Ressources Cheville Nao

1. Présentation du système

Nao est un robot humanoïde de 58cm conçu par Aldebaran Robotics, une start-up parisienne à la pointe de la robotique mobile. Déjà produit à plusieurs centaines d'exemplaires, Nao fait figure de référence dans le monde de la robotique mobile. Il est notamment utilisé pour la Robocup : compétition internationale de robotique dont l'objectif est de faire jouer au foot des robots bipèdes. Nao est au cœur de nombreuses recherches préfigurant les applications de la robotique humanoïde : jeux multimédia, aide à l'apprentissage, assistance à la personne, interventions en milieux extrêmes, surveillance...

La problématique proposée est de modéliser l'asservissement de l'articulation de la

cheville du robot. Cette modélisation permettra d'optimiser les paramètres d'asservissement suivant les scénarios imposés au robot dans son cahier des charges.

Les axes de la cheville

Diagramme de définition de bloc de la cheville

2.Extrait du cahier des charges

Exigence			Critères	Niveaux
1.1 Le système doit permettre le déplacement du robot Nao en marche rapide		C1.1	Angle de tangage tibia / noix+semelle mesuré à partir de la position tibia \perp à semelle.	+10° (extension) à +40°(flexion)
		C1.1	Angle de roulis noix / semelle mesuré à partir de la position noix \perp à semelle.	-10° à +10°
		C1.2	 Temps de réponse à 5% en réponse à un échelon Écart statique Marge de phase Dépassement pour une consigne en échelon 	<0,5s <1° >45° <10%

3. Modélisation de l'axe de tangage

L'objectif est de réaliser un modèle permettant d'observer les critères de dépassement et de rapidité de l'axe de **tangage** de la cheville.

Ce modèle permettra ensuite d'évaluer l'influence des paramètres de la cheville (Gain du correcteur, masse, rapport de réduction,...) sur ses performances.

3.1.Variables d'environnement pour l'axe de tangage

Chargement extérieur	Aucune masse ajoutée	
Positionnement	Plateau incliné à 90°	
Réglage du correcteur	Gain proportionnel : Kp=1200 (Pas d'intégrateur ni de dérivateur) Kp=200 (Pas d'intégrateur ni de dérivateur) Vous caractériserez deux modèles avec les deux valeurs de Kp définies.	
Excitateur	Échelon ou sinus d'amplitude crête/crête de 10 $^\circ$	

3.2.Domaine de validité du modèle

Pour une entrée échelon	
Écart sur la valeur finale	< 10%
Écart du premier dépassement du résultat D_{mod} par rapport au premier dépassement de la réponse D_{exp}	< 20%
Écart du temps de réponse à 5% du résultat Tr5% _{mod} par rapport au temps de	< 20%
réponse à 5% de la réponse Tr5% _{exp} .	

4. Description des composants

4.1. Chaîne d'information : Le capteur de position angulaire

Extrait de la documentation constructeur

1 General Description

The AS5045 is a contactless magnetic rotary encoder for accurate angular measurement over a full turn of 360°. It is a system-on-chip, combining integrated Hall elements, analog front end and digital signal processing in a single device.

To measure the angle, only a simple two-pole magnet, rotating over the center of the chip, is required. The magnet may be placed above or below the IC.

The absolute angle measurement provides instant indication of the magnet's angular position with a resolution of 0.0879° = 4096 positions per revolution. This digital data is available as a serial bit stream and as a PWM signal.

An internal voltage regulator allows the AS5045 to operate at either 3.3 V or 5 V supplies.

2 Benefits

- Complete system-on-chip
- Flexible system solution provides absolute and PWM outputs simultaneously
- Ideal for applications in harsh environments due to contactless position sensing
- No calibration required

3 Key Features

- Contactless high resolution rotational position encoding over a full turn of 360 degrees
- Two digital 12bit absolute outputs:
 - Serial interface and
 - Pulse width modulated (PWM) output
- User programmable zero position
- Failure detection mode for magnet placement monitoring and loss of power supply
- "red-yellow-green" indicators display placement of magnet in Z-axis
- Serial read-out of multiple interconnected AS5045 devices using Daisy Chain mode
- Tolerant to magnet misalignment and airgap variations
- Wide temperature range: 40°C to + 125°C
- Small Pb-free package: SSOP 16 (5.3mm x 6.2mm)

An analog output can be generated by averaging the PWM signal, using an external active or passive low pass filter. The analog output voltage is proportional to the angle: 0°= 0V; 360° = VDD5V.

Using this method, the AS5045 can be used as direct replacement of potentiometers.

S2I

4.2. Chaîne d'énergie : 4.2.1.Le moteur à courant continu

Principe de fonctionnement

Le moteur électrique à courant continu est constitué d'aimants et de fils enroulés. Il se base sur la force de Laplace : tout conducteur parcouru par un courant et plongé dans un champ magnétique subit une force, la force de Laplace, proportionnelle à l'intensité du courant et du champ magnétique. Un système particulier permet de faire varier le passage du courant dans les fils, afin de générer une force de Laplace motrice pour le mouvement de rotation (présenté figure suivante).

Mise en équation

Pour traduire le comportement dynamique du moteur à courant continu il faut écrire 4 équations : deux d'entre elles sont des lois fondamentales de la physique (loi des mailles et PFD), les deux autres étant issues des lois sur l'électromagnétisme.

On définit les grandeurs propres au fonctionnement du moteur :

- · i(t): intensité (en Ampère) dans le moteur
- · $u_{M(t)}$: tension (en Volt) aux bornes du moteur
- · $C_M(t)$: couple (en Nm) délivré par le moteur
- · $C_{R(t)}$: couple résistant (en Nm) provenant en partie de la tension de la corde
- · $\omega_M(t)$: vitesse de rotation (en rad/s) du moteur
- · e(t): force contre électromotrice (en Volt) du moteur
- · L: inductance de l'induit
- \cdot *R* : résistance électrique du moteur
- · J: inertie équivalente (en kgm²) à l'ensemble mobile
- $Kc = K_e$: constantes de couple et de force électromotrice

Document ressources : Cheville Nao

Equation électrique : $u_m(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$ Equation mécanique (PFD) : $J\frac{d\omega_m}{dt}(t) = C_m(t) - C_r(t) = Cm(t) - \mu . \omega m(t) - Cf - \cdots$ Equations de couplage : $e(t) = K_e . \omega_m(t)$ et $C_m(t) = K_c . i(t)$

Un couple est une action mécanique qui a tendance à s'opposer à la mise en rotation d'un solide. Un couple résistant (Cr(t)) va donc avoir tendance à freiner un solide en rotation. On modélise souvent le couple résistant dû aux frottements en le décomposant en couple de frottement sec (Cf) et en couple de frottement visqueux (μ . ω m(t)). L'inertie (équivalente) traduit la difficulté d'accélérer un solide en rotation. Sa masse ainsi que ses dimensions radiales influent sur le moment d'inertie J.

Ces équations permettent d'obtenir les fonctions de transfert du système perturbé :

$$\Omega_m(p) = H_u(p). U_m(p) + H_r(p). C_r(p)$$

Document constructeur du moteur électrique de la cheville

Measur 1 N 2 N 3 N 4 S 5 T Recomm 10 10 C 11 C 12 A 13 A 14 R Intrinsik 20	ed values Aeasuring voltage No-load speed No-load current Starting voltage	V rpm	18			
1 N 2 N 3 N 4 S 5 T Recomin 10 C 11 C 11 C 12 A 13 A 14 R Intrinski 20 B	Aeasuring voltage No-load speed No-load current Starting voltage	V rpm	18			
2 N 3 N 4 S 5 T Recomin 10 C 11 C 12 A 13 A 14 R Intrinski 20 B	Io-load speed Io-load current Starting voltage	rpm		-		
3 N 4 S 5 T Recomi 10 C 11 C 12 A 13 A 14 R Intrinsk 20 B	No-load current Starting voltage		8300	±10%		
4 S 5 T Recomi 10 C 11 C 12 A 13 A 14 R Intrinsia 20 B	Starting voltage	mA	75	max		
5 T Recomi 10 C 11 C 12 A 13 A 14 R Intrinsic 20 B		V	-	max		
Recoming 10 0 11 0 12 A 13 A 14 R Intrinsic 20	erminal resistance	Ohm	5.4	±10%		
10 C 11 C 12 A 13 A 14 R Intrinsk 20 B	mended values	ALL	10000			
11 C 12 A 13 A 14 R Intrinsk 20 B	Continuous current (at 22°C)	A	0.92	max		
12 A 13 A 14 R Intrinsia	Continuous torque	mNm	16.1	max		
13 A 14 R Intrinsia 20 B	Ingular acceleration	10 ^a rad/s ^a	181	max		
14 R Intrinsia 20 B	mblent working temperature range	°C	-30°C to 65°C	typical		
Intrinsia 20 B	Rated coil temperature	°C	155	max		
20 B	c parameters	100 Car 10 Car 1				
	lack-EMF constant	V/1000 rpm	2.03	±8%		
21 T	orque constant	mNm/A	19.4	±8%		
22 N	Actor regulation R/k2	10 ³ /Nms	13.71	typical		
23 B	Rotor inductance (@1kHz)	mH	0.6	typical		
24 N	Aechanical time constant	ms	4.5	() prous		
25 T	hermal resistance rotor-body	°CAV	6	typical		
26 T	hermal resistance hody-amhient	°CAN	22	typical		
27 T	hermal time constant – rotor	e.	9	typical		
28 T	hermal time constant -stator	e	550	typical		
20 8	Internal Inter constant - stator	Kam ² 10 ⁻⁷	4.8	typical		
30 S	itali torque	mNm	68	±8%		
Custom	er specifications					
40						
42 C	Outline dimensions	See drawing.	ref.: 101122600	1.S11		
43						
Other s	pecifications	the second deal in the part of				
50 E	nd play: <= 150µm					
51 N	fotor fitted with sleeve bearings					
52 S	haft runout: <=10 um					
53 N	Max side load at 5 mm from mounting face: - sleeve hearings 3N					
54 N	Max axial static force for press-fit: 150N					
55 V	Viscous damping constant: 0.1 x 10 ⁵ Nms					
56 N	fotor rotation when red wire "+": CW					
57 G	aphite/Copper Commutation System - 9 segments					
58	aprila suppor commenced operation of additional					

4.2.2.Le réducteur à trains d'engrenages

5. Mesures sur la cheville

Lancer le logiciel de commande et d'affichage (icône « NAO_Ankle_Kit V3 » sur le bureau du PC).
Cliquer sur ce bouton pour ouvrir la fenêtre relative aux mesures.

S2I

- Ne pas oublier de documenter :
 - ✓ La durée du mouvement (qui représente la durée de l'acquisition),
 - ✓ La fréquence de commande et d'acquisition (nombre de points par seconde).

La structure de l'asservissement peut être choisie :

Chaque correcteur PID peut être réglé en cliquant sur l'icône correspondant :

• En cliquant sur l'onglet « <u>Courbes de résultats</u> », la fenêtre ci-dessous s'affiche (à la version du logiciel près) :

	/			
Mesures				
Commande et mesures	Courbes de résultats			
Roulis Consigne Angle réducteur Ecart Angle moteur Ecart moteur fréq. réducteur Pw/M Courant		Tangage Consigne Angle réducteur Ecart Angle moteur Ecart moteur fréq. réducteur Pw/M Courant	Mesures n*2 n*3 n*1 m*7 m*8 m*1 m*7 m*8 m*1 m*7 m*8	n°4 _ n°5 _ n°9 _ n°10

Pour chaque axe, il est possible d'afficher plusieurs grandeurs en cliquant sur le bouton « Ajouter ».

- Envoyer en entrée un échelon de position d'amplitude 10°, de début = 0 et de durée 2s sur l'axe de tangage commandé en Boucle Fermée avec Kp (coefficient du correcteur proportionnel) = 200 (Pour que l'axe de roulis reste inactif dans toute l'étude, mettre en place une commande nulle sur cet axe).
- Lancer la MESURE ; l'axe rejoint sa position initiale puis le mouvement demandé s'exécute.
- Réaliser l'IMPORT. Fermer la fenêtre de MESURE et ouvrir la fenêtre d'AFFICHAGE DE COURBES ; Cocher la mesure N° 1.
- Avec AJOUTER, afficher la position en entrée (COMMANDE) et celle en sortie (ANGLE REDUCTEUR) de l'axe de tangage en fonction du temps.
- Observer les courbes obtenues.
- mesurer la valeur finale et le temps de réponse à 5%

Remarque : l'utilisation de l'option ZOOM TOUT in permet de voir au mieux les courbes.

6. Visualiser des mesures sur Scilab

- Réaliser le schéma ci-dessous sur scilab.
- Lire le fichier de mesures sous excel par exemple et le transformer en fichier .csv (attention à la mise en forme).

