
MPSI Lycée Buffon 2025-2026 TP 1 1

TP D’OPTION INFORMATIQUE 1
Manipulation de listes en Caml

L’objectif de ce TP est d’écrire les fonctions élémentaires sur les listes. On commencera systémati-
quement par déterminer le type de la fonction ou de l’objet à définir. On s’interdira bien entendu
d’utiliser les implémentations déjà existantes en Caml. Chaque fonction devra être testée.

1. Écrire une fonction longueur prenant en argument une liste et renvoyant sa longueur (cette
fonction existe déjà sous le nom List.length, et on notera bien qu’elle a un coût linéaire).

2. Écrire une fonction tete renvoyant le premier élément d’une liste non vide (cette fonction
existe déjà sous le nom de List.hd).
On pourra utiliser failwith suivi d’une chaîne de caractère pour déclencher une erreur dans
le cas où la liste est vide.

3. Écrire une fonction queue renvoyant la liste de tous les éléments d’une liste non vide, sauf
le premier (cette fonction existe déjà sous le nom de List.tl).

4. Écrire une fonction appartient prenant en argument un élément et une liste et testant si
cet élément appartient à la liste (cette fonction existe déjà sous le nom List.mem).

5. Écrire une fonction nombre_occurrences prenant en argument un élément x et une liste l
et renvoyant le nombre d’occurrences de x dans l.

6. Écrire une fonction images prenant en argument une fonction f et une liste l et renvoyant la
liste des images par f des éléments de l (cette fonction existe déjà sous le nom de List.map).
Par exemple, images (function x -> x+1) [1;2;3] renvoie [2;3;4].

7. Écrire une procédure iterer prenant en argument une procédure p et une liste l et appli-
quant p sur chaque élément de l (cette fonction existe déjà sous le nom de List.iter).
On peut enchaîner deux instructions en Caml en les séparant par ;

8. Écrire une fonction dernier renvoyant le dernier élément d’une liste non vide.

9. Écrire une fonction maximum renvoyant le maximum d’une liste non vide.

10. Écrire une fonction indice prenant en argument un élément a et une liste l et renvoyant
un indice, s’il existe, où apparaît a dans l.

11. Écrire une fonction nieme prenant en argument une liste l et un entier n et une liste l et
renvoyant l’élément d’indice n (cette fonction existe déjà sous le nom List.nth. On notera
bien qu’elle a un coût linéaire en n).

12. Écrire une fonction valeur_associee prenant en argument un élément c et une liste de
couples l, et renvoyant un élément v tel que (c, v) apparaît dans l, si un tel v existe (cette
fonction existe déjà sous le nom List.assoc).
Par exemple, valeur_associee 1 [(3,1); (1,4)] doit renvoyer 4.

13. Écrire une fonction concatener renvoyant la concaténation de deux listes (cette fonction
existe déjà sous le nom de List.append, attention à la différence avec Python ! La concaté-
nation peut également s’écrire avec l’opération infixe @. On notera bien qu’elle a un coût
linéaire en la longueur de la première liste).

14. Écrire une fonction aplatissement prenant en argument une liste de listes et les concaténant
(cette fonction existe déjà sous le nom List.flatten).



MPSI Lycée Buffon 2025-2026 TP 1 2

15. Écrire une fonction pour_tout prenant en argument un prédicat p (c’est-à-dire une fonction
de type de retour booléen) et une liste l et qui teste si tous les éléments de l vérifient p
(cette fonction existe déjà sous le nom List.for_all).
Par exemple, pour_tout (function n -> n mod 2 = 0) [2;4;5] doit renvoyer false.

16. Écrire une fonction existe prenant en argument un prédicat p et une liste l et qui teste s’il
existe un élément de l vérifiant p (cette fonction existe déjà sous le nom List.exists).

17. Écrire une fonction filtre prenant en argument un prédicat p et une liste l et renvoyant la
liste des éléments de l vérifiant p (cette fonction existe déjà sous le nom List.filter).

18. Écrire une fonction trouver prenant en argument un prédicat p et une liste l et renvoyant le
premier élément de l vérifiant p, s’il existe (cette fonction existe déjà sous le nom List.find).

19. Écrire une fonction partition prenant en argument un prédicat p et une liste l et renvoyant
le couple formé par la liste des éléments de l vérifiant p et la liste des éléments de l ne vérifiant
pas p (cette fonction existe déjà sous le nom List.partition).

20. Écrire une fonction combinaison prenant en argument deux listes supposées de même lon-
gueur, et renvoyant la liste des couples termes à termes de ces deux listes (cette fonction
existe déjà sous le nom List.combine).

21. Écrire une fonction separation prenant en argument une liste de couples et renvoyant le
couple de listes correspondant (cette fonction existe déjà sous le nom List.split).

22. Définir la liste des entiers de 0 à 1000, dans l’ordre décroissant.

23. Écrire une fonction images_iterees prenant en argument un élément a, une fonction f et
un entier n, et renvoyant la liste [a, (f a), (f (f a)), . . . , (fn a)].

24. En déduire la liste des entiers de 0 à 1000, dans l’ordre croissant.

25. Écrire une fonction parcours_droite prenant en argument une fonction f , une liste l =
[a1; . . . ; an] et un élément b , et renvoyant f a1 (f a2 (. . . (f an b)) . . .) (cette fonction existe
déjà sous le nom List.fold_right).

26. Retrouver la fonction somme, prenant une liste d’entiers et renvoyant la somme de ses élé-
ments, comme une application de la fonction précédente. On pourra utiliser (+) l’opérateur
d’addition vu comme une fonction int -> int -> int.

27. On souhaite écrire une fonction renverser prenant en argument une liste l et renvoyant la
liste de sens contraire (cette fonction existe déjà sous le nom List.rev). Une version naïve
pourrait s’écrire :

let rec renverser l =
match l with

[] -> []
|a::q -> (renverser q)@[a]

Cette version a le défaut rédhibitoire d’être de complexité quadratique, car la complexité de
la concaténation l1@l2 est linéaire en la longueur de l1. Écrire une version de renverser
de complexité linéaire. On utilisera une fonction auxiliaire prenant en argument une liste
l2 et une liste r, supposant que l = r' @ l2, où r' est le renversé de r, et renvoyant le
renversé de l.

28. Écrire une fonction parcours_gauche prenant en argument une fonction f , un élément a
et une liste l = [b1; . . . ; bn], et renvoyant f (. . . (f (f a b1) b2) . . .) bn (cette fonction existe
déjà sous le nom List.fold_left).

29. Retrouver renverser comme une application de la fonction précédente.

30. Écrire une fonction produit_cartesien prenant en argument deux listes l1 et l2 et ren-
voyant une liste contenant tous les couples (a, b) où a est un élément de l1 et b un élément
de l2.


