EXERCICE 1 : EQUATION FONCTIONNELLE (20.5 POINTS)

1. Soit z € R. Comme g(z) x g(x) =1, on déduit que g(z) =1 ou g(z) = —1.
On a donc obtenu que : Vo € R (g(a:) =1loug(z) = —1)
On cherche & montrer que : (Vx eR g(x) = 1) ou (Vx eR g(x)= —1)

Les deux propositions ne sont pas équivalentes. Par exemple, la fonction g définie par g(x) = (—1)*) vérifie la premiére
proposition mais pas la deuxiéme.

La fonction g est continue et ne s’annule pas sur R, par conséquent, elle est de signe constant.
Ainsi, (V:v eR  g(x) = 1) ou (Vx eR gz)= —1)

‘La fonction g est constante‘ (1.5 pt)

Autre justification possible :

Supposons par 'absurde que la fonction g ne soit pas constante.

Alors il existe a € R tel que g(a) = —1 et il existe b € R tel que g(b) = 1.

La fonction g étant continue sur R et comme elle change de signe, on déduit avec le théoréme des valeurs intermédiaires
qu’il existe z € R tel que g(z) = 0.

Ce qui est contradictoire avec g(z) x g(z) = 1.

‘Ainsi, la fonction g est constante‘

Autre justification possible :

g est continue, donc g(R) est un intervalle (I'image d’un intervalle par une fonction continue est un intervalle).
g(R) est un intervalle inclus dans {—1,1}, par conséquent g(R) = {1} ou g(R) = {—1}

Ainsi, (V:v eR g(x) = 1) ou (Vx eR g(x) = —1)

. (a) D’aprés I’équation fonctionnelle, on a : (1 + fQ(O))f(O) = 21(0).

Ce qui donne : f3(0) — f(0) = 0, c’est-a-dire f(O)(f(O) - 1) (f(O) + 1) =0
D’ou f(0)=0ou f(0) =1ou f(0) = —1.

Ainsi, f(0) € { —1,0, 1} (1.25 pt)

(b) Supposons que f(0) = 1.
Soit x € R.
On a d’apreés 'équation fonctionnelle : (1 + f(a:)f(())) x f(z) = f(z) + f(0), ce qui donne f?(z) = 1.

f étant de plus continue, on déduit avec le résultat préliminaire que f est constante.

‘ On a montré que si f(0) =1, alors f est constante‘ (1 pt)

(c) Soit P(n) : « f(;in) =1»
P(0) est vraie par hypothése.
Supposons P(n) vraie pour un entier n > 0.

) N 92 . f . 3 A A a
D’apres I'équation fonctionnelle appliquée aux réels — +7 et ot

(1+f2(2na+1)) . f(;in) - 2f(2na+1)

Comme par hypothése de récurrence, f(;in) =1, on obtient : 1+ f? (2::1) = 2f(2na+1)
. a a
Ce qui donne : 1+f2(2n+1) - 2f(2n+1) =0

c’est-a-dire : (f(

on a :

2
2n+1) - 1) on reconnait I'identité remarquable % — 2x + 1 = (z — 1)

D’ou f(%) = 1. P(n+ 1) est vraie.

On a ainsi montré par récurrence que Vn € N f (;in) =1 (2 pts)




2 et f est continue, donc f (;in) — f(0)

2N n—s+4oo n—+oo

D’autre part, f(;in) =1 — 1

n—-+o0o

Par unicité de la limite, on déduit que f(0) = 1.
f est Constante‘ (1 pt)

D’aprés la question b,

S’il existe a € R tel que f(a) = —1, la fonction — f vérifie ’équation fonctionnelle, est continue et — f(a) = 1, donc

d’aprés la question précédente, — f est constante et ainsi f est constante. (1.25 pt)

Soit z € R. On a : (1 + f(x)f(—:v)) x f(0) = f(z) + f(—=x).
Comme f(0) = 0, on obtient f(z) + f(—z) =0, d’ott f(—z) = —f(z) : (1 pt)

Supposons que par absurde que f(z) > 1.

f(0) =0 et f est continue sur R.

Donc d’apres le théoréme des valeurs intermédiaires, il existe a € R tel que f(a) = 1.
D’aprés la question 2c¢, f est constante. Contradiction.

Par conséquent, f(z) < 1.

On montre de méme que f(z) > —11.

‘Ainsi7 VereR f(z) €] -1, 1[‘ (1.5 pt)

Soit z € R.

dp L L Sma) (14 f(@)\"
SO P T (a) (1—f(w))

Po est vraie.

Supposons P,, vraie pour un entier n > 0.

Comme f((n+ 1)x) = S(nz) + fla) (équation fonctionnelle), on a :

1+ f(na)f(2)

L+ f(n+)e) 1+ EFOaE 1+ f(na)f(@) + fna) + f(=)
— f(nz) —

T+ D)~ 1- LeaHE T T (o) f(z) — f(na)
(L s00) (147@) 14 5@\ (145@)N
- (1= ra)) (1= 1)) - <1—f(ar)) ‘ (1—f(x)> dapres Pn)

. +f((n—|—1)x)_ 1+ f(z) n+1' n est vraie

Ainsi, = f((nt)z) (l—f(x)) : P(n+1) est :
L+ f(nz) (14 f(@)\" .

VeeR VneN 1—f(mc)_(1—f(9€)> (2 pts)

Notons que b > 0 (car f(1) €] — 1, 1]).

1
Avec 2 = 1, la relation précédente donne %;Eni =b" puis (0" +1)f(n) =b" — 1.
— f(n
Ainsi, Vn e N f(n) = el (1 pt)
) T p

Soit r € Q. Onposer:BavecpENethN*.
q

On applique l'égalité de la question c an =g et x = P,
q

c’est-a-dire L+ f(p) _ 1+ f(§) 7
1—flp)  \1-/f(®)

on L) (14 1()
Dot T (1—f(p)
On obtient alors : 1+ f(r) =b"(1 — f(r)), puis (b" +1)f(r) =b" -1

1/q
) — (bp)l/q — pp/a — pr

On en déduit Vr € Q  f(r) = &1 | (2 pts)

br+1




(f) Soit 7 € Qt. On a : b" = "),
In(b)

r—1 2kr _ 1
En posant k = — ona: b" = ek don f(r) ¢

= br +1 = err+1 =
Les fonctions f et th étant impaires, cette derniére relation s’étend & Q.

th(kr).

In(d
Ainsi, pour k = né ), onaVreQ f(r)=th(kr)| (1.5 pt)
Soit x € R.
Q est dense dans R : il existe une suite (ry,),>0 de rationnels qui converge vers x.
T — T
n—-+oo

F(t) = () done f(rn) — f(@).

(car f est continue)

D’autre part, f(r,) = th(kr,) = th(kz) par continuité de la fonction th.
n—

o0

Par unicité de la limite, | on déduit : f(z) = th(kz) ‘ (1.5 pt)

4. Réciproquement, on vérifie aisément que pour k € R, la fonction f : z — th(kx) est continue et satisfait ’équation
fonctionnelle, donc appartient a FE.
sh(kz + ky)  sh(kz)ch(ky) + ch(kz)sh(ky)
En effet R? th(kz + ky) = = :
n effet, pour (z,y) € R®, th(kz + ky) ch(kz + ky)  ch(kx)ch(ky) + sh(kz)sh(ky)

th(k th(k
En divisant par ch(kx)ch(ky), on obtient : th(kz + ky) = 1 —ft}fzk+)th((ky))
€T Y

Les éléments de E sont donc les fonctions z — th(kz) (avec k € R) et les fonctions constantes z — 1 et z — —1 (2 pts)

EXERCICE 2 : ALGEBRE (8.5 POINTS)

1.IeH
Soient M = al 4+ bJ et M’ = o'l + V' J deux éléments de H (ot a, b, a’ et b’ sont des réels).
Alors M = M' = (a—a') I+ (b—10")J, donc M — M’ € H.
Et MM’ = (aI +bJ)(a'I +b'J) = aad’'l + (ab’ + ba’)J + bb' J?
On vérifie que J2 = 0, d’ott MM’ = aad'I + (ab’ + ba')J, par conséquent, MM’ € H.

De plus, M'M = d'al + (a'b+ b'a)J = MM'.

Ainsi, (’H, +, ><) est un sous-anneau commutatif de (MQ(R), +, ><) (2 pts)

2. Comme les matrices I et J commutent, on a d’aprés la formule du binéme :

M — Z (Z) an—kpk =k gk
k=0
Or pour k > 2, J¥ = 0.

(2 pts)

n n—1 n—1
Par conséquent, M™ = a™I + na™ 'bJ = ( a” +na” % na""b )

—na™1h a” —na""1b

a+b b

b oa—b ) inversible.

3. Analyse : supposons M = (

a +bv

Alors il existe N = < _y

/
a’b—b’ ) tel que MN = 1.

’ ’ ’ , ,
D’aprés la question 1, MN = ( aa’ + ab’ + ba ab’ + ba )

—(ab' +ba’)  aad’ — (ab' + ba’)
On en déduit dans un premier temps que : ab’ + ba’ = 0 (en identifiant le coefficient de position (1,2) des matrices
MN et I)

li
Dot MN = < a0 >
0 aa
Par conséquent, aa’ = 1.
Nécessairement, a # 0.

a+b b

. . 2. : M —
On a ainsi montré que si < b a—b

> est inversible, alors a # 0.



Synthése : supposons M = ( a_—i—bb a E b ) avec a # 0.
1 b

On pose N = -1 — —J.
a a

Ona:MN:(aI—l—bJ)(%I—a—bQJ):I—i—(—g—i-S)J:I

Ce qui prouve que M est bien inversible.

Conclusion : les éléments inversibles de H sont les matrices M = ( a_—l—bb a E b ) aveca # 0| (2.75 pts)

. Si M = al + bJ est un diviseur de zéro, alors il existe une matrice N non nulle de H telle que M N = 0.
M n’est pas inversible (car sinon, en multipliant par M ~! & gauche la relation M N = 0, on obtiendrait N = 0)
On en déduit que a = 0 (car d’aprés la question précédente, on a I'implication : M inversible = a # 0)
D’ou M = bJ avec b # 0.

Réciproquement, si M = bJ avec b # 0, alors M? = b2J% =0
Donc M est un diviseur de zéro.

Conclusion : les diviseurs de zéro de 'anneau H sont les matrices M = ( _Z _2 ) avec b # 0| (1.75 pt)

EXERCICE 3 : ARITHMETIQUE (6 POINTS)

. Notons d = (2n + 1) A (n?) le pged de 2n + 1 et n?.
d divise 2n + 1 et n?, donc d divise la combinaison linéaire n x (2n + 1) — 2 x n? = n.
Puis d divise la combinaison (2n + 1) — 2 x n.
d est un diviseur positif de 1, donc d = 1.

Les entiers 2n + 1 et n? sont premiers entre eux‘ 1 pt

Autre solution : 4 x n? — (2n — 1) x (2n+1) = 1.
1l existe donc un couple (u,v) € Z? tel que un? +v(2n + 1) = 1.
D’aprés le théoréme de Bézout, n? et 2n + 1 sont premiers entre eux.

.(a) On a: pr=y?—2?% donc pr = (y — z)(y + ).
p divise le produit (y — z)(y + ).
Et p est un nombre premier, donc est premier avec tous les nombres qu’il ne divise pas.
Par conséquent, p divise au moins 'un des deux facteurs : y — z ou y + .

Si p ne divise pas le premier facteur, alors il est premier avec lui, et donc divise 'autre facteur par le théoréme de Gauss

‘p divise y — x ou p divise y + x| 0.75 pt

(b) Supposons que p divise y — z. Il existe donc ¢ € Z tel que y — z = pq.
Comme pz > 0, on a alors y? = 22 + px > 22, et donc y > .
On en déduit que g > 0.
On reprend la relation : (y — z)(y + z) = pz
En remplacant y par x + pq, on obtient : pq (22 + pq) = pz.
Ce qui donne aprés simplification par p (qui est non nul) : 2qz + pg? = x
Puis pg? = 2(1 — 2q).
Comme pg? est positif, les entiers et 1 — 2¢ ont le méme signe. Par conséquent, 1 — 2g > 0.

1
q est un entier naturel vérifiant ¢ < 2 donc ¢ = 0, puis z = pg? = 0 et enfin y = 22 + pzr = 0.

‘ On a montré que si p divise y — z, alorsx =0 et y = O‘ 1.5 pt

(c) On reprend la relation : (y + z)(y — z) = px
En remplacant y par pk — x, on obtient : pk(pk — 2z) = px.
Ce qui donne aprés simplification par p (qui est non nul) : pk? — 2kr = o
Puis pk? = z(1 + 2k).
2k 4 1 divise le produit pk? et est premier avec k? d’aprés le résultat préliminaire,
Le théoréme de Gauss permet de déduire que 2k + 1 divise p.
Dot 2k + 1 =1 ou 2k + 1 = p (car p étant premier n’a que deux diviseurs positifs)
Cas1:2k+1=1
On obtient alors k = 0, puis z = pk? = 0 et enfin y = 0




Cas2:2k+1=0p

-1
On obtient alors k = pT (qui est bien un entier car p — 1 est pair)

p;l(p_pgl): (P=Dp+1)

—1N2
Puisx:k2:(pT) et y=pk—x = 2 pts

—1\2 -1 1
3. Réciproquement, on vérifie que les couples (0,0) et ((p 5 ) , (p )4(p + )) sont solutions de ’équation.

—1\2 -1 1
Supposons que x = (p_) ety = w

2 . ) 4
Comme p est impair, p; et Pt sont bien des entiers, donc x € Net y € N.

22 1 242 1 1,2
4 4 2
1
On a donc : +px*(p ) (p+ ) = g2
2 2
-1)?% (p—1 1

L’ensemble des solutions de I’équation est {(0, 0), ((p 1 ) , (p )4(p + ))} 0.75 pt

Remarque : dans le cas ou p = 2, ’équation n’a qu’une seule solution, le couple (0, 0).

EXERCICE 4 : ARITHMETIQUE (12.5 POINTS)

1. Soit n € €.
Supposons n pair.
Alors 2 divise n, et n divise 2" 4 1, donc 2 divise 2™ + 1 (par transitivité).
Comme n > 1, 2 divise 2".
Par conséquent, 2 divise (2" 4+ 1) — 2" = 1. Contradiction.

‘Ainsi, tout élément de £ est impair‘ (1.25 pt)

2. Soit P(k) : « 3% appartient & £ »
1 divise 2! + 1, donc P(0) est vraie.
3 divise 23 + 1, donc P(1) est vraie.
Supposons P(k) vraie pour un entier k > 1.
23" p1=238 1= (23" 1= (28" 1) — 2% 1 1)
D’aprés P(k), 23° + 1 est un multiple de 3.
Il reste 4 montrer que 43" — 23" 4+ 1 est un multiple de 3.
Or d’apres P(k), 23" 4 1 est un multiple de 3%, donc est un multiple de 3.
Dot : 23" = -1 [3).
Et 43" =1 [3).
Par conséquent, 43" — 23" +1=0 [3].
On peut ainsi déduire que 23°"" + 1 est un multiple de 35+1 : P(k + 1) est vraie.

‘ On a ainsi montré que pour tout k € N, le nombre 3 appartient & &£ ‘ (2 pts)

3. (a) Comme n est impair, p est impair, et donc p — 1 est pair.
On peut écrire : p — 1 = 2q avec ¢ € N*.

Comme p est le plus petit diviseur premier de n, alors n et p — 1 n’ont pas de diviseur commun autre que 1 (sinon
n aurait un diviseur premier strictement plus petit que p).

n et p — 1 sont donc premiers entre eux.

n est alors premier avec le diviseur ¢ de p — 1.

|On aainsi : (2n) A (p—1) = (2n) A (29) =2x (nAq) =2| (2 pts)

(b) p est un nombre premier, et 2 est premier avec p.
Donc d’aprés le petit théoréme de Fermat, 2°~1 =1 [p]

‘Ainsi7 p — 1 appartient & A‘ (0.75 pt)

p divise n, et n divise 2" 4 1, donc p divise 2™ + 1.
Par conséquent, 2" = —1 [p]
Dou (27)2 =1 [p], ce qui donne : 22" =1 [p]

| Ainsi, 2n appartient 4 A| (0.75 pt)




(©)
(d)

(b)

A est une partie non vide de N, | donc A posséde un plus petit élément a‘ (0.25 pt)

Supposons que k appartienne 3 A : 28 =1 [p]

Effectuons la division euclidienne de k par a : k = aq+r avec 0 < r < a.
On a alors : 2F = (22)7 x 27.
Comme a est un élément de A, on a: 2% =1 [p]
Par hypothése, 28 =1 [p]

(201 x 27 =1 [p]

2 =1 [p)
Si r était non nul, alors r serait un élément de A, ce qui est exclu car r < a.
On en déduit que » = 0. Donc k = aq est un multiple de a.

‘ On a montré que si k € A, alors k est un multiple de a ‘ (2 pts)

a divise tout élément de A, donc a divise les nombres 2n et p — 1.
a divise donc leur PGCD : a divise 2 (en utilisant le résultat de la question a).

Comme 1 ¢ A, |on en déduit que a = 2‘ (0.75 pt)

p divise 2% — 1, donc p divise 3.

‘Par conséquent, p = 3‘ (0.25 pt)

Supposons que n € £ (ie n divise 2" 4 1).
On peut écrire : 2" + 1 = ng avec ¢ € N*,
Comme 2™ + 1 est impair, ¢ est impair.
Par conséquent, (—1)7 = —1.

Q
—

Dot : 22" F1 +1 =2 4+1=(2")7 — (-1)7 = (2n + 1) (—1)k(2mya—t=F
k=0

—

Q

On a ici utilisé I'identité remarquable a? — b? = (a —b) » a? "1k

0

b
Il

Ce qui prouve que 22" ! + 1 est un multiple de 2" + 1.
‘ On a montré quesin € £, alors 2" +1€ &£ ‘ (2 pts)

9 appartient & £, donc d’aprés ce qui précéde, le nombre 2° 4+ 1 = 513 appartient & € (et ce n’est pas une puissance

de 3). (0.5 pt)




