MPSI Lycée Buffon 2025-2026 TP 1 1

TP D’OPTION INFORMATIQUE 1
Manipulation de listes en Caml

L’objectif de ce TP est d’écrire les fonctions élémentaires sur les listes. On commencera systémati-
quement par déterminer le type de la fonction ou de I'objet & définir. On s’interdira bien entendu
d’utiliser les implémentations déja existantes en Caml. Chaque fonction devra étre testée.

1.

10.

11.

12.

13.

14.

Ecrire une fonction longueur prenant en argument une liste et renvoyant sa longueur (cette
fonction existe déja sous le nom List.length, et on notera bien qu’elle a un coiit linéaire).

. Ecrire une fonction tete renvoyant le premier élément d’une liste non vide (cette fonction

existe déja sous le nom de List.hd).

On pourra utiliser failwith suivi d’une chaine de caracteére pour déclencher une erreur dans
le cas ou la liste est vide.

. Ecrire une fonction queue renvoyant la liste de tous les éléments d’une liste non vide, sauf

le premier (cette fonction existe déja sous le nom de List.tl).

. Ecrire une fonction appartient prenant en argument un élément et une liste et testant si

cet élément appartient & la liste (cette fonction existe déja sous le nom List.mem).

Ecrire une fonction nombre_occurrences prenant en argument un élément = et une liste [
et renvoyant le nombre d’occurrences de = dans [.

Ecrire une fonction images prenant en argument une fonction f et une liste [et renvoyant la
liste des images par f des éléments de [(cette fonction existe déja sous le nom de List.map).

Par exemple, images (function x -> x+1) [1;2;3] renvoie [2;3;4].

Ecrire une procédure iterer prenant en argument une procédure p et une liste I et appli-
quant p sur chaque élément de I (cette fonction existe déja sous le nom de List.iter).

On peut enchainer deux instructions en Caml en les séparant par ;
Ecrire une fonction dernier renvoyant le dernier élément d’une liste non vide.
Ecrire une fonction maximum renvoyant le maximum d’une liste non vide.

Ecrire une fonction indice prenant en argument un élément a et une liste [et renvoyant
un indice, s’il existe, ou apparait a dans I.

Ecrire une fonction nieme prenant en argument une liste [et un entier n et une liste [et
renvoyant 1’élément d’indice n (cette fonction existe déja sous le nom List.nth. On notera
bien qu’elle a un coiit linéaire en n).

Ecrire une fonction valeur_associee prenant en argument un élément c et une liste de
couples [, et renvoyant un élément v tel que (¢,v) apparait dans [, si un tel v existe (cette
fonction existe déja sous le nom List.assoc).

Par exemple, valeur_associee 1 [(3,1); (1,4)] doit renvoyer 4.

Ecrire une fonction concatener renvoyant la concaténation de deux listes (cette fonction
existe déja sous le nom de List.append, attention a la différence avec Python! La concaté-
nation peut également s’écrire avec 'opération infixe @. On notera bien qu’elle a un coit
linéaire en la longueur de la premiere liste).

Ecrire une fonction aplatissement prenant en argument une liste de listes et les concaténant
(cette fonction existe déja sous le nom List.flatten).

MPSI

Lycée Buffon 2025-2026 TP 1 2

15

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

28.

29.
30.

. Ecrire une fonction pour_tout prenant en argument un prédicat p (c’est-a-dire une fonction
de type de retour booléen) et une liste [et qui teste si tous les éléments de [vérifient p
(cette fonction existe déja sous le nom List.for_all).

Par exemple, pour_tout (function n -> n mod 2 = 0) [2;4;5] doit renvoyer false.

Ecrire une fonction existe prenant en argument un prédicat p et une liste [et qui teste il
existe un élément de [vérifiant p (cette fonction existe déja sous le nom List.exists).

Ecrire une fonction filtre prenant en argument un prédicat p et une liste [et renvoyant la
liste des éléments de [vérifiant p (cette fonction existe déja sous le nom List.filter).

Ecrire une fonction trouver prenant en argument un prédicat p et une liste [et renvoyant le
premier élément de [vérifiant p, s’il existe (cette fonction existe déja sous le nom List.find).

Ecrire une fonction partition prenant en argument un prédicat p et une liste [et renvoyant
le couple formé par la liste des éléments de [vérifiant p et la liste des éléments de [ne vérifiant
pas p (cette fonction existe déja sous le nom List.partition).

Ecrire une fonction combinaison prenant en argument deux listes supposées de méme lon-
gueur, et renvoyant la liste des couples termes a termes de ces deux listes (cette fonction
existe déja sous le nom List.combine).

Ecrire une fonction separation prenant en argument une liste de couples et renvoyant le
couple de listes correspondant (cette fonction existe déja sous le nom List.split).

Définir la liste des entiers de 0 a 1000, dans ’ordre décroissant.

Ecrire une fonction images_iterees prenant en argument un élément a, une fonction f et
un entier n, et renvoyant la liste [a, (f a), (f (f a)),...,(f™ a)].

En déduire la liste des entiers de 0 a 1000, dans ’ordre croissant.

Ecrire une fonction parcours_droite prenant en argument une fonction f, une liste | =
[a1;...;a,] et un élément b , et renvoyant f ay (f az (... (f an b))...) (cette fonction existe
déja sous le nom List.fold_right).

Retrouver la fonction somme, prenant une liste d’entiers et renvoyant la somme de ses élé-
ments, comme une application de la fonction précédente. On pourra utiliser (+) l'opérateur
d’addition vu comme une fonction int -> int -> int.

On souhaite écrire une fonction renverser prenant en argument une liste [et renvoyant la
liste de sens contraire (cette fonction existe déja sous le nom List.rev). Une version naive
pourrait s’écrire :

let rec renverser 1 =
match 1 with
1 > 1

la::q -> (renverser q)@[a]

Cette version a le défaut rédhibitoire d’étre de complexité quadratique, car la complexité de
la concaténation 11012 est linéaire en la longueur de 11. Ecrire une version de renverser
de complexité linéaire. On utilisera une fonction auxiliaire prenant en argument une liste
12 et une liste r, supposant que 1 = r' @ 12, ou r' est le renversé de r, et renvoyant le
renversé de 1.

Ecrire une fonction parcours_gauche prenant en argument une fonction f, un élément a
et une liste I = [by;...;b,], et renvoyant f (...(f (f a b1) ba)...) by, (cette fonction existe
déja sous le nom List.fold_left).

Retrouver renverser comme une application de la fonction précédente.

Ecrire une fonction produit_cartesien prenant en argument deux listes /1 et [2 et ren-
voyant une liste contenant tous les couples (a,b) ot a est un élément de /1 et b un élément
de 12.

