}{6}$.

On en déduit que :
$$V(Y) = \frac{n(2n+1)}{6} - \frac{n^2}{4} = \frac{n}{2} \left(\frac{2n+1}{3} - \frac{n}{2} \right) = \frac{n}{2} \times \frac{n+2}{6}$$
. D'où : $V(Y) = \frac{n(n+2)}{12}$

EXERCICE 6. — Formule de Vandermonde, révision. Etablir que :

$$\forall (n,m) \in \mathbb{N}^2, \ \binom{n+m}{n} = \sum_{k=0}^n \binom{n}{k} \binom{m}{n-k}$$

Posons $P = (1 + X)^n$ et $Q = (1 + X)^m$.

On a:
$$PQ = (1+X)^{n+m} = \sum_{j=0}^{n+m} {n+m \choose j} X^j$$
 (\$\\ \exists)

Par ailleurs : $P = \sum_{j=0}^{n} \binom{n}{j} X^j$ et $Q = \sum_{j=0}^{m} \binom{m}{j} X^j$. Selon la formule donnant le produit de deux polynômes, on en déduit :

$$PQ = \sum_{j=0}^{n+m} \left(\sum_{k=0}^{j} \binom{n}{k} \binom{m}{j-k} \right) X^{j} \qquad (\clubsuit)$$

Selon
$$(\clubsuit)$$
 et (\clubsuit) :
$$\sum_{j=0}^{n+m} \binom{n+m}{j} X^j = \sum_{j=0}^{n+m} \left(\sum_{k=0}^j \binom{n}{k} \binom{m}{j-k}\right) X^j$$

En identifiant les coefficients de X^n dans ces deux expressions, on obtient : $\binom{n+m}{n} = \sum_{k=0}^n \binom{n}{k} \binom{m}{n-k}$.

Conclusion.
$$\forall (n,m) \in \mathbb{N}^2, \ \binom{n+m}{n} = \sum_{k=0}^n \binom{n}{k} \binom{m}{n-k}$$