EXERCICE 1:

1. D'après les théorèmes opératoires, la fonction h_n est dérivable sur $]-1,+\infty[$ (somme et quotient de fonctions usuelles dérivables sur $]-1,+\infty[$), et pour $x\in]-1,+\infty[$, on a :

$$h'_n(x) = \frac{n}{1+x} + \frac{1+x-x}{(1+x)^2} = \frac{n(1+x)+1}{(1+x)^2}$$

<u>Méthode 1</u>: les termes $\frac{n}{1+x}$ et $\frac{1}{(1+x)^2}$ sont strictement positifs, donc f'(t) > 0.

Méthode 2 :

Or x > -1, donc n(1+x)+1>0. Le numérateur et le dénominateur de $h_n'(x)$ sont strictement positif, D'où $h_n'(x)>0$.

La fonction h_n est strictement croissante sur $]-1,+\infty[$

De plus, on remarque que $h_n(0) = 0$.

La stricte croissance de h_n permet alors de déduire que :

 h_n est strictement négative sur]-1,0[et est strictement positive sur $]0,+\infty[$ 2 points

2. La fonction f_n est dérivable sur $]-1,+\infty[$ comme produit de deux fonctions dérivables. Pour $x\in]-1,+\infty[$, on a :

$$f'_n(x) = nx^{x-1}\ln(1+x) + \frac{x^n}{1+x} = x^{n-1}\left(n\ln(1+x) + \frac{x}{1+x}\right) = x^{n-1}h_n(x)$$

Le signe de x^{n-1} dépend de la parité de n. Plus précisément, on a : (3 points)

	x	-1		0		$+\infty$
	$h_n(x)$		_	0	+	
	x^{n-1}		_	0	+	
	$f'_n(x)$		+	0	+	
n pair :						$+\infty$
					7	
	$f_n(x)$			0		
			7			
		$-\infty$				

x	-1		0		$+\infty$
$h_n(x)$		_	0	+	
x^{n-1}		+	0	+	
$f'_n(x)$		_	0	+	
	$+\infty$				$+\infty$
$f_n(x)$		\searrow		7	
			0		
	$\frac{h_n(x)}{x^{n-1}}$	$ \begin{array}{c c} h_n(x) \\ x^{n-1} \\ f'_n(x) \\ +\infty \end{array} $	$ \begin{array}{c cccc} h_n(x) & - \\ x^{n-1} & + \\ f'_n(x) & - \\ +\infty \end{array} $	$ \begin{array}{c cccc} h_n(x) & - & 0 \\ x^{n-1} & + & 0 \\ f'_n(x) & - & 0 \\ +\infty & & & \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Pour les limites en -1, on a :

- si n est pair, $\lim_{x \to -1} x^n = 1$ et $\lim_{x \to -1} \ln(1+x) = -\infty$, donc $\lim_{x \to -1} f_n(x) = -\infty$
- si n est impair, $\lim_{x \to -1} x^n = -1$ et $\lim_{x \to -1} \ln(1+x) = -\infty$, donc $\lim_{x \to -1} f_n(x) = +\infty$

La limite en $+\infty$ ne pose pas de problème : $\lim_{x\to +\infty} f_n(x) = +\infty$

3. (a) La fonction f_n est continue et strictement croissante sur $]0, +\infty[$, donc réalise une bijection de $[0, +\infty[$ vers $\Big]f_n(0), \lim_{x\to +\infty} f_n(x)\Big[=]0, +\infty[$, intervalle qui contient 1.

L'équation $f_n(x) = 1$ admet donc une unique solution dans \mathbb{R}_+^* 1 point

(b) $f_n(1) = \ln(2) < 1$. $f_n(u_n) > f_n(1)$, et f_n est strictement croissante sur \mathbb{R}_+^* .

On en déduit que $u_n > 1$ 0.5 point

(c) $f_{n+1}(u_n) = u_n^{n+1} \ln(1+u_n) = u_n \times u_n^n \ln(1+u_n) = u_n \underbrace{f_n(u_n)}_{-1} = u_n.$

Par conséquent, $f_{n+1}(u_n) > 1$ 1.25 point

 $f_{n+1}(u_n) > f_{n+1}(u_{n+1})$, et f_{n+1} est strictement croissante sur \mathbb{R}_+^* .

On en déduit que $u_n > u_{n+1}$ 0.75 point

(d) D'après la formule du binôme, on a :

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{1}{n}\right)^k$$

Les deux premiers termes de cette somme sont 1 et $\binom{n}{1} \times \frac{1}{n} = n \times \frac{1}{n} = 1$.

D'où

$$\left(1 + \frac{1}{n}\right)^n = 2 + \sum_{k=2}^n \binom{n}{k} \left(\frac{1}{n}\right)^k$$

Les termes de la somme $\sum_{k=2}^{n} {n \choose k} \left(\frac{1}{n}\right)^k$ étant positifs, on en déduit que $\left(1+\frac{1}{n}\right)^n \geq 2$ 1.5 point

$$f_n\left(1+\frac{1}{n}\right) = \left(1+\frac{1}{n}\right)\ln\left(2+\frac{1}{n}\right)$$

Comme $\left(1+\frac{1}{n}\right)^n \ge 2$ et $\ln\left(2+\frac{1}{n}\right) \ge \ln(2)$, alors $f_n\left(1+\frac{1}{n}\right) \ge 2\ln(2)$.

Or $2\ln(2) > 1$. Par conséquent, $f_n\left(1+\frac{1}{n}\right) > 1$ 0.75 point

(e) $f_n\left(1+\frac{1}{n}\right) > f_n(u_n)$ et f_n est strictement croissante sur \mathbb{R}_+^* : par conséquent, $1+\frac{1}{n} > u_n$.

On a alors : $1 < u_n < 1 + \frac{1}{n}$. 1 point

Comme u_n est encadré par deux termes qui tendent vers 1 lorsque n tend vers $+\infty$, alors

 $\lim_{n \to +\infty} u_n = 1$

EXERCICE 2 : ÉTUDE DE FONCTIONS

1. (a) On compare le numérateur et le dénominateur : $1+x-2\sqrt{x}=(\sqrt{x}-1)^2\geq 0$

On a donc : $0 \le 2\sqrt{x} \le 1 + x$

Ainsi,
$$\forall x \in \mathbb{R}_+$$
 $0 \le f(x) \le 1$ (1 pt)

(b) Soit $x \in]0, +\infty[$.

$$f\left(\frac{1}{x}\right) = \frac{\frac{2}{\sqrt{x}}}{1 + \frac{1}{x}} = \frac{2}{\sqrt{x}} \times \frac{x}{x+1} = \frac{2\sqrt{x}}{x+1} = f(x)$$

Ainsi,
$$\forall x \in]0, +\infty[$$
 $f\left(\frac{1}{x}\right) = f(x)$ (0.75 pt)

(c) D'après les théorèmes opératoires, f est dérivable sur $]0, +\infty[$ et

$$\forall x \in]0, +\infty[\quad f'(x) = \frac{\frac{1+x}{\sqrt{x}} - 2\sqrt{x}}{(1+x)^2} = \frac{(1+x) - 2x}{\sqrt{x}(1+x)^2} = \frac{1-x}{\sqrt{x}(1+x)^2}$$
 (1.25 pt)

Dérivabilité en 0:
$$\frac{f(x) - f(0)}{x - 0} = \frac{2}{\sqrt{x}(x + 1)}$$

Comme
$$\lim_{x\to 0} \sqrt{x}(x+1) = 0^+$$
, alors $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = +\infty$. f n'est donc pas dérivable en 0. (0.75 pt)

(d) **Barème** : 1.25 pt

f'(x) est du signe de 1-x

··	•					
	x	0		1		$+\infty$
	f'(x)		+	0	_	
				1		
	f		7		>	
		0				0

$$f(x) = \frac{2\sqrt{x}}{x\left(\frac{1}{x} + 1\right)} = \frac{2}{\sqrt{x}\left(\frac{1}{x} + 1\right)}$$

$$\lim_{x \to +\infty} \sqrt{x} \left(\frac{1}{x} + 1 \right) = +\infty, \, \operatorname{donc} \left[\lim_{x \to +\infty} f(x) = 0 \right]$$

Autre justification possible: d'après la question b, $f(x) = f\left(\frac{1}{x}\right)$.

$$t = \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$$

$$f(t) \underset{t \to 0}{\longrightarrow} 0$$

$$f(x) = 0$$
par composition des limites, $\lim_{x \to +\infty} f(x) = 0$

2. (a) F est la composée de arcsin et f.

f est strictement croissante sur [0,1] et arcsin est strictement croissante, donc F est strictement croissante sur

f est strictement décroissante sur $[1, +\infty[$ et arcsin est strictement croissante, donc F est strictement croissante sur $[1, +\infty[$. (0.75 pt)

(b) La fonction arcsin est dérivable sur]-1,1[. La fonction f est dérivable sur $]0,+\infty[$ et à valeurs dans [0,1]. On exclut du domaine d'application des théorèmes opératoires les valeurs de x pour lesquels f(x) = 1. Or la fonction f prend la valeur 1 seulement au point 1.

On peut donc appliquer les théorèmes opératoires sur $]0,1[\cup]1,+\infty[$.

$$F'(x) = \frac{1}{\sqrt{1 - \frac{4x}{(1+x)^2}}} \times f'(x) = \frac{1}{\sqrt{\frac{(1+x)^2 - 4x}{(1+x)^2}}} \times f'(x) = \frac{\sqrt{(1+x)^2}}{\sqrt{x^2 - 2x + 1}} \times \frac{1 - x}{\sqrt{x}(1+x)^2}$$

Or
$$\sqrt{(1+x)^2} = 1 + x \operatorname{car} 1 + x \ge 0$$
,

Et
$$\sqrt{x^2 - 2x + 1} = \sqrt{(x - 1)^2} = |x - 1|$$

Or
$$\sqrt{(1+x)^2} = 1 + x \operatorname{car} 1 + x \ge 0$$
,
Et $\sqrt{x^2 - 2x + 1} = \sqrt{(x-1)^2} = |x-1|$.
Ainsi, $F'(x) = \frac{1-x}{|x-1|\sqrt{x}(1+x)}$

$$F'(x) = \begin{cases} \frac{1}{\sqrt{x}(1+x)} & \text{si } x \in]0,1[\\ \frac{-1}{\sqrt{x}(1+x)} & \text{si } x \in]1,+\infty[\end{cases}$$
 (1.75 pt)

3. (a) On a : $tan(\theta) = \sqrt{x}$

D'où:
$$\frac{2\sqrt{x}}{1+x} = \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \frac{2\frac{\sin(\theta)}{\cos(\theta)}}{1+\frac{\sin^2(\theta)}{\cos^2(\theta)}} = \frac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta)+\sin^2(\theta)} = \sin(2\theta) \quad (1 \text{ pt})$$

(b) **Barème**: 1.75 pt

On en déduit que $F(x) = \arcsin(\sin(2\theta))$.

Attention, la relation $\arcsin(\sin(t)) = t$ n'est valable que pour $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

On distingue deux cas:

• Si $x \le 1$: alors $0 \le \sqrt{x} \le 1$, donc $\arctan(0) \le \arctan(\sqrt{x}) \le \arctan(1)$ par croissance de la fonction $\arctan(0) \le \arctan(1)$ Puis $0 \le 2\theta \le \frac{\pi}{2}$.

3

D'où $F(x) = 2\theta = 2\arctan(\sqrt{x})$

• Si
$$x > 1$$
: alors $\frac{\pi}{4} < \theta < \frac{\pi}{2}$

donc $\frac{\pi}{2} < 2\theta < \pi$, puis $0 < \pi - 2\theta < \frac{\pi}{2}$

D'où $F(x) = \arcsin(\sin(\pi - 2\theta)) = \pi - 2\theta = \pi - 2\arctan(\sqrt{x})$

Autre justification possible:

Si x > 1, alors $F(x) = F\left(\frac{1}{x}\right)$ en utilisant le résultat de la question 1b.

Comme
$$\frac{1}{x} \in \left]0, 1\right[$$
, alors $F\left(\frac{1}{x}\right) = 2\arctan\left(\frac{1}{\sqrt{x}}\right) = 2\left(\frac{\pi}{2} - \arctan(\sqrt{x})\right)$

EXERCICE 3:

1. D'après les théorèmes généraux sur la dérivabilité, f est dérivable sur I et

$$\forall x \in I \qquad f'(x) = \frac{2}{\sqrt{1 - 4x^2}} - \frac{1}{\sqrt{1 - x^2}} = \frac{\sqrt{4 - 4x^2} - \sqrt{1 - 4x^2}}{\sqrt{1 - 4x^2}\sqrt{1 - x^2}}$$

Comme $4 - 4x^2 > 1 - 4x^2$, alors $\sqrt{4 - 4x^2} > \sqrt{1 - 4x^2}$ (la fonction racine est strictement croissante) Ainsi, $\forall x \in I$ f'(x) > 0.

f est donc strictement croissante (1.25 pt)

2. f est strictement croissante et continue sur l'intervalle I, donc réalise une bijection de I vers l'intervalle J = f(I), avec $J = \lim_{x \to -\frac{1}{2}} f(x)$, $\lim_{x \to \frac{1}{2}} f(x) = \left] -\frac{\pi}{3}, \frac{\pi}{3} \right[$.

De plus, f est dérivable et f' ne s'annule pas, donc f^{-1} est dérivable sur J (1 pt)

- 3. On utilise les formules d'addition et les relations $\sin(\arcsin(t)) = t$ et $\cos(\arcsin(t)) = \sqrt{1-t^2}$ pour obtenir $\sin(f(x))$ et $\cos(f(x))$:
 - $\sin(f(x)) = 2x\sqrt{1-x^2} x\sqrt{1-4x^2}$
 - $\cos(f(x)) = \sqrt{1 x^2}\sqrt{1 4x^2} + 2x^2$
 - $\sin^2(f(x)) + 4x^2 \cos(f(x)) = 4x^2(1-x^2) + x^2(1-4x^2) 4x^2\sqrt{1-x^2}\sqrt{1-4x^2} + 4x^2\sqrt{1-x^2}\sqrt{1-4x^2} + 8x^4$ = $4x^2 - 4x^4 + x^2 - 4x^4 + 8x^4$

$$\sin^2(f(x)) + 4x^2 \cos(f(x)) = 5x^2$$
 (1.5 pt)

4. Soit $y \in J$. Notons $x = f^{-1}(y)$.

On a, d'après la question précédente : $\sin^2(y) + 4x^2\cos(y) = 5x^2$

donc
$$\sin^2(y) = x^2 (5 - 4\cos(y)).$$

Comme $4\cos(y) \le 4$, alors $5 - 4\cos(y) > 0$.

On obtient donc
$$x^2 = \frac{\sin^2(y)}{5 - 4\cos(y)}$$
 (0.75 pt)

Ce qui donne
$$x = \frac{\sin(y)}{\sqrt{5 - 4\cos(y)}}$$
 ou $x = -\frac{\sin(y)}{\sqrt{5 - 4\cos(y)}}$

Comme f est croissante et f(0) = 0, alors y = f(x) a le même signe que x.

De plus, $y \in]-\frac{\pi}{3}, \frac{\pi}{3}[$, donc $\sin(y)$ a le même signe que y, et donc a le même signe que x.

On en déduit que
$$x = \frac{\sin(y)}{\sqrt{5 - 4\cos(y)}}$$
. (1 pt)

Ainsi,
$$\forall y \in J$$
 $f^{-1}(y) = \frac{\sin(y)}{\sqrt{5 - 4\cos(y)}}$

EXERCICE 4: INÉGALITÉ DE HÖLDER (6.5 PTS)

1. La fonction f est dérivable sur \mathbb{R}_+^* (puisque les fonctions puissances sont dérivables), et :

$$\forall t \in \mathbb{R}_{+}^{*}$$
 $f'(t) = -\frac{a^{p}}{pq}t^{-\frac{1}{q}-1} + \frac{b^{q}}{pq}t^{\frac{1}{p}-1}$

Or
$$\frac{1}{p} - 1 = \frac{-1}{q}$$

D'où
$$f'(t) = -\frac{a^p}{pq}t^{-\frac{1}{q}-1} + \frac{b^q}{pq}t^{-\frac{1}{p}} = \frac{1}{pq}t^{-\frac{1}{q}-1}\left[-a^p + b^q t\right]$$
 1.25 point

Comme $\frac{1}{pq} t^{-\frac{1}{q}-1}$ est strictement positif, f'(t) est du signe de $-a^p + b^q t$.

Pour $t \in \mathbb{R}_+^*$, on a: $f'(t) = 0 \iff b^q t = a^p$

$$\iff t = \frac{a^p}{b^q}$$

Et:
$$f'(t) > 0 \Longleftrightarrow t > \frac{a^p}{bq}$$

La fonction f est par conséquent décroissante sur $\left]0,\frac{a^p}{b^q}\right]$ et croissance sur $\left[\frac{a^p}{b^q},+\infty\right[$: elle admet donc un minimum m au point $\frac{a^p}{ba}$. 1 point

$$m = f\left(\frac{a^p}{b^q}\right) = \frac{a^p}{q} \frac{a^{-p/q}}{b^{-1}} + \frac{b^q}{q} \frac{a}{b^{q/p}} = \frac{1}{p} a^{p(1-\frac{1}{q})} b + \frac{1}{q} b^{q(1-\frac{1}{p})} a$$

On rappelle que $1 - \frac{1}{q} = \frac{1}{p}$, d'où $a^{p(1-\frac{1}{q})} = a^1 = a$.

De même, $b^{q(1-\frac{1}{p})} = b$

On obtient alors : $m = ab\left(\frac{1}{p} + \frac{1}{a}\right) = ab$

Le minimum de f sur \mathbb{R}_+^* vaut ab 1.25 point

2. La question précédente permet d'affirmer que :

$$\forall (a,b) \in (\mathbb{R}_+^*)^2 \qquad \forall t \in \mathbb{R}_+^* \qquad ab \le \frac{a^p}{p} t^{-\frac{1}{q}} + \frac{b^q}{q} t^{\frac{1}{p}}$$

De plus, on remarque que l'inégalité reste vraie si a ou b est nul.

On applique cette inégalité pour $a=|x_k|$ et $b=|y_k|$ (où $k\in[1,n]$) pour obtenir après sommation terme à terme :

$$\sum_{k=1}^{n} |x_k| |y_k| \le \sum_{k=1}^{n} \left(\frac{|x_k|^p}{p} t^{-\frac{1}{q}} + \frac{|y_k|^q}{q} t^{\frac{1}{p}} \right)$$

On a également d'après l'inégalité triangulaire :

$$\left| \sum_{k=1}^{n} x_k y_k \right| \le \sum_{k=1}^{n} |x_k| |y_k|$$

Ce qui permet de déduire l'inégalité attendue :

$$\forall t \in \mathbb{R}_{+}^{*} \quad \left| \sum_{k=1}^{n} x_{k} y_{k} \right| \leq \frac{t^{-\frac{1}{q}}}{p} \sum_{k=1}^{n} |x_{k}|^{p} + \frac{t^{\frac{1}{p}}}{q} \sum_{k=1}^{n} |y_{k}|^{q}$$
 1.5 point

3. Dans l'expression de droite de l'inégalité précédente, on reconnaît f(t) avec $a = \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}}$ et $b = \left(\sum_{k=1}^{n} |y_k|^q\right)^{\frac{1}{q}}$.

Le terme $\left|\sum_{k=0}^{\infty} x_k y_k\right|$ est inférieur à f(t) pour tout $t \in \mathbb{R}_+^*$, donc il est inférieur au minimum $m = f\left(\frac{a^p}{b^q}\right)$:

$$\left| \sum_{k=1}^{n} x_k y_k \right| \le \left(\sum_{k=1}^{n} |x_k|^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |y_k|^q \right)^{\frac{1}{q}}$$
 1.5 point