
Mathématiques : correction d’exercices du TD 1

1. Exercice 6 b :

Supposons que E = A ∪B et A ∩C ⊂ B et B ∩ C ⊂ A, et montrons que C ⊂ A ∩B.

Soit x ∈ C.
Alors x ∈ E (car C est une partie de E).
Or E = A ∪B, d’où x ∈ A ∪B,
c’est-à-dire x ∈ A ou x ∈ B.

Cas 1 : x ∈ A :

Alors x ∈ A ∩ C.
Comme A ∩ C ⊂ B, on en déduit que x ∈ B.
Par conséquent, x ∈ A ∩B.

Cas 2 : x ∈ B :

Alors x ∈ B ∩C.
Comme B ∩ C ⊂ A, on en déduit que x ∈ A.
Par conséquent, x ∈ A ∩B.

Dans les deux cas, on a bien x ∈ A ∩B.

On a ainsi montré que tous les éléments de l’ensemble C appartiennent à A ∩B, c’est-à-dire C ⊂ A ∩B.

Si E = A ∪B et A ∩ C ⊂ B et B ∩ C ⊂ A, alors C ⊂ A ∩B

2. Exercice 10 b :

Commentaires et rappels sur la valeur absolue :

On a : |x− a| =







x− a si x ≥ a

a− x sinon
Afin de faire disparaître les valeurs absolues, on va distinguer plusieurs cas suivant les valeurs de x.
Pour chaque domaine d’étude considéré, on va résoudre l’équation en la transformant en une équation équiva-
lente simple.

• Cas 1 : on suppose que x ∈ [2,+∞[.

x est solution de l’équation ⇐⇒ (x+ 1)− x+ 3(x− 1)− 2(x− 2) = x+ 2

⇐⇒ 0 · x = 0

Tous les réels x du domaine d’étude [2,+∞[ vérifient l’équation (très particulière) 0 · x = 0, et donc sont
solutions de l’équation de départ.

On en déduit que : S ∩ [2,+∞[= [2,+∞[.

• Cas 2 : on suppose que x ∈ [1, 2].

x est solution de l’équation ⇐⇒ (x+ 1)− x+ 3(x− 1)− 2(2− x) = x+ 2

⇐⇒ 4x = 8

⇐⇒ x = 2

On en déduit que : S ∩ [1, 2] = {2}.

• Cas 3 : on suppose que x ∈ [0, 1].

x est solution de l’équation ⇐⇒ (x+ 1)− x+ 3(1− x)− 2(2− x) = x+ 2

⇐⇒ −2x = 2

⇐⇒ x = −1

La condition x = −1 n’étant pas compatible avec l’hypothèse x ∈ [0, 1] , on en déduit que l’équation n’admet
pas de solution dans l’intervalle [0, 1].

Par conséquent : S ∩ [0, 1] = ∅.

• Cas 4 : on suppose que x ∈ [−1, 0].
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x est solution de l’équation ⇐⇒ (x+ 1) + x+ 3(1− x)− 2(2− x) = x+ 2

⇐⇒ 0 · x = 2

Par conséquent : S ∩ [−1, 0] = ∅.

• Cas 5 : on suppose que x ∈]−∞,−1].

x est solution de l’équation ⇐⇒ −(x+ 1) + x+ 3(1− x) − 2(2− x) = x+ 2

⇐⇒ −2x = 4

⇐⇒ x = −2

Par conséquent : S∩]−∞,−1] = {−2}.

On en déduit que S = {−2} ∪ [2,+∞[

Remarque : on définit la fonction f sur R par f(x) = |x+ 1| − |x|+ 3|x− 1| − 2|x− 2| − x− 2.

On a alors : S = {x ∈ R | f(x) = 0}.

On représente ci-dessous le graphe de la fonction f .
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3. Exercice 10 c :

• Analyse : supposons x solution de l’équation :
√
x+ 1−√

x = 2.

On a :
√
x+ 1 =

√
x+ 2, donc x+ 1 =

(√
x+ 2

)2.
Ce qui donne : x+ 1 = x+ 4

√
x+ 4.

On obtient alors : 4
√
x = −3, ce qui est impossible.

On en déduit que l’équation n’a pas de solution : l’ensemble des solutions est vide

4. Exercice 10 d :

• Analyse : supposons x solution de l’équation : 2
√
x+ 5 + 10 = x.

On a : 2
√
x+ 5 = x− 10, donc 4(x+ 5) = (x− 10)2.

Ce qui donne : x2 − 24x+ 80 = 0

(x− 20)(x− 4) = 0

x = 20 ou x = 4

On a ainsi montré que si x est solution de l’équation, alors x = 20 ou x = 4.

On a donc : S ⊂
{

4, 20
}

.

• Synthèse :

Supposons x = 4 : 2
√
x+ 5 + 10 = 16.

4 n’est pas solution de l’équation.

Supposons x = 20 : 2
√
x+ 5 + 10 = 20.

20 est solution de l’équation.

L’équation admet donc une unique solution : x = 20
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5. Exercice 10 g :

• On remarque que l’inéquation est définie sur [−1,+∞[.

Résoudre l’inéquation revient donc à déterminer l’ensemble S des éléments x appartenant à [−1,+∞[ qui
vérifient l’inégalité

√
x+ 1 ≤ 2(x− 2) :

S = {x ∈ [−1,+∞[ |
√
x+ 1 ≤ 2(x− 2)}

• Analyse : supposons x solution de l’inéquation : 2(x− 2) ≥
√
x+ 1.

Or comme
√
x+ 1 ≥ 0, on en déduit que 2(x− 2) ≥ 0, d’où x ≥ 2.

De plus, par croissance de la fonction carrée sur R+, on obtient 4(x− 2)2 ≥ x+ 1,

ce qui donne 4x2 − 17x+ 15 ≥ 0.

On peut étudier le signe du polynôme P = 4X2 − 17X + 15.

P admet deux racines réelles :
5

4
et 3.

P prend donc des valeurs positives sur l’ensemble ]−∞, 5
4
]∪ [3,+∞[ et prend des valeurs strictement négatives

sur ] 5
4
, 3[.

Comme on a établi précédemment que P (x) = 4x2 − 17x+ 15 ≥ 0, on en déduit que x ∈]−∞, 5

4
] ∪ [3,+∞[.

On a également prouvé que x ≥ 2.

Par conséquent, x ∈ [3,+∞[.

On a ainsi montré que si x est solution de l’inéquation, alors x ∈ [3,+∞[, d’où S ⊂ [3,+∞[.

• Synthèse : supposons x ∈ [3,+∞[.

Alors, d’après ce qui précède (cf étude du polynôme P ), P (x) = 4x2 − 17x+ 15 ≥ 0,

ce qui donne 4x2 − 16x+ 16 ≥ x+ 1.

Par croissance de la fonction racine carrée sur R+, on obtient alors :
√
4x2 − 16x+ 16 ≥

√
x+ 1.

Pour finir la synthèse et prouver que x est solution de l’inéquation, on va utiliser la relation :
√
a2 = |a|.

Lorsque a est positif, on obtient
√
a2 = a, et lorsque a est négatif, on a

√
a2 = −a.

Très souvent, les élèves oublient de préciser des arguments indiquant le signe de a.

Or
√
4x2 − 16x+ 16 =

√

(2x− 4)2 = |2x− 4|.
Comme x ∈ [3,+∞[, alors 2x− 4 ≥ 0, et ainsi

√
4x2 − 16x+ 16 = 2x− 4.

On obtient finalement : 2(x− 2) ≥
√
x+ 1.

Ainsi, on a montré que si x ∈ [3,+∞[, alors x est solution de l’inéquation, d’où [3,+∞[⊂ S.

• Conclusion : S = [3,+∞[

6. Exercice 11 :

a) Soit n un entier naturel.
Supposons que n ne soit pas pair.
n est donc impair : il existe k ∈ N tel que n = 2k + 1.
Alors n2 = 4k2 + 4k + 1 = 2k′ + 1 avec k′ = 2k2 + 2k, k′ ∈ N.
On en déduit que n2 est impair, donc n’est pas pair.

On a donc montré (par contraposition) que pour tout entier naturel n, si n2 est pair, alors n est pair.

b) Supposons par l’absurde que
√
2 soit rationnel.

Il existe deux entiers p et q non tous les deux pairs tels que
√
2 =

p

q
.

On a alors 2 =
p2

q2
, ou encore 2q2 = p2.

p2 est donc pair.
On en déduit (en utilisant le résultat de la question a) que p est pair.
Il existe donc k ∈ N tel que p = 2k.
On obtient : 2q2 = 4k2, puis q2 = 2k2.
q2 est donc pair, et ainsi q est pair (toujours d’après la question a).
p et q sont donc tous les deux pairs, ce qui est contradictoire avec l’hypothèse de départ.
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Ainsi,
√
2 est irrationnel

7. Exercice 15 b :

• Soit P (n) : 2n ≥ n2.

• P (4) est vraie.

• Supposons P (n) vraie pour un entier naturel n ≥ 4.

On a : 2n ≥ n2, donc 2n+1 ≥ 2n2.

On va alors établir que 2n2 est supérieur à (n+ 1)2 en montrant que la différence est positive.

Or 2n2 − (n+ 1)2 = n2 − 2n− 1

= (n− 1)2 + 1

Comme n ≥ 4, alors (n− 1)2 ≥ 9.

Par conséquent, 2n2 − (n+ 1)2 ≥ 0.

On a ainsi : 2n+1 ≥ 2n2 et 2n2 ≥ (n+ 1)2,
d’où 2n+1 ≥ (n+ 1)2. P (n+ 1) est vraie.

Ainsi, d’après le principe de récurrence, pour tout entier n ≥ 4, 2n ≥ n2

8. Exercice 14 : (lire le dernier paragraphe de la page 12 du chapitre 1)

Soit x ∈ R.
Supposons que x2 ≤ 1 et montrons que (2− x)2 ≥ 1.
Comme x2 ≤ 1, alors x ≤ 1, puis −x ≥ −1.
Par conséquent 2− x ≥ 1.
Par croissance de la fonction carrée sur R+, on obtient (2− x)2 ≥ 1.

On a ainsi montré que ∀x ∈ R, x2 > 1 ou (2− x)2 ≥ 1

9. Exercice 18 :

• Soit P (n) : un = n(n− 1).

• P (0), P (1) et P (2) sont vraies.

• Supposons P (n), P (n+ 1) et P (n+ 2) vraies pour un entier naturel n ≥ 0.

On a : un+3 = 3un+2 − 3un+1 + un

= 3(n+ 2)(n+ 1)− 3(n+ 1)n+ n(n− 1)

= 3n2 + 9n+ 6− 3n2 − 3n+ n2 − n

= n2 + 5n+ 6

= (n+ 3)(n+ 2)

P (n+ 3) est vraie.

Ainsi, d’après le principe de récurrence, pour tout entier n ≥ 0, un = n(n− 1)

4


