Programme de colle - semaine 21 du 17/03/2025 au 16/03/2025

1 Algèbre linéaire, épisode 2

Il y a beaucoup de choses, alors on se concentrera sur les notions de base (trouver une base de noyau, d'image). On s'assurera que les notions vues à l'épisode 1 (SEV, famille de vecteurs) sont bien comprises.

- Application linéaire : définition, caractérisation par $f(u + \lambda v) = f(u) + \lambda f(v)$, propriétés élémentaires.
- Image, noyau. Ce sont des SEV. Plus généralement, l'image directe / réciproque d'un SEV est un SEV. Caractérisation de l'injectivité (déjà vue dans le cadre des morphismes de groupes, pas redémontrée ici).
- Application linéaire canoniquement associée à une matrice. Image, noyau d'une matrice. (Pas encore d'exercice fait sur ces notions).
- Somme de deux SEV. Définition. C'est un SEV. Somme directe, caractérisation avec l'intersection.
- SEV supplémentaires.

Caractérisation avec des quantificateurs ou avec $F \cap G = \{\vec{0}\}\$ et E = F + G.

Projection p sur F parallèlement à G (lorsque $E = F \oplus G$).

Un dessin est bienvenu pour illustrer les notions de SEV supplémentaires et de projection. p est linéaire, Im p = F, Ker p = G, $p \circ p = p$.

Caractérisation des projections par $p \circ p = p$: si $p \in \mathcal{L}(E)$ et $p \circ p = p$, alors $E = \operatorname{Im} f \oplus \operatorname{Ker} f$ et p est la projection sur $\operatorname{Im} f$ parallèlement à $\operatorname{ker} f$.

- Symétrie par rapport à F parallèlement à G. La caractérisation par $s \circ s = \mathrm{Id}_E$ a été vue (aucun exercice fait sur les symétries).
- Détermination d'une application linéaire (ne pas insister sur ces propriétés, seule la première est utile pour l'instant) :
 - Si $f \in \mathcal{L}(E, F)$ et (u_1, \dots, u_n) est génératrice de E, alors $(f(u_1), \dots, f(u_n))$ est génératrice de $\operatorname{Im} f$.
 - Soit (u_1, \ldots, u_n) une base de E et $f \in \mathcal{L}(E, F)$. f est injective (resp. surjective, bijective) ssi $(f(u_1), \ldots, f(u_n))$ et libre (resp. génératrice de E, une base de E).
 - Détermination sur une base : Soit (u_1, \ldots, u_n) une base de E. Pour toute famille (v_1, \ldots, v_n) d'éléments de F, il existe une unique $f \in \mathcal{L}(E, F)$ telle que $\forall i \in [1, n], f(u_i) = v_i$.
 - Détermination sur une somme directe (n'a pas été démontré) : Soit E_1, E_2 deux SEV de E tels que $E = E_1 \oplus E_2$.

Pour toutes $f_1 \in \mathcal{L}(E_1, F)$ et $f_2 \in \mathcal{L}(E_2, F)$, il existe une unique $f \in \mathcal{L}(E, F)$ telle que $f_{|E_1} = f_1$ et $f_{|E_2} = f_2$.

• PAS VU: dimension, rang, matrice d'application linéaire.

2 Fractions rationnelles

- Donner un exercice (simple) comportant une décomposition en éléments simples à tout le monde.
- L'important est avant tout la pratique donc on évitera les calculs inutilement compliqués ou les exercices abstraits. La construction de $\mathbb{K}(X)$ n'est pas exigible.
- Forme irréductible, degré, fonction rationnelle associée, racine (ou zéro), pôle, multiplicité. Partie entière.
- Existence et unicité d'une décomposition en éléments simples dans \mathbb{C} et \mathbb{R} (savoir énoncer la forme générale de la décomposition. La démonstration est hors-programme). Seul le calcul du coefficient d'un pôle simple est officiellement au programme.

Astuce principale: multiplier puis évaluer.

Nous avons vu quelques autres astuces : utilisation des limites, évaluation en un point, utilisation de la DES complexe pour trouver la DES réelle, parité).

- Savoir écrire la forme générale de la DES pour tout type de fraction (en laissant les coefficients indéterminés).
- Applications aux calculs de certaines primitives et sommes.
- Décomposition en éléments simples de $\frac{P'}{P}$ (aucun exercice fait).

3 Démonstrations possibles

Soit E, F deux \mathbb{K} -espaces vectoriels.

- a) L'image / le noyau sont des SEV.
- b) Caractérisation de l'injectivité.
- c) Pour F et G SEV de E, équivalence entre "la somme F+G est directe" et $F\cap G=\{\vec{0}\}$.
- d) Soit $p \in \mathcal{L}(E)$ tel que $p \circ p = p$. Montrer que $E = \operatorname{Im} p \oplus \operatorname{Ker} p$ en faisant un raisonnement par analyse - synthèse.
- e) Si (u_1, \ldots, u_n) est génératrice de E et $f \in \mathcal{L}(E, F)$, alors $(f(u_1), \ldots, f(u_n))$ est génératrice de Im f
- f) Soit (u_1, \ldots, u_n) une famille libre de E et $f \in \mathcal{L}(E, F)$ injective. Montrer que $(f(u_1), \ldots, f(u_n))$ est libre.

4 Exercices

1. CCINP exo 60

Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

- a) Déterminer une base de Ker f.
- b) f est-il surjectif?
- c) Déterminer une base de $\operatorname{Im} f$.
- d) (selon le temps) A-t-on $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker} f \oplus \operatorname{Im} f$?

2. Autres possibilités

- a) Décrire le noyau / l'image d'une application linéaire donnée.
- b) Montrer que deux SEV sont supplémentaires, avec éventuellement la projection à expliciter.
- c) Une DES simple avec éventuellement une question annexe (calcul de primitive / somme).