1. Exercice 1c:

Étude des propriétés de la loi \star définie sur $G=]1,+\infty[$ par :

$$x \star y = \exp(\ln(x)\ln(y))$$

Comme $x \in]1, +\infty[$ et $y \in]1, +\infty[$, alors $\ln(x)\ln(y) > 0$, par conséquent : $x \star y \in G$.

La loi \star est bien une loi de composition interne sur G.

Il est immédiat que $y \star x = x \star y$: la loi \star est commutative.

Soit
$$(x, y, z) \in G^3$$
.

$$(x \star y) \star z = (\exp(\ln(x)\ln(y))) \star z = \exp(\ln(\exp(\ln(x)\ln(y)))\ln(z)) = \exp(\ln(x)\ln(y)\ln(z))$$

$$x \star (y \star z = x \star (\exp(\ln(y)\ln(z))) = \exp(\ln(x)\ln(\exp(\ln(y)\ln(z)))) = \exp(\ln(x)\ln(y)\ln(z))$$

La loi ★ est associative.

Vérifions que le nombre $e = \exp(1)$ est l'élément neutre de la loi \star :

$$x \star e = \exp(\ln(x)\ln(e)) = \exp(\ln(x)) = x.$$

Montrons que tout élément x de G est inversible.

Il s'agit d'une question d'existence : on va définir un élément x' de G pour lequel $x \star x' = e$.

Au brouillon, on résout l'équation $x\star x'=e,$ qui donne $\exp(\ln(x)\ln(x'))=e,$ puis $\ln(x)\ln(x')=1.$

Et enfin,
$$x' = \exp\left(\frac{1}{\ln(x)}\right)$$
.

Toute cette étude a lieu au brouillon, car comme il s'agit d'une question d'existence, on ne peut pas sur la copie écrire x' tant que celui-ci n'a pas été introduit.

On pose
$$x' = \exp\left(\frac{1}{\ln(x)}\right)$$
.

Comme $\frac{1}{\ln(x)} > 0$, x' > 1 : x' est bien un élément de G.

$$x \star x' = \exp(\ln(x)\ln(x')) = \exp\left(\ln(x)\frac{1}{\ln(x)}\right) = \exp(1) = e$$

La loi étant commutative, $x' \star x = e$.

Ainsi, x est inversible.

Tous les éléments de G sont inversibles pour la loi \star .

Remarque : (G, \star) est un groupe abélien.

2. Exercice 1d:

Si $(x,y) \in G$ et $(x',y') \in G$, alors $x \neq 0$ et $x' \neq 0$, donc $xx' \in \mathbb{R}^*$.

Pa conséquent, $(x,y)\star(x',y')\in G:\star$ est une loi de composition interne sur G.

$$(1,2)\star(2,3)=(2,5)$$
 et $(2,3)\star(1,2)=(2,7)$: la loi \star n'est pas commutative

Soient $(x, y) \in G$, $(x', y') \in G$ et $(x'', y'') \in G$.

$$((x,y)\star(x',y'))\star(x'',y'') = (xx',xy'+y)\star(x'',y'') = (xx'x'',xx'y''+xy'+y).$$

Et
$$(x,y) \star ((x',y') \star (x'',y'')) = (x,y) \star (x'x'',x'y''+y') = (xx'x'',xx'y''+xy'+y)$$

$$\text{Ainsi, } \left((x,y) \star (x',y') \right) \star (x'',y'') = (x,y) \star \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star \text{ est associative } \left((x',y') \star (x'',y'') \right) : \text{la loi} \star (x'',y'') \right) : \text{la loi} \star (x'',y'') = (x'',y'') \star (x'',y'') + (x$$

$$(1,0) \star (x,y) = (x,y)$$
 et $(x,y) \star (1,0) = (x,y)$.

(1,0) est l'élément neutre de la loi \star .

Soit $(x, y) \in G$.

On pose $x' = \frac{1}{x}$ et $y' = -\frac{y}{x}$ (expressions trouvées au brouillon : on cherche x' et y' tels que xx' = 1 et xy' + y = 0).

Alors
$$(x', y') \in G$$
 et $(x, y) \star (x', y') = (xx', xy' + y) = (1, 0)$

$$(x', y') \star (x, y) = (x'x, x'y + y') = (1, 0).$$

(x,y) est donc inversible d'inverse $(\frac{1}{x},-\frac{y}{x})$.

Tous les éléments de G sont inversibles pour la loi \star .

Remarque: (G, \star) est un groupe

3. Exercice 3:

Montrons que e est l'élément neutre de la loi *:

Soit $x \in G$.

D'après (P_2) , il existe $x' \in G$ tel que x * x' = e.

D'après (P_2) , il existe $x'' \in G$ tel que x' * x'' = e.

On a: x' * x * x' = x' * e = x'.

Puis x' * x * x' * x'' = x' * x'' = e.

Or on a aussi : x' * x * x' * x'' = x' * x * e = x' * x.

On en déduit que : x' * x = e.

On a : x * x' * x = e * x et x * x' * x = x * e = x.

Ainsi, e * x = x.

Par conséquent, on a montré d'une part que pour tout élément x de G, on a x*e=e*x=x, donc l'élément e est l'élément neutre de la loi *, et d'autre part que pour tout élément x de G, il existe un élément x' de G tel que x*x'=x'*x=e, c'est-à-dire que tous les éléments sont inversibles.

Ainsi, (G, *) est un groupe

4. Exercice 5:

1a) Soit $(x,y) \in I^2$.

Comme |x| < 1 et |y| < 1, alors $|x| \times |y| < 1$,

On a donc -1 < xy < 1, en particulier 1 + xy > 0.

Ce qui justifie que $x * y = \frac{x+y}{1+xy}$ est bien défini.

$$1 - (x * y) = 1 - \frac{x + y}{1 + xy} = \frac{1 + xy - x - y}{1 + xy} = \frac{(1 - x)(1 - y)}{1 + xy} > 0 \quad \text{donc } x * y < 1$$

$$(x*y) + 1 = \frac{x+y}{1+xy} + 1 = \frac{1+xy+x+y}{1+xy} = \frac{(1+x)(1+y)}{1+xy} > 0$$
 donc $x*y > -1$

Ainsi, $x*y \in I$: la loi * est bien une loi de composition interne sur I

1b) Pour $x \in I$ et $y \in I$, on a : x * y = y * x. La loi est commutative.

Soient $x, y, z \in I$.

$$(x*y)*z = \left(\frac{x+y}{1+xy}\right)*z = \frac{\frac{x+y}{1+xy}+z}{1+\frac{x+y}{1+xy}z} = \frac{x+y+z+xyz}{1+xy+xz+yz}$$

$$x*(y*z) = x*\left(\frac{y+z}{1+yz}\right) = \frac{x+\frac{y+z}{1+yz}}{1+x\frac{y+z}{1+xz}} = \frac{x+y+z+xyz}{1+xy+xz+yz}$$

Ainsi, (x * y) * z = x * (y * z): la loi est associative.

On vérifie que 0 est élément neutre : $\forall x \in I \quad x * 0 = 0 * x = x$.

Enfin, soit $x \in I$. On a : x * (-x) = (-x) * x = 0. Tout élément est donc inversible.

Ainsi, (I,*) est un groupe abélien

2a)
$$s^0 = 0$$
 et $\frac{p_0}{q_0} = 0$ donc $s^0 = \frac{p_0}{q_0}$

Supposons que $s^n = \frac{p_n}{q_n}$ pour un entier naturel $n \ge 0$.

$$s^{n+1} = s * s^n = s * \frac{p_n}{q_n} = \frac{s + \frac{p_n}{q_n}}{1 + s \frac{p_n}{q_n}} = \frac{sq_n + p_n}{q_n + sp_n} = \frac{p_{n+1}}{q_{n+1}}$$

Ainsi, pour tout $n \in \mathbb{N}$, $s^n = \frac{p_n}{q_n}$

2b)
$$q_{n+1} = sp_n + q_n = sp_n + \frac{1}{s}(p_{n+1} - p_n).$$

Puis,
$$p_{n+2} = p_{n+1} + sq_{n+1} = 2p_{n+1} + (s^2 - 1)p_n$$
.

c) La suite p est donc une suite récurrente linéaire homogène d'ordre 2.

L'équation caractéristique est $r^2 - 2r + (1 - s^2) = 0$. Le discriminant vaut $4s^2$.

Elle admet deux racines réelles distinctes : 1 + s et 1 - s.

Il existe donc $(C_1, C_2) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{N}, p_n = C_1(1+s)^n + C_2(1-s)^n$.

Comme $p_0 = 0$, on a : $C_2 = -C_1$.

De plus, $p_1 = s$, d'où $C_1 = \frac{1}{2}$ et $C_2 = -\frac{1}{2}$.

Ainsi,
$$p_n = \frac{(1+s)^n - (1-s)^n}{2}$$

De
$$sq_n = p_{n+1} - p_n$$
, on déduit alors : $q_n = \frac{(1+s)^n + (1-s)^n}{2}$

On a alors:

$$\forall n \in \mathbb{N}$$
 $s^n = \frac{p_n}{q_n} = \frac{(1+s)^n - (1-s)^n}{(1+s)^n + (1-s)^n}$

(formule valable pour s=0)

5. Exercice 9:

a) Comme $H_1 \subset G$ et $H_2 \subset G$, alors $H_1 \cap H_2 \subset G$.

 H_1 et H_2 sont des sous-groupes de G, donc $e \in H_1$ et $e \in H_2$. Par conséquent, $e \in H_1 \cap H_2$.

Soient $x \in H_1 \cap H_2$ et $y \in H_1 \cap H_2$.

 $x \in H_1$ et $y \in H_2$, et comme H_1 est un sous-groupe de G, alors $xy^{-1} \in H_1$.

On a, de même, $xy^{-1} \in H_2$.

Donc $xy^{-1} \in H_1 \cap H_2$.

 $H_1 \cap H_2$ est un sous-groupe de G

b) Si $H_1 \subset H_2,$ alors $H_1 \cup H_2 = H_2$ est un sous-groupe de G ,

et si $H_2 \subset H_1$, alors $H_1 \cup H_2 = H_1$ est un sous-groupe de G.

Supposons que $H_1 \not\subset H_2$ et $H_2 \not\subset H_1$.

Alors il existe $a \in H_1$ tel que $a \notin H_2$, et il existe $b \in H_2$ tel que $b \notin H_1$.

 $a \in H_1 \cup H_2$ et $b \in H_1 \cup H_2$,

si $ab \in H_1$, alors $b = a^{-1}ab \in H_1$, ce qui est exclu. Donc $ab \notin H_1$.

si $ab \in H_2$, alors $a = abb^{-1} \in H_2$, ce qui est exclu. Donc $ab \notin H_2$.

Ainsi, $ab \notin H_1 \cup H_2$, donc $H_1 \cup H_2$ n'est pas un sous-groupe de G.

6. Exercice 11:

 $H \subset \mathcal{S}_X$.

Comme id(a) = a, alors $id \in H$.

Soit $f \in H$ et soit $g \in H$ (f et g sont des applications bijectives telle que f(a) = a et g(a) = a)

Alors $g \circ f(a) = g(f(a)) = g(a) = a$, donc $g \circ f \in H$.

Et f(a) = a, donc $f^{-1}(a) = a$ et ainsi, $f^{-1} \in H$.

Ainsi, H est un sous-groupe de (S_X, o)

7. Exercice 16:

 $A \subset \mathbb{Q}$.

$$1 \in A \text{ car } 1 = \frac{1}{2^0}$$

Soit $(x,y) \in A^2$: il existe $(m,n) \in \mathbb{Z} \times \mathbb{N}$ tel que $x = \frac{m}{2^n}$ et il existe $(m',n') \in \mathbb{Z} \times \mathbb{N}$ tel que $y = \frac{m'}{2^{n'}}$

Alors
$$x-y=\frac{m2^{n'}-m'2^n}{2^{n+n'}}$$
 appartient à A (car $m2^{n'}-m'2^n\in\mathbb{Z}$ et $n+n'\in\mathbb{N}$)

Et $xy = \frac{mm'}{2^{n+n'}}$ appartient à A (car $mm' \in \mathbb{Z}$ et $n+n' \in \mathbb{N}$)

Donc A est un sous-anneau de $(\mathbb{Q}, +\times)$

Soit x un élément inversible de A : il existe $(m,n)\in \mathbb{Z}\times \mathbb{N}$ tel que $x=\frac{m}{\alpha n}$.

Il existe $y \in A$ tel que xy = 1.

Il existe $(m', n') \in \mathbb{Z} \times \mathbb{N}$ tel que $y = \frac{m'}{2n'}$

On obtient $mm' = 2^{n+n'}$.

On en déduit que m est une puissance de 2 : il existe $k \in \mathbb{N}$ tel que $m = 2^k$.

En effet, si d est un diviseur premier de m, alors d divise aussi mm', donc d divise $2^{n+n'}$, et ainsi d=2.

Cela prouve que m est soit égal à 1, soit une puissance de 2

Réciproquement, on vérifie que $x=\frac{2^k}{2^n}$ (avec $(k,n)\in\mathbb{N}^2$) est un élément inversible de A.

On pose
$$y = \frac{2^n}{2^k}$$
.
 $y \in A \text{ et } xy = 1$.

Ainsi, l'ensemble des éléments inversibles de
$$A$$
 est l'ensemble $\left\{\frac{2^k}{2^n} \mid (k,n) \in \mathbb{N}^2\right\}$ ou encore $\left\{2^i \mid i \in \mathbb{Z}\right\}$

8. Exercice 20:

1) On montre les différents points de la définition d'anneau.

On vérifie facilement que $(\mathbb{Z}^2,+)$ est un sous-groupe de $(\mathbb{R}^2,+)$ donc est un groupe abélien.

associativité de * :

Soient
$$(x,y) \in \mathbb{Z}^2$$
, $(x',y') \in \mathbb{Z}^2$ et $(x'',y'') \in \mathbb{Z}^2$.

$$((x,y)*(x',y'))*(x'',y'') = (xx' + yy', xy' + yx')*(x'',y'')$$
$$= (xx'x'' + yy'x'' + xy'y'' + yx'y'', xx'y'' + yy'y'' + xy'x'' + yx'x'')$$

$$\begin{aligned} (x,y)*((x',y')*(x'',y'')) &= (x,y)*(x'x''+y'y'',x'y''+y'x'') \\ &= (xx'x''+xy'y''+yx'y''+yy'x'',xx'y''+xy'x''+yx'x''+yy'y'') \end{aligned}$$

Ainsi,
$$((x, y) * (x', y')) * (x'', y'') = (x, y) * ((x', y') * (x'', y''))$$
: la loi * est associative.

commutativité de * :

Soient
$$(x,y) \in \mathbb{Z}^2$$
, $(x',y') \in \mathbb{Z}^2$.

$$(x', y') * (x, y) = (x'x + y'y, x'y + y'x) = (xx' + yy', xy' + yx') = (x, y) * (x', y').$$

La loi * est commutative.

distributivié de * par rapport à + :

Soient
$$(x, y) \in \mathbb{Z}^2$$
, $(x', y') \in \mathbb{Z}^2$ et $(x'', y'') \in \mathbb{Z}^2$.

$$(x,y)*((x',y')+(x'',y'')) = (x,y)*(x'+x'',y'+y'')$$

$$= (xx'+xx''+yy'+yy'',xy'+xy''+yx''+yx'')$$

$$= (xx'+yy',xy'+yx')+(xx''+yy'',xy''+yx'')$$

$$= (x,y)*(x',y')+(x,y)*(x'',y'')$$

* est donc distributive à gauche par rapport à +.

Comme * est commutative, * est également distributive à droite par rapport à +.

<u>élement neutre de la loi * :</u>

Comme pour tout $(x,y) \in \mathbb{Z}^2$, (x,y) * (1,0) = (1,0) * (x,y) = (x,y), l'élément (1,0) est élément neutre de la loi *.

Ainsi,
$$(\mathbb{Z}^2, +, *)$$
 est un anneau commutatif

Comme (1,1)*(1,-1)=(0,0), l'anneau n'est pas intègre.

2) Analyse des éléments inversibles :

Soit (x,y) un élément inversible de \mathbb{Z}^2 : il existe $(a,b)\in\mathbb{Z}^2$ tel que (x,y)*(a,b)=(1,0).

Ce qui donne :
$$\begin{cases} xa + yb = 1 & (1) \\ xb + ya = 0 & (2) \end{cases}$$

$$(1)+(2) \ \mathrm{donne} \ x(a+b)+y(a+b)=1, \ \mathrm{donc} \ (x+y)(a+b)=1.$$

On en déduit que x+y divise 1, donc x+y=1 ou x+y=-1.

(1)-(2) donne
$$x(a-b) + y(b-a) = 1$$
, donc $(x-y)(a-b) = 1$.

On en déduit que x - y divise 1, donc x - y = 1 ou x - y = -1.

On distingue alors quatre cas:

• si
$$x + y = 1$$
 et $x - y = 1$, alors $x = 1$ et $y = 0$

• si
$$x + y = 1$$
 et $x - y = -1$, alors $x = 0$ et $y = -1$

• si
$$x + y = -1$$
 et $x - y = 1$, alors $x = 0$ et $y = -1$

• si
$$x + y = -1$$
 et $x - y = -1$, alors $x = -1$ et $y = 0$

Synthèse: réciproquement, on vérifie que les quatre couples trouvés sont bien inversibles.

$$(1,0) \times (1,0) = (1,0)$$
, donc $(1,0)$ est inversible d'inverse $(1,0)$.

$$(0,1) \times (0,1) = (1,0)$$
, donc $(0,1)$ est inversible d'inverse $(0,1)$.

$$(0,-1)\times(0,-1)=(1,0), \text{ donc } (0,-1) \text{ est inversible d'inverse } (0,-1).$$

$$(-1,0) \times (-1,0) = (1,0)$$
, donc $(-1,0)$ est inversible d'inverse $(-1,0)$.

9. Exercice 21:

1) 0 est un élément nilpotent de A, car $0^1 = 0$.

Soit a un élément non nul. Montrons que a n'est pas nilpotent.

 $a \neq 0$, et si pour un entier $n \geq 1$, $a^n \neq 0$, alors $a^{n+1} = a \times a^n \neq 0$ (le produit de deux éléments non nuls dans un anneau intègre est un élément non nul).

On a donc montré par récurrence que $\forall n \in \mathbb{N}^*$ $a^n \neq 0$.

Ainsi, a n'est pas nilpotent.

0 est donc le seul élément nilpotent

2) Soit a un élément nilpotent : il existe $n \in \mathbb{N}^*$ tel que $a^n = 0$.

On a alors

$$(1-a)\sum_{k=0}^{n-1} a^k = 1-a^n = 1$$
 et $\left(\sum_{k=0}^{n-1} a^k\right)(1-a) = 1-a^n = 1$

On en déduit que 1-a est inversible

3) Supposons que a et b sont deux éléments nilpotents qui commutent :

il existe $n \in \mathbb{N}^*$ tel que $a^n = 0$ et il existe $p \in \mathbb{N}^*$ tel que $b^p = 0$.

Comme a et b commutent, $(ab)^n = a^n b^n$ et $a^n = 0$, donc $(ab)^n = 0$.

Ainsi, ab est nilptotent

$$(a+b)^{n+p} = \sum_{k=0}^{n+p} \binom{n+p}{k} a^k b^{n+p-k} = \sum_{k=0}^{n} \binom{n+p}{k} a^k \underbrace{b^p}_{=0} b^{n-k} + \sum_{k=n+1}^{n+p} \binom{n+p}{k} \underbrace{a^n}_{=0} a^{k-n} b^{n+p-k} = 0 + 0 = 0$$

Donc a + b est nilpotent

4) Supposons ab nilpotent. Il existe $n \in \mathbb{N}^*$ tel que $(ab)^n = 0$.

Alors $(ba)^{n+1} = b(ab)^n a = 0$, donc ba est nilpotent

10. Exercice 23:

Supposons que $1_A - ab$ soit inversible.

Il existe $c \in A$ tel que $(1_A - ab)c = c(1_A - ab) = 1_A$.

$$(1_A - ba)(1_A + bca) = 1_A - ba + bca - babca$$

= 1_A - b\left(1_A - (1_A - ab)c\right)a
= 1_A - b \times 0_A \times a = 1_A.

$$(1_A + bca)(1_A - ba) = 1_A - ba + bca - bcaba$$

= $1_A - b(1_A - c(1_A - ab))a$
= $1_A - b \times 0_A \times a = 1_A$

Ainsi, $1_A - ba$ est inversible

11. Exercice 24:

1) $C \subset A$.

Comme $\forall y \in A, 1_A \times y = y \times 1_A, 1_A \in C$

Soit $(x, x') \in C^2$.

 $\forall y \in A, (x - x')y = xy - x'y = yx - yx' \text{ (car } x \text{ et } x' \text{ commutent avec } y).$

Donc $\forall y \in A, (x - x')y = y(x - x')$. Ainsi, $\underline{x - x'} \in C$

Et $\forall y \in A$, xx'y = xyx' (car $x' \in C$), puis xx'y = yxx' (car $x \in C$).

D'où $xx' \in C$

C est un sous-anneau de A

2a) Soit $(x,y) \in A^2$ tel que $xy = 0_A$.

 $yx = (yx)^3 = y \times xy \times xyx = y \times 0_A \times xyx = 0_A.$

2b) Soit $y \in A$.

 $x(y-xy)=xy-x^2y=xy-xy=0_A$. D'après 2a, on a alors $(y-xy)x=0_A$.

Ce qui donne, $yx - xyx = 0_A$, et donc yx = xyx.

De plus, $(y-yx)x = yx - yx^2 = yx - yx = 0_A$. D'après 2a, on a alors $x(y-yx) = 0_A$, ce qui donne xy = xyx.

On en déduit que $\forall y \in A, xy = yx$. Ainsi, $x \in C$

2c) Soit $x \in A$. $(x^2)^2 = x^4 = x^3 \times x = x \times x = x^2$.

D'après 2b (tout élément égal à son carré appartient à C), $x^2 \in C$.

2d) Soit $(x,y) \in A^2$. $xy = (xy)^3 = xyxyxy = x(yx)^2y$.

Or d'après 2c, $(yx)^2$ appartient à C, donc commute avec y.

D'où $xy = xy(yx)^2$, ce qui donne : $xy = xy \times yxyx = xy^2xyx$.

 y^2 appartient également à C, donc commute avec x.

On obtient alors: $xy = y^2x^2yx$.

Enfin, x^2 appartient à C, donc commute avec y.

Ainsi, $xy = y^2yxx^2 = y^3x^3 = yx$.

L'anneau A est donc commutatif

 $Commentaires: le \ résultat \ de \ cet \ exercice \ se \ généralise \ quand \ on \ remplace \ l'exposant \ 3 \ par \ un \ entier \ n \ quelconque: un$ anneau A pour lequel il existe un entier $n \in \mathbb{N}^*$ tel que $\forall x \in A$, $x^n = x$, est commutatif.

On dispose même d'un résultat plus fort : le théorème de Jacobson qui énonce que si $\forall x \in A \quad \exists n \in \mathbb{N}^* \quad x^n = x$, alors l'anneau A est commutatif.

Cet exercice permet de découvrir le travail des algébristes qui s'intéressent aux propriétés des anneaux.

12. Exercice 28:

Soit f un morphisme d'anneaux de \mathbb{C} vers \mathbb{C} tel que $\forall x \in \mathbb{R}$ f(x) = x.

On a : $f(i) \times f(i) = f(i \times i) = f(-1) = -1$.

f(i) est donc solution de l'équation $Z^2 = -1$, donc f(i) = i ou f(i) = -i.

Soit $z \in \mathbb{C}$. On note x = Re(z) et y = Im(z).

• si f(i) = i:

Alors $f(z) = f(x+iy) = f(x) + f(iy) = f(x) + f(i) \times f(y)$ (propriétés des morphismes d'anneaux) D'où f(z) = x + iy = z.

• si
$$f(i) = -i$$
:

Réciproquement, les applications $z\mapsto z$ et $z\mapsto \overline{z}$ sont des morphismes d'anneaux qui vérifient : $\forall x\in\mathbb{R}$ f(x)=x.