1. Exercice 27 : généralisation du théorème de Rolle

Si f est constante, alors $\forall x \in]a, +\infty[, f'(x) = 0.$

Supposons désormais f non constante.

Il existe donc $b \in]a, +\infty[$ tel que $f(a) \neq f(b)$.

Notons alors $k = \frac{f(a) + f(b)}{2}$: k est ainsi strictement compris entre f(a) et f(b).

D'après le théorème des valeurs intermédiaires (appliqué à f sur [a,b]), il existe $x_1 \in]a,b[$ tel que $f(x_1)=k.$

Toujours d'après le théorème des valeurs intermédiaires (appliqué cette fois-ci à f sur $[b, +\infty[$), il existe $x_2 \in]b, +\infty[$ tel que $f(x_2) = k$.

f est dérivable sur $[x_1, x_2]$ et $f(x_1) = f(x_2)$, donc d'après le théorème de Rolle, il existe $c \in]x_1, x_2[$ tel que f'(c) = 0.

Autre solution:

On définit g sur $\left[0, \frac{\pi}{2}\right]$ par :

$$\forall x \in [0, \frac{\pi}{2}[\quad g(x) = f(a + \tan(x)) \quad \text{et} \quad g(\frac{\pi}{2}) = f(a)$$

D'après les théorèmes généraux, g est continue sur $\left[0, \frac{\pi}{2}\right]$ et dérivable sur $\left[0, \frac{\pi}{2}\right]$

De plus, $\lim_{x \to \frac{\pi}{2}^-} g(x) = f(a)$, donc g est continue en $\frac{\pi}{2}$.

Et $g(0) = g(\frac{\pi}{2})$.

Donc d'après le théorème de Rolle, il existe $d \in]0, \frac{\pi}{2}[$ tel que g'(d) = 0, ce qui donne :

$$f'(a + \tan(d)) \times (1 + \tan^2(d)) = 0$$

En posant $c = a + \tan(d)$, on a bien : $c \in]a, +\infty[$ et f'(c) = 0.

2. Exercice 29 : théorème de Darboux

Puisque f'(a) < 0 et f'(b) > 0, la fonction f n'est pas strictement monotone.

f est continue sur [a, b] (car f est dérivable sur [a, b]).

Or, on sait qu'une fonction continue et injective sur un intervalle est strictement monotone.

On en déduit que f n'est pas injective : il existe donc deux réels x_1 et x_2 distincts de [a,b] tels que $f(x_1) = f(x_2)$. En appliquant le théorème de Rolle entre ces deux points, on conclut qu'il existe un point c tel que f'(c) = 0.

Autre solution:

f est dérivable donc continue sur [a,b]. Elle admet donc un minimum m sur [a,b] et on a :

$$\forall x \in [a, b] \quad f(x) \ge m$$

Si f(a) = m, on a alors, pour tout $x \in]a, b]$:

$$\frac{f(x) - f(a)}{x - a} = \frac{f(x) - m}{x - a} \ge 0$$

En faisant tendre x vers a, on obtient $f'(a) \geq 0$. Contradiction.

Si f(b) = m, on a alors, pour tout $x \in [a, b[$:

$$\frac{f(x) - f(b)}{x - b} = \frac{f(x) - m}{x - b} \le 0$$

En faisant tendre x vers b, on obtient $f'(b) \leq 0$. Contradiction.

On en déduit que m est atteint en un point $c \in]a,b[$.

D'après le cours, f'(c) = 0.

3. Exercice 35:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable et vérifiant :

$$\forall (x,y) \in \mathbb{R}^2$$
 $f(y) - f(x) = (y-x)f'\left(\frac{x+y}{2}\right)$

On a alors: $\forall x \in \mathbb{R}$ f(x+1) - f(x-1) = 2f'(x), donc $f'(x) = \frac{f(x+1) - f(x-1)}{2}$.

1

 f^{\prime} est donc une somme de fonctions dérivables donc est dérivable.

f est ainsi deux fois dérivable.

Par conséquent, f' est une somme de fonctions deux fois dérivables donc est deux fois dérivable. f est ainsi trois fois dérivable.

On fixe $x \in \mathbb{R}$, et on dérive par rapport à la variable y la relation $f(y) - f(x) = (y - x)f'(\frac{x + y}{2})$.

On obtient:
$$\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad f'(y) = f'(\frac{x+y}{2}) + \frac{y-x}{2}f''(\frac{x+y}{2})$$
 (1).

On fixe ensuite $y \in \mathbb{R}$, et on dérive par rapport à la variable x la relation (1).

On obtient:
$$\forall y \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad 0 = \frac{1}{2}f''(\frac{x+y}{2}) - \frac{1}{2}f''(\frac{x+y}{2}) + \frac{y-x}{4}f'''(\frac{x+y}{2}),$$

Donc
$$\forall y \in \mathbb{R}$$
 $\forall x \in \mathbb{R}$ $\frac{y-x}{4}f'''(\frac{x+y}{2}) = 0$.

On applique cette dernière relation aux points x-1 et x+1 et on obtient : $\forall x \in \mathbb{R}$ f'''(x)=0.

On en déduit qu'il existe
$$(a,b,c) \in \mathbb{R}^3$$
 tel que $f(x) = ax^2 + bx + c$

Réciproquement, soit f la fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où $(a, b, c) \in \mathbb{R}^3$. f est dérivable et

$$\forall (x,y) \in \mathbb{R}^2 \qquad f(y) - f(x) = ay^2 + by - ax^2 - bx = a(y-x)(y+x) + b(y-x)$$
$$= (y-x)(a(y+x) + b) = (y-x)f'\left(\frac{x+y}{2}\right)$$

La réciproque est vraie.