
Exercice 1 : les polynômes de Tchebychev de seconde espèce

1. On a facilement : P2(X) = 4X2 − 1, P3(X) = 8X3 − 4X et P4(X) = 16X4 − 122 + 1 0.5 pt

2. Pour n ∈ [[ 0, 4 ]] , on voit que Pn(0) = (−1)n/2 si n est pair, et Pn(0) = 0 si n est impair.

En évaluant la relation Pn+2(X) = 2XPn+1(X)− Pn(X) en 0, on obtient : Pn+2(0) = −Pn(0).

Démontrons par récurrence la proposition Hk : « P2k(0) = (−1)k et P2k+1(0) = 0 »

H0 est vraie.

Supposons Hk vraie pour un entier k ≥ 0.
Alors P2k+2(0) = −P2k(0) = −(−1)k = (−1)k+1

Et P2k+3(0) = −P2k+1(0) = 0

Hk+1 est vraie.

Ainsi, pour tout entier n, Pn(0) = (−1)n/2 si n est pair, et Pn(0) = 0 si n est impair

3. Montrons par récurrence la proposition Hn : « deg(Pn) = n et dn = 2n »

H0 et H1 sont vraies.
Supposons Hn et Hn+1 vraies pour un entier n ≥ 0.
deg
(

2XPn+1(X)
)

= n+ 2 et deg
(

Pn(X)
)

= n (les degrés sont distincts)
donc deg

(

Pn+2(X)
)

= deg
(

2XPn+1(X)− Pn(X)
)

= max
(

deg(2XPn+1(X)), deg(Pn(X))
)

= n+ 2.
Et le coefficient dominant de Pn+2(X) est égal à celui de 2XPn+1(X) : dn+2 = 2dn+1 = 2× 2n+1 = 2n+2

Hn+2 est vraie.

Ainsi, pour tout entier n, deg(Pn) = n et dn = 2n 1.5 pt

4. (a) sin(a) + sin(b) = 2 sin
(a+ b

2

)

× cos
(a− b

2

)

0.25 pt

(b) Démontrons par récurrence la proposition Hn : « ∀θ ∈]0, π[ Pn

(

cos(θ)
)

sin(θ) = sin
(

(n+ 1)θ
)

»

H0 est vraie.
∀θ ∈]0, π[ P1

(

cos(θ)
)

sin(θ) = 2 cos(θ) sin(θ) = sin(2θ) : H1 est vraie.

Supposons Hn−1 et Hn vraies pour un entier n ≥ 1.
Pn+1

(

cos(θ)
)

sin(θ) = 2 cos(θ)Pn

(

cos(θ)
)

sin(θ) − Pn−1

(

cos(θ)
)

sin(θ)

= 2 cos(θ) sin
(

(n+ 1)θ
)

− sin
(

nθ
)

En appliquant la formule précédente à a = n+ 2 et b = n, on a :
sin
(

(n+ 2)θ
)

+ sin
(

nθ
)

= 2 sin
(

(n+ 1)θ
)

cos(θ)

Ce qui permet de déduire : Pn+1

(

cos(θ)
)

sin(θ) = sin
(

(n+ 2)θ
)

Hn+1 est vraie

Ainsi, pour tout n ∈ N, pour tout θ ∈]0, π[ , Pn

(

cos(θ)
)

sin(θ) = sin
(

(n+ 1)θ
)

1.5 pt

(c) On utilise la relation sin(t) ∼
t→0

t pour obtenir :
sin
(

(n+ 1)θ
)

sin(θ)
∼

θ→0

(n+ 1)θ

θ

Par conséquent, lim
θ→0

sin
(

(n+ 1)θ
)

sin(θ)
= n+ 1

La fonction x 7→ Pn(x) est continue en 1 : lim
x→1

Pn(x) = Pn(1),

Puis par composition des limites : lim
θ→0

Pn

(

cos(θ)
)

= Pn(1)

Et d’après ce qui précède, Pn

(

cos(θ)
)

=
sin
(

(n+ 1)θ
)

sin(θ)
−→
θ→0

n+ 1

On en déduit (par unicité de la limite) que Pn(1) = n+ 1 1.5 pt

(d) Commençons par chercher les racines dans l’intervalle ]− 1, 1[ sous la forme x = cos(θ) avec θ ∈]0, π[.
On a : Pn(x) = 0 ⇐⇒ Pn

(

cos(θ)
)

= 0

⇐⇒ sin
(

(n+ 1)θ
)

= 0 en utilisant la relation 4b et le fait que sin(θ) 6= 0

la fonction sin s’annule n fois sur l’intervalle ]0, (n+ 1)π[ : aux points kπ avec k ∈ [[ 1, n ]]

⇐⇒ il existe k ∈ [[ 1, n ]] tel que (n+ 1)θ = kπ
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On obtient ainsi n racines distinctes de Pn qui sont : cos
( π

n+ 1

)

> cos
( 2π

n+ 1

)

> ... > cos
( nπ

n+ 1

)

Comme deg(Pn) = n, on a toutes les racines et elles sont simples.

Pn(X) = 2n
n
∏

k=1

(

X − cos
( kπ

n+ 1

))

2.5 pts

(e) On évalue en 0 : Pn(0) = 2n(−1)n
n
∏

k=1

cos
( kπ

n+ 1

)

. On utilise alors le résultat de la question 2 :

Si n est impair,
n
∏

k=1

cos
( kπ

n+ 1

)

= 0 . Si n est pair :
n
∏

k=1

cos
( kπ

n+ 1

)

=
(−1)n/2

2n
1 pt

5. (a) lim
t→0

(

1− 2xt+ t2
)

= 1, donc au voisinage de 0, 1− 2xt+ t2 > 0.

Il existe α > 0 tel que : ∀t ∈]− α, α[ 1− 2xt+ t2 > 0

La fonction fx est bien définie sur l’intervalle ]− α, α[ 1 pt

(b) La fonction fx est de classe C∞ (inverse d’une fonction C∞ qui ne s’annule pas) sur l’intervalle ]− α, α[, donc
admet un développement limité à tout ordre au voisinage de 0. 0.5 pt

(c) Notons ck les coefficients de ce développement limité : f(x) =
x→0

n
∑

k=0

ckt
k + o(tn)

(1− 2xt+ t2)× fx(t) =
x→0

n
∑

k=0

ckt
k − 2x

n
∑

k=0

ckt
k+1 +

n
∑

k=0

ckt
k+2 + o(tn)

=
x→0

n
∑

k=0

ckt
k − 2x

n+1
∑

k=1

ck−1t
k +

n+2
∑

k=2

ck−2t
k + o(tn) (changement d’indices)

=
x→0

c0 +
(

c1 − 2xc0
)

t+
n
∑

k=2

(

ck − 2xck−1 + ck−2

)

tk + o(tn)

Comme cela correspond au développement limité de la fonction constante égale à 1, on déduit par unicité du
développement limité que :

c0 = 1, c1 = 2xc0 = 2x, et ∀k ∈ [[ 2, n ]] ck = 2xck−1 − ck−2

On montre alors aisément par récurrence (de pas double) que ck = Pk(x). 2.5 pts

Exercice 2 : analyse saymptotique
Partie A : (5.5 pts)

1. Soit Pn : fn(x) ∼
x→+∞

√
x.

f1(x) ∼
x→+∞

√
x, donc P1 est vraie.

Soit n ∈ N tel que n ≥ 2. Supposons Pn−1 vraie.

fn−1(x) ∼
x→+∞

√
x, donc

fn−1(x)

x
∼

x→+∞

1√
x

Par conséquent,
fn−1(x)

x
−→

x→+∞

0, ou encore : fn−1(x) =
x→+∞

o(x)

On en déduit que x+ fn−1(x) ∼
x→+∞

x,

puis fn(x) =
√

x+ fn−1(x) ∼
x→+∞

√
x. Ainsi, Pn est vraie.

D’après le principe de récurrence, ∀n ∈ N
∗ fn(x) ∼

x→+∞

√
x (1.5 pt)

fn(x)

x
∼

x→+∞

1√
x
, donc lim

x→+∞

fn(x)

x
= 0 (0.5 pt)
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2. Pour x ∈ R
∗

+, fn(x) −
√
x =

√
x

(

√

1 +
fn−1(x)

x
− 1

)

.

Comme
√
1 + t− 1 ∼

t→0

t

2
, et

fn−1(x)

x
−→

x→+∞

0, on obtient

√

1 +
fn−1(x)

x
− 1 ∼

x→+∞

fn−1(x)

2x
.

D’où fn(x) −
√
x ∼

x→+∞

√
x× fn−1(x)

2x
.

De plus, fn−1(x) ∼
x→+∞

√
x.

Alors, fn(x) −
√
x ∼

x→+∞

1

2
, et ainsi lim

x→+∞

fn(x) −
√
x =

1

2
(1.5 pt)

3. On a donc fn−1(x) −
√
x =

x→+∞

1

2
+ o(1), ou encore fn−1(x) =

x→+∞

√
x+

1

2
+ o(1)

On obtient alors : fn(x) =
x→+∞

√

x+
√
x+

1

2
+ o(1) =

x→+∞

√
x

√

1 +
1√
x
+

1

2x
+ o

(

1

x

)

On utilise la relation
√
1 + t =

t→0
1 +

t

2
− t2

8
+ o(t2) avec t =

x→+∞

1√
x
+

1

2x
+ o

(

1

x

)

,

t2 =
x→+∞

1

x
+ o

(

1

x

)

fn(x) =
x→+∞

√
x ×

(

1 +
1

2
√
x
+

(

1

4
− 1

8

)

1

x
+ o

(

1

x

))

Ainsi, fn(x) =
x→+∞

√
x+

1

2
+

1

8
√
x
+ o

(

1√
x

)

(2 pts)

Partie B : (5 pts)

1. Présentation 1 : 1.5 pt

On définit la fonction fn sur [0, π
2
] par fn(x) = x− cos( xn ).

fn est continue et strictement croissante (comme somme de deux fonctions strictement croissantes),

donc fn réalise une bijection de [0, π
2
] vers [fn(0), fn(π2 )].

Or f(0) = −1 et fn(π2 ) =
π
2
− cos( π

2n )

fn(
π
2
) ≥ π

2
− 1, donc fn(

π
2
) > 0.

Par conséquent, l’intervalle [fn(0), fn(
π
2
)] contient 0.

Il existe donc un unique réel xn ∈ [0, π
2
] tel que fn(xn) = 0

Présentation 2 :

On définit la fonction f sur [0, π
2
] par f(x) = x− cos( xn ).

• f est continue.
• f(0) = −1

• f(π
2
) = π

2
− cos( π

2n ) ≥
π
2
− 1, donc f(π

2
) > 0.

Donc d’après le théorème des valeurs intermédiaires, il existe xn ∈ [0, π
2
] tel que f(xn) = 0.

Comme f est strictement croissante (comme somme de deux fonctions strictement croissantes), la fonction f est
injective et admet au plus une valeur d’annulation.

Ainsi, l’équation cos( x
n
) = x une unique solution dans l’intervalle [0, π

2
]

2. Puisque xn ∈ [0, π
2
],

xn

n
−→

n→+∞

0 (produit d’une suite bornée par une suite qui converge vers 0).

Ainsi, xn = cos
(xn

n

)

−→
n→+∞

cos(0) (par continuité de la fonction cos), ce qui donne xn −→
n→+∞

1

xn − 1 = cos
(xn

n

)

− 1.

Or cos(t)− 1 ∼
t→0

− t2

2
, d’où xn − 1 ∼

n→+∞

− x2
n

2n2

De plus, lim
n→+∞

xn = 1, donc x2
n ∼

n→+∞

1.

On en déduit que xn − 1 ∼
n→+∞

− 1

2n2
1.5 pt
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3. On a xn − 1 =
n→+∞

− 1

2n2
+ o

(

1

n2

)

, c’est-à-dire xn =
n→+∞

1− 1

2n2
+ o

(

1

n2

)

.

xn = cos
(xn

n

)

=
n→+∞

cos

(

1

n
− 1

2n3
+ o

(

1

n3

))

=
n→+∞

1−u2

2
+
u4

24
+ o

(

1

n4

)

avec u2 =

(

1

n
− 1

2n3
+ o

(

1

n3

))2

=
1

n2
− 1

n4
+o
(

1

n4

)

et u4 =
1

n4
+o
(

1

n4

)

D’où xn =
n→+∞

1− 1

2n2
+

13

24n4
+ o

(

1

n4

)

2 pts

Commentaire :

L’erreur classique est d’utiliser le développement limité de la fonction cos à l’ordre 4 au voisinage de 0 :

xn = cos
(xn

n

)

=
n→+∞

1− x2
n

2n2
+

x4
n

24n4
+ o
(x4

n

n4

)

Puis de remplacer le terme xn par un équivalent (ici 1) dans une somme (opération non valable) :

xn =
n→+∞

1− 1

2n2
+

1

24n4
+ o
( 1

n4

)

Il faut remplacer xn par son développement asymptotique : xn =
n→+∞

1− 1

2n2
+ o

(

1

n2

)

et x2
n =

n→+∞

1− 1

n2
+ o

(

1

n2

)

et x4
n =

n→+∞

1 + o (1)

pour avoir un résultat correct.
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