
Exercice 1 : équation fonctionnelle (20.5 points)

1. Soit x ∈ R. Comme g(x)× g(x) = 1, on déduit que g(x) = 1 ou g(x) = −1.

On a donc obtenu que : ∀x ∈ R

(

g(x) = 1 ou g(x) = −1
)

On cherche à montrer que :
(

∀x ∈ R g(x) = 1
)

ou
(

∀x ∈ R g(x) = −1
)

Les deux propositions ne sont pas équivalentes. Par exemple, la fonction g définie par g(x) = (−1)⌊x⌋ vérifie la première
proposition mais pas la deuxième.

La fonction g est continue et ne s’annule pas sur R, par conséquent, elle est de signe constant.

Ainsi,
(

∀x ∈ R g(x) = 1
)

ou
(

∀x ∈ R g(x) = −1
)

La fonction g est constante (1.5 pt)

Autre justification possible :
Supposons par l’absurde que la fonction g ne soit pas constante.
Alors il existe a ∈ R tel que g(a) = −1 et il existe b ∈ R tel que g(b) = 1.
La fonction g étant continue sur R et comme elle change de signe, on déduit avec le théorème des valeurs intermédiaires
qu’il existe x ∈ R tel que g(x) = 0.
Ce qui est contradictoire avec g(x)× g(x) = 1.

Ainsi, la fonction g est constante

Autre justification possible :
g est continue, donc g(R) est un intervalle (l’image d’un intervalle par une fonction continue est un intervalle).
g(R) est un intervalle inclus dans {−1, 1}, par conséquent g(R) = {1} ou g(R) = {−1}

Ainsi,
(

∀x ∈ R g(x) = 1
)

ou
(

∀x ∈ R g(x) = −1
)

2. (a) D’après l’équation fonctionnelle, on a :
(

1 + f2(0)
)

f(0) = 2f(0).

Ce qui donne : f3(0)− f(0) = 0, c’est-à-dire f(0)
(

f(0)− 1
)(

f(0) + 1
)

= 0

D’où f(0) = 0 ou f(0) = 1 ou f(0) = −1.

Ainsi, f(0) ∈
{

− 1, 0, 1
}

(1.25 pt)

(b) Supposons que f(0) = 1.
Soit x ∈ R.
On a d’après l’équation fonctionnelle :

(

1 + f(x)f(0)
)

× f(x) = f(x) + f(0), ce qui donne f2(x) = 1.

f étant de plus continue, on déduit avec le résultat préliminaire que f est constante.

On a montré que si f(0) = 1, alors f est constante (1 pt)

(c) Soit P (n) : « f
( a

2n

)

= 1 »

P (0) est vraie par hypothèse.
Supposons P (n) vraie pour un entier n ≥ 0.

D’après l’équation fonctionnelle appliquée aux réels
a

2n+1
et

a

2n+1
, on a :

(

1 + f2
( a

2n+1

))

× f
( a

2n

)

= 2f
( a

2n+1

)

Comme par hypothèse de récurrence, f
( a

2n

)

= 1, on obtient : 1 + f2
( a

2n+1

)

= 2f
( a

2n+1

)

Ce qui donne : 1 + f2
( a

2n+1

)

− 2f
( a

2n+1

)

= 0

c’est-à-dire :
(

f
( a

2n+1

)

− 1
)2

on reconnaît l’identité remarquable x2 − 2x+ 1 = (x− 1)2

D’où f
( a

2n+1

)

= 1. P (n+ 1) est vraie.

On a ainsi montré par récurrence que ∀n ∈ N f
( a

2n

)

= 1 (2 pts)
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a

2n
−→

n→+∞
0 et f est continue, donc f

( a

2n

)

−→
n→+∞

f(0)

D’autre part, f
( a

2n

)

= 1 −→
n→+∞

1

Par unicité de la limite, on déduit que f(0) = 1.

D’après la question b, f est constante (1 pt)

(d) S’il existe a ∈ R tel que f(a) = −1, la fonction −f vérifie l’équation fonctionnelle, est continue et −f(a) = 1, donc
d’après la question précédente, −f est constante et ainsi f est constante. (1.25 pt)

3. (a) Soit x ∈ R. On a :
(

1 + f(x)f(−x)
)

× f(0) = f(x) + f(−x).

Comme f(0) = 0, on obtient f(x) + f(−x) = 0, d’où f(−x) = −f(x) : f est impaire (1 pt)

(b) Supposons que par l’absurde que f(x) ≥ 1.
f(0) = 0 et f est continue sur R.
Donc d’après le théorème des valeurs intermédiaires, il existe a ∈ R tel que f(a) = 1.
D’après la question 2c, f est constante. Contradiction.
Par conséquent, f(x) < 1.
On montre de même que f(x) > −11.

Ainsi, ∀x ∈ R f(x) ∈]− 1, 1[ (1.5 pt)

(c) Soit x ∈ R.

Soit Pn :
1 + f(nx)

1− f(nx)
=

(

1 + f(x)

1− f(x)

)n

P0 est vraie.
Supposons Pn vraie pour un entier n ≥ 0.

Comme f((n+ 1)x) =
f(nx) + f(x)

1 + f(nx)f(x)
(équation fonctionnelle), on a :

1 + f((n+ 1)x)

1− f((n+ 1)x)
=

1 + f(nx)+f(x)
1+f(nx)f(x)

1− f(nx)+f(x)
1+f(nx)f(x)

=
1 + f(nx)f(x) + f(nx) + f(x)

1 + f(nx)f(x)− f(nx)− f(x)

=

(

1 + f(nx)
)(

1 + f(x)
)

(

1− f(nx)
)(

1− f(x)
) =

(

1 + f(x)

1− f(x)

)n

×

(

1 + f(x)

1− f(x)

)

d’après P (n)

Ainsi,
1 + f((n+ 1)x)

1− f((n+ 1)x)
=

(

1 + f(x)

1− f(x)

)n+1

: P (n+ 1) est vraie.

∀x ∈ R ∀n ∈ N
1 + f(nx)

1− f(nx)
=

(

1 + f(x)

1− f(x)

)n

(2 pts)

(d) Notons que b > 0 (car f(1) ∈]− 1, 1[).

Avec x = 1, la relation précédente donne
1 + f(n)

1− f(n)
= bn puis (bn + 1)f(n) = bn − 1.

Ainsi, ∀n ∈ N f(n) =
bn − 1

bn + 1
(1 pt)

(e) Soit r ∈ Q+. On pose r =
p

q
avec p ∈ N et q ∈ N∗.

On applique l’égalité de la question c à n = q et x =
p

q
:

1 + f(q p
q )

1− f(q p
q )

=

(

1 + f(pq )

1− f(pq )

)q

c’est-à-dire
1 + f(p)

1− f(p)
=

(

1 + f(pq )

1− f(pq )

)q

D’où
1 + f(pq )

1− f(pq )
=

(

1 + f(p)

1− f(p)

)1/q

= (bp)1/q = bp/q = br

On obtient alors : 1 + f(r) = br(1 − f(r)), puis (br + 1)f(r) = br − 1

On en déduit ∀r ∈ Q+ f(r) = br−1
br+1 (2 pts)
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(f) Soit r ∈ Q+. On a : br = er ln(b).

En posant k =
ln(b)

2
, on a : br = e2kr, d’où f(r) =

br − 1

br + 1
=

e2kr − 1

e2kr + 1
= th(kr).

Les fonctions f et th étant impaires, cette dernière relation s’étend à Q.

Ainsi, pour k =
ln(b)

2
, on a ∀r ∈ Q f(r) = th(kr) (1.5 pt)

Soit x ∈ R.
Q est dense dans R : il existe une suite (rn)n≥0 de rationnels qui converge vers x.

rn −→
n→+∞

x

f(t) −→
t→x

f(x)

(car f est continue)



















donc f(rn) −→
n→+∞

f(x).

D’autre part, f(rn) = th(krn) −→
n→+∞

th(kx) par continuité de la fonction th.

Par unicité de la limite, on déduit : f(x) = th(kx) (1.5 pt)

4. Réciproquement, on vérifie aisément que pour k ∈ R, la fonction f : x 7→ th(kx) est continue et satisfait l’équation
fonctionnelle, donc appartient à E.

En effet, pour (x, y) ∈ R2, th(kx+ ky) =
sh(kx+ ky)

ch(kx+ ky)
=

sh(kx)ch(ky) + ch(kx)sh(ky)
ch(kx)ch(ky) + sh(kx)sh(ky)

En divisant par ch(kx)ch(ky), on obtient : th(kx+ ky) =
th(kx) + th(ky)
1 + th(kx)th(ky)

Les éléments de E sont donc les fonctions x 7→ th(kx) (avec k ∈ R) et les fonctions constantes x 7→ 1 et x 7→ −1 (2 pts)

Exercice 2 : algèbre (8.5 points)

1. I ∈ H

Soient M = aI + bJ et M ′ = a′I + b′J deux éléments de H (où a, b, a′ et b′ sont des réels).
Alors M −M ′ = (a− a′)I + (b − b′)J , donc M −M ′ ∈ H.

Et MM ′ = (aI + bJ)(a′I + b′J) = aa′I + (ab′ + ba′)J + bb′J2

On vérifie que J2 = 0, d’où MM ′ = aa′I + (ab′ + ba′)J , par conséquent, MM ′ ∈ H.

De plus, M ′M = a′aI + (a′b+ b′a)J = MM ′.

Ainsi,
(

H,+,×
)

est un sous-anneau commutatif de
(

M2(R),+,×
)

(2 pts)

2. Comme les matrices I et J commutent, on a d’après la formule du binôme :

Mn =

n
∑

k=0

(

n

k

)

an−kbkIn−kJk

Or pour k ≥ 2, Jk = 0.

Par conséquent, Mn = anI + nan−1bJ =

(

an + nan−1b nan−1b

−nan−1b an − nan−1b

)

(2 pts)

3. Analyse : supposons M =

(

a+ b b

−b a− b

)

inversible.

Alors il existe N =

(

a′ + b′ b′

−b′ a′ − b′

)

tel que MN = I.

D’après la question 1, MN =

(

aa′ + ab′ + ba′ ab′ + ba′

−(ab′ + ba′) aa′ − (ab′ + ba′)

)

.

On en déduit dans un premier temps que : ab′ + ba′ = 0 (en identifiant le coefficient de position (1, 2) des matrices
MN et I)

D’où MN =

(

aa′ 0
0 aa′

)

.

Par conséquent, aa′ = 1.
Nécessairement, a 6= 0.

On a ainsi montré que si M =

(

a+ b b

−b a− b

)

est inversible, alors a 6= 0.
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Synthèse : supposons M =

(

a+ b b

−b a− b

)

avec a 6= 0.

On pose N =
1

a
I −

b

a2
J .

On a : MN =
(

aI + bJ
)(1

a
I −

b

a2
J
)

= I +
(

−
b

a
+

b

a

)

J = I

Ce qui prouve que M est bien inversible.

Conclusion : les éléments inversibles de H sont les matrices M =

(

a+ b b

−b a− b

)

avec a 6= 0 (2.75 pts)

4. Si M = aI + bJ est un diviseur de zéro, alors il existe une matrice N non nulle de H telle que MN = 0.
M n’est pas inversible (car sinon, en multipliant par M−1 à gauche la relation MN = 0, on obtiendrait N = 0)
On en déduit que a = 0 (car d’après la question précédente, on a l’implication : M inversible =⇒ a 6= 0)
D’où M = bJ avec b 6= 0.

Réciproquement, si M = bJ avec b 6= 0, alors M2 = b2J2 = 0

Donc M est un diviseur de zéro.

Conclusion : les diviseurs de zéro de l’anneau H sont les matrices M =

(

b b

−b −b

)

avec b 6= 0 (1.75 pt)

Exercice 3 : arithmétique (6 points)

1. Notons d = (2n+ 1) ∧ (n2) le pgcd de 2n+ 1 et n2.
d divise 2n+ 1 et n2, donc d divise la combinaison linéaire n× (2n+ 1)− 2× n2 = n.
Puis d divise la combinaison (2n+ 1)− 2× n.
d est un diviseur positif de 1, donc d = 1.

Les entiers 2n+ 1 et n2 sont premiers entre eux 1 pt

Autre solution : 4× n2 − (2n− 1)× (2n+ 1) = 1.
Il existe donc un couple (u, v) ∈ Z2 tel que un2 + v(2n+ 1) = 1.
D’après le théorème de Bézout, n2 et 2n+ 1 sont premiers entre eux.

2. (a) On a : px = y2 − x2, donc px = (y − x)(y + x).
p divise le produit (y − x)(y + x).
Et p est un nombre premier, donc est premier avec tous les nombres qu’il ne divise pas.
Par conséquent, p divise au moins l’un des deux facteurs : y − x ou y + x.
Si p ne divise pas le premier facteur, alors il est premier avec lui, et donc divise l’autre facteur par le théorème de Gauss

p divise y − x ou p divise y + x 0.75 pt

(b) Supposons que p divise y − x. Il existe donc q ∈ Z tel que y − x = pq.
Comme px ≥ 0, on a alors y2 = x2 + px ≥ x2, et donc y ≥ x.
On en déduit que q ≥ 0.
On reprend la relation : (y − x)(y + x) = px

En remplaçant y par x+ pq, on obtient : pq (2x+ pq) = px.
Ce qui donne après simplification par p (qui est non nul) : 2qx+ pq2 = x

Puis pq2 = x(1− 2q).
Comme pq2 est positif, les entiers x et 1− 2q ont le même signe. Par conséquent, 1− 2q ≥ 0.

q est un entier naturel vérifiant q ≤
1

2
, donc q = 0, puis x = pq2 = 0 et enfin y = x2 + px = 0.

On a montré que si p divise y − x, alors x = 0 et y = 0 1.5 pt

(c) On reprend la relation : (y + x)(y − x) = px

En remplaçant y par pk − x, on obtient : pk (pk − 2x) = px.
Ce qui donne après simplification par p (qui est non nul) : pk2 − 2kx = x

Puis pk2 = x(1 + 2k).
2k + 1 divise le produit pk2 et est premier avec k2 d’après le résultat préliminaire,
Le théorème de Gauss permet de déduire que 2k + 1 divise p.
D’où 2k + 1 = 1 ou 2k + 1 = p (car p étant premier n’a que deux diviseurs positifs)
Cas 1 : 2k + 1 = 1

On obtient alors k = 0, puis x = pk2 = 0 et enfin y = 0
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Cas 2 : 2k + 1 = p

On obtient alors k =
p− 1

2
(qui est bien un entier car p− 1 est pair)

Puis x = k2 =
(p− 1

2

)2

et y = pk − x =
p− 1

2

(

p−
p− 1

2

)

=
(p− 1)(p+ 1)

4
2 pts

3. Réciproquement, on vérifie que les couples (0, 0) et
((p− 1

2

)2

,
(p− 1)(p+ 1)

4

)

sont solutions de l’équation.

Supposons que x =
(p− 1

2

)2

et y =
(p− 1)(p+ 1)

4

Comme p est impair,
p− 1

2
et

p+ 1

2
sont bien des entiers, donc x ∈ N et y ∈ N.

x2 + px = x(x + p) et x+ p =
(p− 1

2

)2

+ p =
p2 − 2p+ 1

4
+ p =

p2 + 2p+ 1

4
=
(p+ 1

2

)2

On a donc : x2 + px =
(p− 1

2

)2(p+ 1

2

)2

= y2

L’ensemble des solutions de l’équation est
{

(0, 0),
((p− 1)2

4
,
(p− 1)(p+ 1)

4

)}

0.75 pt

Remarque : dans le cas où p = 2, l’équation n’a qu’une seule solution, le couple (0, 0).

Exercice 4 : arithmétique (12.5 points)

1. Soit n ∈ E .
Supposons n pair.
Alors 2 divise n, et n divise 2n + 1, donc 2 divise 2n + 1 (par transitivité).
Comme n ≥ 1, 2 divise 2n.
Par conséquent, 2 divise (2n + 1)− 2n = 1. Contradiction.

Ainsi, tout élément de E est impair (1.25 pt)

2. Soit P (k) : « 3k appartient à E »
1 divise 21 + 1, donc P (0) est vraie.
3 divise 23 + 1, donc P (1) est vraie.
Supposons P (k) vraie pour un entier k ≥ 1.
23

k+1

+ 1 = 23
k×3 + 1 = (23

k

)3 + 1 = (23
k

+ 1)(43
k

− 23
k

+ 1)

D’après P (k), 23
k

+ 1 est un multiple de 3k.
Il reste à montrer que 43

k

− 23
k

+ 1 est un multiple de 3.
Or d’après P (k), 23

k

+ 1 est un multiple de 3k, donc est un multiple de 3.
D’où : 23

k

≡ −1 [3].
Et 43

k

≡ 1 [3].
Par conséquent, 43

k

− 23
k

+ 1 ≡ 0 [3].
On peut ainsi déduire que 23

k+1

+ 1 est un multiple de 3k+1 : P (k + 1) est vraie.

On a ainsi montré que pour tout k ∈ N, le nombre 3k appartient à E (2 pts)

3. (a) Comme n est impair, p est impair, et donc p− 1 est pair.
On peut écrire : p− 1 = 2q avec q ∈ N∗.

Comme p est le plus petit diviseur premier de n, alors n et p− 1 n’ont pas de diviseur commun autre que 1 (sinon
n aurait un diviseur premier strictement plus petit que p).
n et p− 1 sont donc premiers entre eux.
n est alors premier avec le diviseur q de p− 1.

On a ainsi : (2n) ∧ (p− 1) = (2n) ∧ (2q) = 2× (n ∧ q) = 2 (2 pts)

(b) p est un nombre premier, et 2 est premier avec p.
Donc d’après le petit théorème de Fermat, 2p−1 ≡ 1 [p]

Ainsi, p− 1 appartient à A (0.75 pt)

p divise n, et n divise 2n + 1, donc p divise 2n + 1.
Par conséquent, 2n ≡ −1 [p]

D’où (2n)2 ≡ 1 [p], ce qui donne : 22n ≡ 1 [p]

Ainsi, 2n appartient à A (0.75 pt)
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(c) A est une partie non vide de N, donc A possède un plus petit élément a (0.25 pt)

(d) Supposons que k appartienne à A : 2k ≡ 1 [p]

Effectuons la division euclidienne de k par a : k = aq + r avec 0 ≤ r < a.
On a alors : 2k = (2a)q × 2r.
Comme a est un élément de A, on a : 2a ≡ 1 [p]

Par hypothèse, 2k ≡ 1 [p]

(2a)q × 2r ≡ 1 [p]

2r ≡ 1 [p]

Si r était non nul, alors r serait un élément de A, ce qui est exclu car r < a.
On en déduit que r = 0. Donc k = aq est un multiple de a.

On a montré que si k ∈ A, alors k est un multiple de a (2 pts)

(e) a divise tout élément de A, donc a divise les nombres 2n et p− 1.
a divise donc leur PGCD : a divise 2 (en utilisant le résultat de la question a).

Comme 1 6∈ A, on en déduit que a = 2 (0.75 pt)

p divise 2a − 1, donc p divise 3.
Par conséquent, p = 3 (0.25 pt)

4. (a) Supposons que n ∈ E (ie n divise 2n + 1).
On peut écrire : 2n + 1 = nq avec q ∈ N∗.
Comme 2n + 1 est impair, q est impair.
Par conséquent, (−1)q = −1.

D’où : 22
n+1 + 1 = 2nq + 1 = (2n)q − (−1)q =

(

2n + 1
)

q−1
∑

k=0

(−1)k(2n)q−1−k

On a ici utilisé l’identité remarquable aq − bq = (a− b)

q−1
∑

k=0

aq−k−1bk

Ce qui prouve que 22
n+1 + 1 est un multiple de 2n + 1.

On a montré que si n ∈ E , alors 2n + 1 ∈ E (2 pts)

(b) 9 appartient à E , donc d’après ce qui précède, le nombre 29+1 = 513 appartient à E (et ce n’est pas une puissance
de 3). (0.5 pt)
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