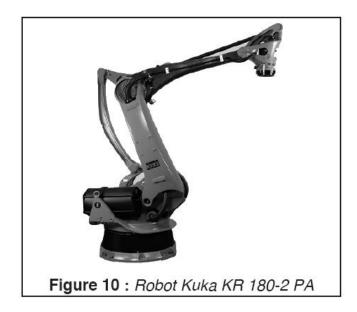
Robot KUKA

Domaines d'application

Le robot Kuka KR 180-2 PA est un robot industriel à quatre axes à cinématique articulée, pouvant être mis en œuvre pour toutes les tâches avec positionnement point par point et, de manière limitée, pour le contournage.

Ses principaux domaines d'application sont :

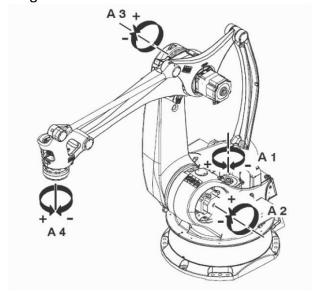
- la palettisation,
- · la manipulation,
- la dépalettisation.



La palettisation correspond au dépôt de produits sur une palette en bois pour le stockage et le transport.

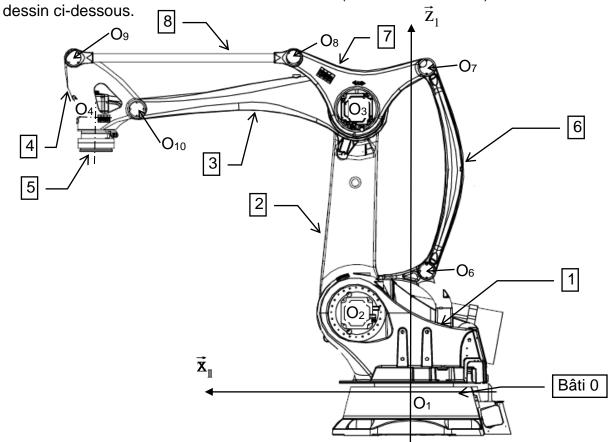
Définition des axes

La figure ci-dessous montre les différents axes asservis du robot Kuka.

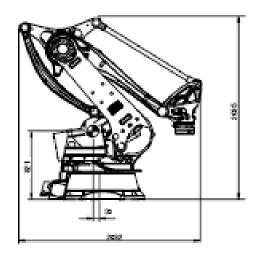


CINEMATIQUE

Outre le bâti, le robot est constitué de 8 solides (numérotés de 1 à 8) comme le montre le dessin ci-dessous



Les illustrations ci-dessous présentent le robot en position « repliée » et la zone atteignable (en gris), c'est-à-dire l'ensemble des positions que peut atteindre le préhenseur 5.



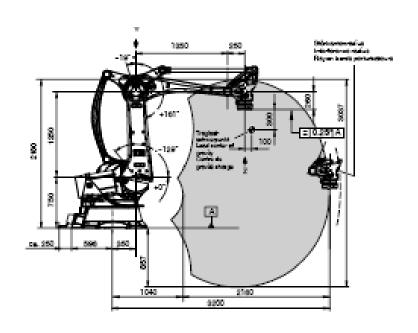


Schéma cinématique en vue de face du robot Kuka :

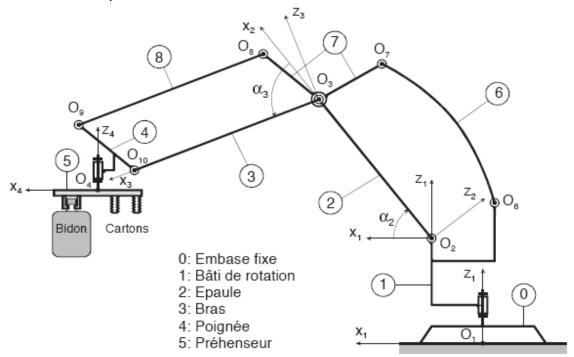
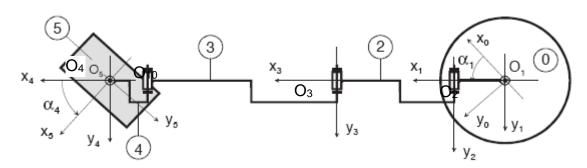
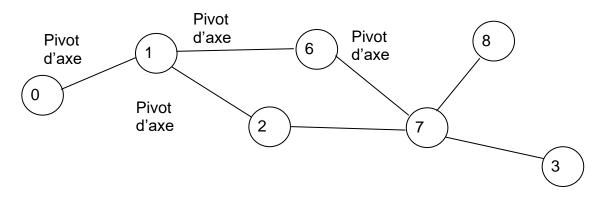


Schéma cinématique en vue de dessus sans les pièces 6, 7 et 8 :



Q 1. En vous aidant des schémas cinématiques ci-dessus, compléter le graphe des liaisons ci-dessous (à reproduire sur la feuille de copie). N.B.: le solide 5 est à ajouter.



A chaque solide i, on associe la base orthonormée directe $(\vec{x}_i, \vec{y}_i, \vec{z}_i)$, comme le montre le schéma cinématique.

Les paramètres géométriques angulaires permettant de définir les mouvements du robot sont définis de la manière suivante :

$$\alpha_1 = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1)$$

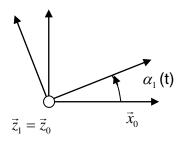
$$\alpha_2 = (\vec{x}_1, \vec{x}_2) = (\vec{z}_1, \vec{z}_2)$$

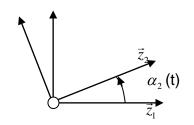
$$\alpha_3 = (\vec{x}_2, \vec{x}_3) = (\vec{z}_2, \vec{z}_3)$$

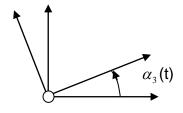
$$\alpha_4 = (\vec{x}_4, \vec{x}_5) = (\vec{y}_4, \vec{y}_5)$$

Ces angles varient au cours du temps.

Q 2. Reproduire et compléter sur la feuille de copie les figures de calcul suivantes :







Q 3. En déduire les vecteurs instantanés de rotation : $\vec{\Omega}(1/0)$, $\vec{\Omega}(2/1)$ et $\vec{\Omega}(3/2)$

Les dimensions principales du robot sont notées :

$$\overrightarrow{\mathbf{O_1}\mathbf{O_2}} = r\vec{\mathbf{x}}_1 + \mathbf{h}_2\vec{\mathbf{z}}_1$$

$$\overrightarrow{O_2O_3} = d_2\overrightarrow{x}_2$$

$$\overrightarrow{O_3O_{10}} = d_3\vec{x}_3$$

Les distances r, h₂, d₂ et d₃ ne varient pas au cours du temps (solides indéformables).

Q 4. En appliquant la formule de dérivation des vecteurs unitaires, calculer les vecteurs vitesses : $\vec{V}(O_2/0)$, $\vec{V}(O_3/0)$.

Q 5. En appliquant la formule de dérivation des vecteurs unitaires, calculer les vecteurs vitesses : $\vec{V}(O_{10}/0)$

Les dimensions du robot sont choisies de façon à ce que (distances) $O_2O_3 = O_6O_7$ et $O_2O_6 = O_3O_7$.

Q 6. Par un raisonnement géométrique concernant le quadrilatère $(O_2O_3O_7O_6)$ expliquer pourquoi $\vec{\Omega}(7/1) = \vec{0}$. En déduire la nature du mouvement de 7 par rapport à 1 ? On donne $\vec{V}(O_3/1) = -d_2.\dot{\alpha}_2.\vec{z}_2$. Déterminer alors $\vec{V}(O_7/1)$

De même, on montre que $\vec{\Omega}(4/7) = \vec{0}$:

Q 7. Déterminer $\vec{\Omega}(4/0)$