
correction d’exercices du TD 16
1. Exercice 1 :

• Comme ⌊t⌋ ≤ t < ⌊t⌋+ 1, on a : 0 ≤ t− ⌊t⌋ < 1.
Les nombres δk appartiennent à l’ensemble [0, 1[.

On peut séparer l’ensemble [0, 1[ en n intervalles disjoints :
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Comme il y a (n+ 1) nombres δk et n ensembles
[

i

n
,
i+ 1

n

[

, d’après le principe des tiroirs, un des ces ensembles
contient au moins deux de ces nombres.

• Notons k et l deux entiers de [[ 0, n ]] tels que k > l et δk et δl appartiennent au même ensemble
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On pose p = ⌊kx⌋ − ⌊lx⌋ et q = k − l.
Comme 0 ≤ l < k ≤ n, on a bien q ∈ [[ 1, n ]]
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2. Exercice 2 :

On écrit chaque nombre a de A sous la forme a = 2pm où m est un nombre impair compris entre 1 et 2n− 1.
Puisqu’il y a n+ 1 nombres dans A, mais seulement n composantes impaires différentes, il doit y avoir deux
nombres de A de même composante impaire. Par conséquent, l’un est multiple de l’autre.

Ce résultat n’est plus vrai si l’on remplace n+ 1 par n : il suffit de considérer l’ensemble A = [[ n+ 1, 2n ]] .

3. Exercice 3 :

Le nombre de sous-ensembles non vides de E est 210 − 1 = 1023.
Pour un sous-ensemble F non vide de E donné, on note S(F ) la somme des éléments de F .
On a l’encadrement suivant :

1 ≤ S(F ) ≤
100
∑

k=91

k = 955

Il y a donc plus de sous-ensembles non vides de E que de sommes possibles.
Il existe donc deux sous-ensembles distincts non vides F1 et F2 de E telles que S(F1) = S(F2).
Les deux sous-ensembles ne sont pas nécessairement disjoints.
On pose alors F ′

1 = F1 \ (F1 ∩ F2) et F ′
2 = F2 \ (F1 ∩ F2).

F ′
1 et F ′

2 sont ainsi deux ensembles disjoints non vides tels que S(F ′
1) = S(F ′

2).

On donne un exemple d’un ensemble E de 8 nombres entiers compris entre 1 et 100 pour lequel il n’existe pas
de parties de E non vides et disjointes ayant la même somme : E = {22, 44, 81, 84, 86, 88, 92, 98}.

On donne ci-dessous la liste des résultats (rangés par ordre croissant) des sommes qu’on peut obtenir à partir
des 28 − 1 = 255 parties non vides de E :

[22, 44, 66, 81, 84, 86, 88, 92, 98, 103, 106, 108, 110, 114, 120, 125, 128, 130, 132, 136, 142,
147, 150, 152, 154, 158, 164, 165, 167, 169, 170, 172, 173, 174, 176, 178, 179, 180, 182, 184,
186, 187, 189, 190, 191, 192, 194, 195, 196, 198, 200, 201, 202, 204, 206, 208, 209, 211, 212,
213, 214, 216, 217, 218, 220, 222, 223, 224, 226, 228, 230, 231, 233, 234, 235, 236, 238, 239,
240, 242, 244, 245, 246, 248, 250, 251, 252, 253, 255, 256, 257, 258, 259, 261, 262, 263, 264,
265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283, 284, 285,
286, 287, 288, 289, 290, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 306,
307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 327,
328, 329, 330, 331, 332, 333, 334, 336, 337, 338, 339, 340, 342, 343, 344, 345, 347, 349, 350,
351, 353, 355, 356, 357, 359, 360, 361, 362, 364, 365, 367, 369, 371, 372, 373, 375, 377, 378,
379, 381, 382, 383, 384, 386, 387, 389, 391, 393, 394, 395, 397, 399, 400, 401, 403, 404, 405,
406, 408, 409, 411, 413, 415, 416, 417, 419, 421, 422, 423, 425, 426, 428, 430, 431, 437, 441,
443, 445, 448, 453, 459, 463, 465, 467, 470, 475, 481, 485, 487, 489, 492, 497, 503, 507, 509,
511, 514, 529, 551, 573, 595]

On obtient 255 résultats distincts deux à deux, il n’existe donc pas de parties non vides de E qui soient
distinctes et qui aient la même somme.
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4. Exercice 4 :

Soient (x1, x2) ∈ A2 tel que f(x1) = f(x2).
ax1 = ax2

a(x1 − x2) = 0A

Comme l’anneau est intègre et a 6= 0A, on déduit que x1 − x2 = 0A
Ainsi, x1 = x2. L’application f est injective.
Comme de plus, l’ensemble de départ et l’ensemble d’arrivée sont des ensembles finis de même cardinal, on
déduit que f est bijective.
Il existe donc b ∈ A tel que f(b) = 1A.
La loi étant commutative, on a ba = ab = 1A.
a est donc inversible.

Tout élément non nul de A étant inversible, on déduit que l’anneau est un corps.

5. Exercice 6 :

Face à un tel exercice de dénombrement, il est bon de se poser dès à présent la question de l’ordre : l’ordre dans
lequel nous effectuons les choix doit-il être pris en compte ? Ici, la réponse est négative : seule la composition du
jury importe et pas l’ordre dans lequel ses membres ont été désignés. Nous devons compter des choix sans ordre
et utiliserons, en conséquence, des coefficients binomiaux.

a) Pour désigner les scientifiques, nous avons 2 choix parmi 5 (et l’ordre n’a pas d’importance).

Il y a donc

(

5

2

)

=
5× 4

2
= 10 choix possibles.

Pour désigner les littéraires, nous avons 3 choix parmi 7 (et l’ordre n’a pas d’importance).

Il y a donc

(

7

3

)

=
7× 6× 5

3× 2
= 35 choix possibles.

Finalement, il y a

(

5

2

)(

7

3

)

= 350 façons de constituer le jury.

b) L’un des scientifiques a déjà été désigné. Il reste donc à choisir 1 parmi les 4 scientifiques restants. Cela nous
laisse 4 choix.
Le nombre de choix de littéraires est inchangé et, finalement, il y a 4× 35 = 140 façons de constituer le jury.

c) Considérons les deux littéraires qui ne peuvent pas appartenir ensemble au jury.
Si le premier y appartient, mais pas le second, il reste 2 littéraires à choisir parmi les 5 restants. Nous avons

donc

(

5

2

)

= 10 choix.

De même, si le second littéraire appartient au jury, mais pas le premier, il y a

(

5

2

)

= 10 façons de choisir les

littéraires restants.

Attention, l’énoncé ne demande pas que l’un des deux littéraires donnés appartiennent nécessairement au jury.
Il ne faut donc pas oublier le cas où aucun des deux n’y appartient.

Enfin, si aucun des deux n’appartient au jury, il reste à en choisir 3 parmi les 5 restants. Nous avons donc
(

5

3

)

= 10 choix.

Il y a donc

(

5

2

)

+

(

5

2

)

+

(

5

3

)

= 30 façons de choisir les littéraires du jury.

Le nombre de façons de choisir les scientifiques est toujours égal à 10, et nous avons donc finalement
30× 10 = 300 façons de constituer le jury.

Autre solution : nous pouvons également dénombrer le complémentaire de l’ensemble qui nous intéresse : les
jury auxquels appartiennent les deux littéraires. Il y a toujours 10 façons de choisir les scientifiques. Le jury est
ensuite formé des deux littéraires auxquels s’ajoute un troisième littéraire (5 choix possibles). Il y a donc
10× 5 = 50 façons de constituer les jurys auxquels appartiennent les deux littéraires.
Puisque d’après la première question, il y a 350 jurys possibles, on en déduit que 350− 50 = 300 jurys satisfont
la condition requise.

6. Exercice 9 :

1a) Une grille est entièrement déterminée par la position de ses cases noires, il suffit donc de choisir

simultanément 4 cases noires parmi les 24 cases de la grille, ce qui donne

(

24

4

)

= 10626 grilles différentes.
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b) • Pour former une grille avec exactement 2 coins noircis, on commence par choisir 2 coins parmi 4, ce qui

laisse

(

4

2

)

= 6 possibilités. On choisit ensuite 2 cases parmi les 20 qui ne sont pas des coins, soit

(

20

2

)

= 190

possibilités. Il y a donc 6× 190 = 1140 grilles avec exactement deux coins noircis.

• Pour former une grille sans coin noirci, on choisit 4 cases noires parmi les 20 cases qui ne sont pas des coins,

soit

(

20

4

)

= 4845 grilles. Le nombre de grilles avec au moins un coin noirci est donc 10626 − 4845 = 5781.

• Pour former une grille avec exactement une case noircie par colonne, on choisit successivement 1 case parmi
les 6 de chacune des colonnes (6 possibilités à chaque fois). Au total, cela donne 64 = 1296 grilles avec
exactement une case noircie par colonne.

• Pour former une grille avec exactement une case noircie par colonne et pas ligne, on commence par choisir une
case parmi les 6 de la première colonne (6 possibilités). On choisit ensuite une case parmi les 5 de la deuxième
colonne qui ne sont pas dans la ligne de la première case noircie (5 possibilités). On continue en choisissant une
case parmi les 4 cases de la troisième colonne qui ne sont pas dans la ligne des deux premières cases noircies (4
possibilités). On termine en choisissant une case parmi les 3cases de la quatrième colonne qui ne sont pas dans
la ligne des trois premières cases noircies (3 possibilités). Au total, il y a 6× 5× 4× 3 = 360 grilles.

2a) Comme plus haut, une grille est entièrement déterminée par la position de ses cases noires. Il suffit donc de

choisir simultanément k cases noires parmi les np cases de la grille, ce qui donne

(

np

k

)

grilles différentes.

b) • Pour forme une grille avec au plus une case noire noircie par colonne, on choisit successivement k colonnes

parmi les p de la grille (soit

(

p

k

)

possibilités), puis une case parmi les n dans chacune des k colonnes (nk

possibilités). Au total, il y a

(

n

k

)

× n
k grilles.

• Pour former une grille avec exactement une case noircie par colonne et par ligne, on commence par choisir k

colonnes parmi les p de la grille (soit

(

p

k

)

possibilités). On choisit ensuite 1 case parmi les n de la première

colonne, puis 1 case parmi les n− 1 de la deuxième colonne qui ne sont pas dans la ligne de la première case
noire, puis 1 case parmi les n− 2 de la troisième colonne qui ne sont pas dans la ligne des deux premières cases
noires, et ainsi de suite jusqu’à choisir 1 case parmi les n− k + 1 de la k-ième colonne qui ne sont pas dans la
ligne des k − 1 premières cases noires.

Au total, on obtient

(

p

k

)

×
n!

(n− k)!
grilles.

7. Exercice 12 :

a) On peut utiliser différentes représentations :
• une disposition des 2n individus peut être représentée par un 2n-arrangement d’un ensemble de cardinal 2n
• on commence par choisir la personne qui va occuper le premier siège de la rangée (2n possibilités), puis la
personne qui va occuper le deuxième siège (2n− 1 possibilités), ... jusqu’à la personne qui va occuper le dernier
siège (1 possibilité).
• on compte le nombre de bijections entre les 2n personnes et les 2n sièges de la rangée.

Il y a (2n)! dispositions possibles

b) Afin d’obtenir une alternance entre homme et femme, on commence par choisir si le premier siège sera
occupé par une femme ou un homme, donc on a 2 possibilités.
Puis ensuite on place les n femmes sur les n sièges : on a n! dispositions possibles (nombre de bijections entre
les n femmes et les n sièges attribuées aux femmes).
Enfin, on place les n hommes sur les n places restantes (n! dispositions possibles).

Ainsi, le nombre de manières de placer les 2n personnes en respectant l’alternance homme-femme est 2(n!)2

8. Exercice 14 :

Considérons 2n individus que l’on numérote de 1 à 2n.
On choisit avec qui on apparie l’individu numéro 1 : il y a 2n− 1 choix possibles.
Une fois ce choix effectué, il reste 2n− 2 individus à apparier : il y a an−1 choix possibles.
On en déduit la relation de récurrence : an = (2n− 1)an−1

an = (2n− 1)an−1 = (2n− 1)(2n− 3)an−2 = · · · = (2n− 1)(2n− 3) × · · · × 3a1 et a1 = 1.
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On a alors : an = (2n− 1)(2n− 3)× · · · × 3×
(2n)× (2n− 2)× · · · × 2

(2n)× (2n− 2)× · · · × 2

On obtient : an =
(2n)!

2nn!

9. Exercice 15 :

a) Si f est une application strictement croissante, alors
{

f(1), f(2), ..., f(n)
}

est une partie à n éléments de
l’ensemble [[ 1, p ]] .
Réciproquement, si Y est une partie à n éléments de l’ensemble [[ 1, p ]] , on numérote y1, y2, ..., yn les éléments de
Y par ordre croissant : y1 < y2 < ... < yn.
L’application f définie par f(i) = yi est une application strictement croissante de [[ 1, n ]] vers [[ 1, p ]] .
Il y a donc autant d’applications strictement croissantes de [[ 1, n ]] vers [[ 1, p ]] que de parties à n éléments de
l’ensemble [[ 1, p ]] .

Le nombre d’applications strictement croissantes de [[ 1, n ]] vers l’ensemble [[ 1, p ]] . est donc égal à

(

p

n

)

.

b) On note A l’ensemble des applications croissantes de [[ 1, n ]] vers [[ 1, p ]] et on note B l’ensemble des
applications strictement croissantes de [[ 1, n ]] vers [[ 1, n+ p− 1 ]] .

On va montrer que A et B ont le même cardinal.

On fait correspondre à un élément f de A l’élément g = ϕ(f) définie par g(i) = f(i) + i− 1.
g est une application de [[ 1, n ]] vers [[ 1, n+ p− 1 ]] .
Comme f(1) ≤ f(2) ≤ ... ≤ f(n), alors g(1) < g(2) < ... < g(n).
g appartient donc à B.

De même, on fait correspondre à un élément g de B l’élément f = ψ(g) définie par f(i) = g(i)− i+ 1.
f est une application de [[ 1, n ]] vers [[ 1, n+ p− 1 ]] .
f(i+ 1) − f(i) = g(i+ 1)− g(i)− 1 ≥ 0 car g(i+ 1)− g(i) est un entier naturel non nul, donc est supérieur à 1.
f appartient donc à A.
Les applications ϕ et ψ sont réciproques.

Comme il existe une bijection de A vers B, on en déduit que Card(A) = Card(B) =

(

n+ p− 1

n

)

(en utilisant

le résultat de la question précédente).

10. Exercice 23 :

a) Pour former le groupe 1, on choisit simultanément 3 élèves parmi les 48, soit

(

48

3

)

possibilités. Ensuite, on

choisit simultanément 3 élèves parmi les 45 restants pour former le groupe 2. On continue ainsi jusqu’au groupe
15, obtenu en choisissant simultanément 3 élèves parmi les 6 restants. Enfin le dernier groupe est constitué des 3
derniers élèves. Le nombre total N de trinômes lorsque les groupes sont numérotés est donc :

N =

(

48

3

)

×

(

45

3

)

× ...×

(

6

3

)

×

(

3

3

)

=
48!

3!45!
×

45!

3!42!
× ...×

6!

3!3!
× 1 =

48!

(3!)16

On obtient N = 4400365813372582601747033381701114920960000000000

b) Notons N ′ le nombre de façons de former 16 trinômes non numérotés.
Pour former 16 trinômes numérotés, on forme 16 trinômes (N ′ possibilités), puis on leur attribue un numéro
(16! possibilités).

On a donc : N = N ′ × 16! et ainsi N ′ =
N

16!
= 210314486592266380347977873920000000.

11. Exercice 25 :

Pour tout k ∈ [[ 0, n ]] , il y a

(

n

k

)

parties de E de cardinal k. On en déduit :

∑

X∈P(E)

Card(X) =

n
∑

k=0

(

n

k

)

k =

n
∑

k=1

(

n− 1

k − 1

)

n = n

n−1
∑

k=0

(

n− 1

k

)

= n2n−1

Les résultats à trouver (calculs non détaillés) pour les deux sommes doubles sont :
∑

(X,Y )∈P(E)2

Card(X ∩ Y ) = n4n−1
∑

(X,Y )∈P(E)2

Card(X ∪ Y ) = 3n4n−1
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12. Exercice 26 :

1. Il n’y a qu’une application de {1} vers {1} et ce n’est pas un dérangement : d1 = 0

Il y a 2 permutations de l’ensemble {1, 2} dont une seule est un dérangement : d2 = 1

2. On a En+1 ∩ Fn+1 = ∅ et En+1 ∪ Fn+1 = Dn+1, donc dn+1 =Card(Dn+1) =Card(En+1)+Card(Fn+1)

• Soit f ∈ En+1.
Notons i = f(n+ 1) : i est distinct de n+ 1 (car f est un dérangement).
On a donc f(n+ 1) = i et f(i) = n+ 1.
La restriction de f à {1, 2, 3, ..., n, n+ 1} \ {i, n+ 1} est un dérangement.
On peut donc caractériser f par l’élément i (n choix possibles) et un dérangement de l’ensemble à n− 1
éléments {1, 2, ..., i− 1, i+ 1, ..., n} (dn−1 choix possibles).

Ainsi Card(En+1) = ndn−1

• Soit f ∈ Fn+1.
Notons j = f−1(n+ 1) : j est distinct de n+ 1 (car f est un dérangement).
L’application g défini sur {1, 2, ..., n} par ∀k ∈ {1, 2, ..., n}, si k 6= j, alors g(k) = f(k) et g(j) = f(n+ 1)

est un dérangement de l’ensemble {1, 2, ..., n}.
On peut donc caractériser f par l’élément j (n choix possibles) et un dérangement de l’ensemble {1, 2, ..., n} (dn
choix possibles).

Ainsi Card(Fn+1) = ndn

On en déduit que dn+1 = n(dn + dn−1)

Remarque : d1 + d0 = 1 = d2, la relation précédente est encore valable pour n = 1.
3a) un+1 = dn+1 − (n+ 1)dn = n(dn + dn−1)− (n+ 1)dn = −dn + ndn−1 = −un−1

La suite (un)n≥0 est donc une suite géométrique de raison −1 : un = (−1)n−1u1.

Et u1 = −1, d’où un = (−1)n

b) On a d1 = 0 =

1
∑

k=0

(−1)k

k!
.

Supposons pour un entier n ≥ 1 que dn = n!
n
∑

k=0

(−1)k

k!
. Alors

dn+1 = un+1 + (n+ 1)dn = (−1)n+1 ×
(n+ 1)!

(n+ 1)!
+ (n+ 1)× n!

n
∑

k=0

(−1)k

k!
= (n+ 1)!

n+1
∑

k=0

(−1)k

k!

Ainsi, ∀n ≥ 1 dn = n!

n
∑

k=0

(−1)k

k!
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