EXERCICE 1 : LES POLYNOMES DE TCHEBYCHEV DE SECONDE ESPECE

1. On a facilement : | Py(X) = 4X2 — 1, Py(X) = 8X® —4X et P4(X) =16X* 12 +1| 0.5 pt

2. Pour n €0, 4], on voit que P,(0) = (—1)"/2 si n est pair, et P,(0) = 0 si n est impair.

En évaluant la relation P,y2(X) =2XP,41(X) — P,(X) en 0, on obtient : P,42(0) = —P,(0).

Démontrons par récurrence la proposition Hy : « Por(0) = (—1)* et Py 1(0) =0 »

Ho est vraie.

Supposons Hj, vraie pour un entier k > 0.
Alors Poji2(0) = — Py (0) = —(—1)F = (—1)*+!
Et Pyy3(0) = —Por11(0) =0

Hpy41 est vraie.

Ainsi, pour tout entier n, P,(0) = (1)

n/2

si n est pair, et P,(0) = 0 si n est impair

3. Montrons par récurrence la proposition H,, : « deg(P,) =n et d, = 2" »

Ho et Hq sont vraies.

Supposons H,, et H, 41 vraies pour un entier n > 0.

deg(2X Poy1(X)) = n+2 et deg(Pn(X)) = n (les degrés sont distincts)
donc deg(Pn2(X)) = deg(2X Prt1(X) — Po(X))

= max(deg(2X Py11(X)), deg(Pn(X))) = n + 2.

Et le coefficient dominant de P, 12(X) est égal a celui de 2X P, 1(X) : dpy2 = 2dy 1 = 2 x 27T = 2nt2
Hyn4o est vraie.

‘Ainsi7 pour tout entier n, deg(P,) =n et d,, = 2" ‘ 1.5 pt

4. (a)

(b)

b —b
sin(a) + sin(b) = 2sin (%) X COS (a 5 ) 0.25 pt

Démontrons par récurrence la proposition M, : « V0 €]0,7[ P, (cos(f)) sin(f) = sin ((n + 1)0) »
Ho est vraie.
V0 €]0, [ Py(cos(f))sin(f) = 2cos(9) sin() = sin(26) : H; est vraie.
Supposons H,,_1 et H,, vraies pour un entier n > 1.
Ppy1(cos(9)) sin(g) = 2 cos(0) P, (cos(8)) sin(#) — P,—1( cos(6)) sin(6)

= 2cos(f) sin ((n+ 1)#) — sin (nf)
En appliquant la formule précédente & a =n+2 et b =n, on a:

sin ((n + 2)6) + sin (nf) = 2sin ((n + 1)6) cos(0)

Ce qui permet de déduire : P41 ( cos(f)) sin(f) = sin ((n + 2)6)
Hp41 est vraie

Ainsi, pour tout n € N, pour tout § €]0,7[, P, (cos(d)) sin(f) = sin ((n + 1)) 1.5 pt

sin ((n+ 1)0) (n+1)0
sin(6) 650 0

On utilise la relation sin(t) Kol t pour obtenir :
—

sin ((n +1)6)

sin(0) =n+l

Par conséquent, lim
6—0

La fonction x — P, () est continue en 1 : 1im1 P,(z) = P,(1),
r—

Puis par composition des limites : gin%) Py (cos(9)) = P,(1)
—

i +1)0
Et d’aprés ce qui préceéde, P, (cos(d)) = % pntl
110 —

‘ On en déduit (par unicité de la limite) que P, (1) =n +1 ‘ 1.5 pt

Commencons par chercher les racines dans lintervalle | — 1, 1] sous la forme z = cos(6) avec 0 €]0, |.
On a: P,(z) =0 <= P,(cos(d)) =0

< sin((n+1)0) =0  en utilisant la relation 4b et le fait que sin(¢) # 0
la fonction sin s’annule n fois sur U'intervalle |0, (n + 1)7| : aux points kr avec k €[[1,n])

< il existe k €[[1,n] tel que (n+1)0 = k=



. - . .. . 0 27 nmw
On obtient ainsi n racines distinctes de P,, qui sont : cos (—) > cos (—) > ... > cos ( )
n+1 n+1 n+1

Comme deg(P,) = n, on a toutes les racines et elles sont simples.

Po(X) = 27 ﬁ (X — cos ( hm

n+1

)) 2.5 pts

e) On évalue en 0 : P,(0) = 2"(—-1)" cos k . On utilise alors le résultat de la question 2 :
(e) 1 q
n
k=1
- k " k 1)/
Si n est impair, kl_ll Cos (n 47:1) =0. Sin est pair : kl_ll cos (n 47:1) = ( 221 1 pt

5.(a) lim (1 — 2zt + t2) = 1, donc au voisinage de 0, 1 — 2zt + t2 > 0.

t—0

Il existe a > 0 tel que : Vt €] —a,af 1—2at+t> >0

‘ La fonction f, est bien définie sur I'intervalle | — a[‘ 1 pt

(b) La fonction f; est de classe C*° (inverse d’une fonction C'*° qui ne s’annule pas) sur lintervalle | — o, ], donc
admet un développement limité & tout ordre au voisinage de 0. 0.5 pt
n
(c) Notons ¢ les coefficients de ce développement limité : f(x) o Z et +o(t™)

k=0
n

(1= 22t +7) x folt) = Y et® =20y et"™ 4+ 3 et +o(t")

k=0 k=0 k=0
n+1 n+2

n
o ;) cpt® — 22 ; cp_1t" + kZQ cr—at” +0o(t")  (changement d’indices)

n
o co + (cl — 2xco)t + ; (ck —2xcK—1 + Ckfz)tk +o(t")

Comme cela correspond au développement limité de la fonction constante égale & 1, on déduit par unicité du
développement limité que :

co=1,c1 =2xco =2z, et Vk €[[2,n] ¢k = 2xCck—1 — Ck—2
On montre alors aisément par récurrence (de pas double) que ¢, = Py (z). 2.5 pts
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EXERCICE 2 : ANALYSE SAYMPTOTIQUE
Partie A : (5.5 pts)

1. Soit Py, : fu(z) ~ /z

T—+00

fi(z) ~ /z, donc P est vraie.
Tr—r+00

Soit n € N tel que n > 2. Supposons P,,_1 vraie.

fnfl(z) 1
fo—1(z) oo vz, donc T2 aste
Par conséquent, Jn1() — 0,ouencore: fp_1(x) = o(z)
€T T—r+00 Tr—r+00
On en déduit que = + fr_1(x) ~ =,
Tr—r+00
puis fr(x) = V/x + fa_1(x) ~ V. Ainsi, P, est vraie.
T—r1+00
D’apreés le principe de récurrence, Vn € N*  f,(x) ~ vz | (1.5 pt)
T—r1+00
n 1 . n
Inl2) ~ —,donc| lim Inl2) =0| (0.5 pt)
€T r—400 \/E T —400 €T




2. PourxGRj_,sz)ﬁﬁ( 1+M1>.

T

t n— . n— n—
Comme /1+t—1 ~ —,etfil(x) — O,onobtlent\/l—i—fil(m)—l ~ f71(1’)
t—0 2 T x—+00 x z—+00 2x
D'ou fn(z) —vx ~ TX M

=400 2z
De plus, fr—1(z) et V.
1 N 1
Alors, f,(z) — \/EI—::—OO 3> et ainsi Ill}liloo fo(z) =V = 3 (1.5 pt)
3. Onad N L 1 = L 1
. On a donc f,—1(z) — V= v T3 +0(1), ou encore f,_1(z) LSVt +o(1)

. 1 1 1 1
On obtient alors : f,(z) = \/x+ﬁ+§+o(1) ooﬁ\/1+\/_5+£+°(;)

T—400 T—+
On utilise la relation /1 + ¢ 1+ tor +o(t?) avec t 1 + ! +o 1
n utvila r 10n = - — — Vi = J— — —
t—0 2 8 z—+oo /T 2T x)’

r—+o0 T x
fn(l’) x%:Jroo\/E X (14‘%4— (i—é)é—i—o(i))

1 1 1
Ainsi, f,,(z) T VI + 5t W +o (—) (2 pts)

Partie B : (5 pts)

1. Présentation 1 : 1.5 pt
On définit la fonction f, sur [0, 5] par fn(z) = x — cos().

fn est continue et strictement croissante (comme somme de deux fonctions strictement croissantes),

donc f, réalise une bijection de [0, ] vers [f,,(0), fn(5)]-

Or f(0) = —let fo(Z) =2 —cos(L)
fn(%) > 5 — 1, donc fn(%) > 0.

Par conséquent, 'intervalle [f,,(0), f(5)] contient 0.

‘ Il existe donc un unique réel z,, € [0, 3] tel que f,(z,) = O‘

Présentation 2 :
On définit la fonction f sur [0, 5] par f(z) =z — cos(%).

e f est continue.

e f(0)=—-1

o f(5) =75 —cos(5-) > 5 —1,donc f(5) > 0.

Donc d’apreés le théoréme des valeurs intermédiaires, il existe x,, € [0, 5] tel que f(z,) = 0.

Comme f est strictement croissante (comme somme de deux fonctions strictement croissantes), la fonction f est
injective et admet au plus une valeur d’annulation.

Ainsi, I’équation cos(%) = 2 une unique solution dans I'intervalle [0, 7]

x
2. Puisque z,, € [0, ], = —+> 0 (produit d’une suite bornée par une suite qui converge vers 0).
n n—+oo

x
Ainsi, x,, = cos (—n) — cos(0) (par continuité de la fonction cos), ce qui donne | =, — 1

n n—+400 n——+o00
znflzcos(z—") — 1.
n
t2 x2
—1 ~ ——. dot 1 o~ _—n
Or cos(t) 0TS d’ott zy, W Tops
De plus, lim z, =1, donc 22 ~ 1.
n—+oo n—+oo
s 1
On en déduit que z, -1 ~ —— 1.5 pt
n—-+o0o 277,2




1 < 1 1
3.0naxz,—1 = ——+4o0—=],cest-adirez, = 1——+o—=].
n? + 2n2 n2

n— o
(xn) 1 1 N 1 ) u2+u4+ 1
Ty = cos [ — = cos|——=—=+4+o0|—= = ———Ft—+o =
n / n—+oo n  2n3 n3 n—-+oo 2 24 nt
avec u? Lo 1,2 11 o2 et ut= o
vec u° = |- — — — = ——— — ut = — —
n  2n3 n3 n? nt nt nt nt

D’ou 1 1 + 13 + 1 2 pt
ol z, = —— 4+ — 4o — s
n—-+oo 2n2 = 24nt nt p

Commentaire :

L’erreur classique est d’utiliser le développement limité de la fonction cos & 'ordre 4 au voisinage de 0 :
2 4 4

2), =1 g ol )
ZTp = COS | — = 1—--—"=+ +ol—
" ( n / n—o+oo 2n2  24n? n*
Puis de remplacer le terme x,, par un équivalent (ici 1) dans une somme (opération non valable) :

_ 1 1 n 1 " ( 1 )
T oo om2 " 2apt T O\a
) . 1 1
Il faut remplacer x,, par son développement asymptotique : z, = 1——+4o0(—
n—+00 2n? n?
et 2 +o0 L
xn n—>_+oo ’n,2 TL2
4 _
et = it 1+0(1)

pour avoir un résultat correct.




