

Laboratoire de

Sciences Industrielles pour l'Ingénieur

Activité de Travaux Pratiques en

première année MPSI de CPGE

Statique et Chaînes de solides

Documents réponse

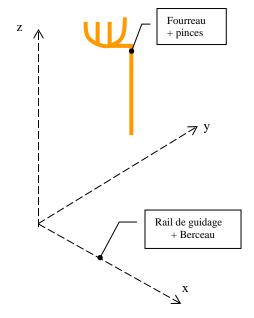
TP1	Cordeuse	page	2
TP2	Winch	page	6
TP3	Barrière Sympact	page	9
TP4	Moto	page	12
TP5	Maxpid	page	16
TP6	Sinusmatic	page	18

Cyril CHERON

Lycée Claude Fauriel Page 1 sur 19

CORDEUSE

Q1- Observation:


Q2- Le phénomène physique observé est

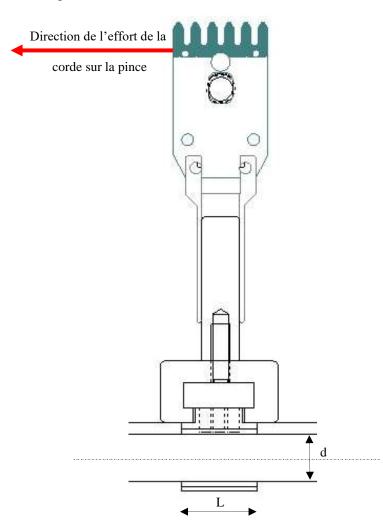
Ce phénomène dépend de

Q3- Modélisation des liaisons :

	Classes d'équivalence	Type des surfaces en contact	Mobilités	Nom de la Liaison
L1	Fourreau - Chariot			
L2	Chariot - Coulisseau			
L3	Coulisseau - Rail + berceau			

Schéma cinématique:

Lycée Claude Fauriel Page 2 sur 19

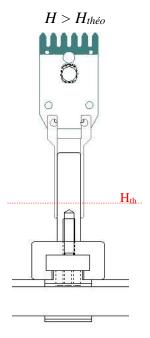

Q4-

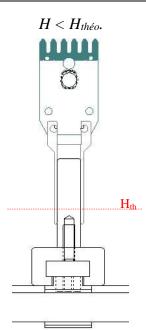
	Matériaux	Coef. d'adhérence	Hauteur mesurée	Longueur de guidage
Rail- coulisseau	/	$f_1 =$	$H_1 =$	$L_1 =$
Chariot- coulisseau	/	$f_2 =$	$H_2 =$	$L_2 =$

<u>Conclusion</u>:

Q5- Détermination de la hauteur théorique de blocage entre le coulisseau et le rail :

Justifications:


Soit:


 $H_{th\acute{e}o.} =$

 \underline{AN} : $H_{th\acute{e}o} = mm$

Lycée Claude Fauriel Page 3 sur 19

Q6-

Conclusion: Conclusion:

Q7- Domaine de validité de la hauteur mesurée :

Domaine de validité de la hauteur calculée :

Q8- Mesure de l'erreur relative sur la tension dans la corde :

Consigne (daN)	Tension de la corde lors du maintien par la pince (daN)	% d'erreur

Cause 1:

Solution 1:

Lycée Claude Fauriel Page 4 sur 19

	Cause 2:	
	Solution 2:	
	Cause 3:	
	Solution 3:	
<i>Q9</i> -	Protocole de mesure :	
	Enfin la loi de frottement exponentiel donne :	
	f =	
Q10-	O- <u>Protocole de mesure</u> :	
	Enfin la loi de frottement exponentiel donne :	
	f =	
	<u>Conclusion</u> :	

Lycée Claude Fauriel Page 5 sur 19

WINCH

Q1

Q2	Détermination	de	la rela	ation	théorique	:
V.=	Determination	uc	14 101	ution	uncorrigac	•

• Appliquer le P.F.S. en résultante au tronçon isolé en projetant sur les axes x et y :

Sur x:

Sur y:

2 En considérant un $d\theta$ très petit, linéariser (DL à l'ordre 1) les deux équations scalaires :

Sur x: \Leftrightarrow

Sur y: \Leftrightarrow

3 Exprimer dF/F en fonction de $d\theta$:

A la limite du glissement nous avons : , soit :

4 En déduire la relation $T = t e^{f \alpha}$:

En intégrant de 0 à α,

Q3 Mesures des tensions en fonction de l'angle d'enroulement :

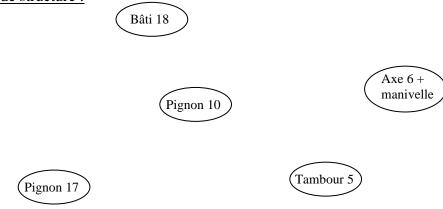
α en tour	0,5	1	1,25	1,5	2
Tension maxi en N					
Tension mini en N					

 $f_{\rm a\ moy} = {
m et} \qquad {
m fg\ moy} =$

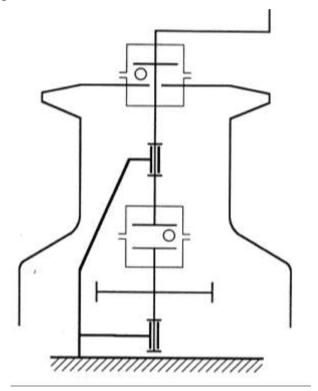
Conclusions:

Q4 Validation du CdCf: dans le cas le plus défavorable on a :

Soit : $\alpha =$


Conclusion:

Lycée Claude Fauriel Page 6 sur 19



Q5 fonction technique satisfaite par les roues libres

Q6 Graphe de structure :

Schéma cinématique:

Q7 Sens 1:
$$r_1 = \frac{\omega_{tambour}}{\omega_{manivelle}} =$$

Sens 2:
$$r_2 = \frac{\omega_{tambour}}{\omega_{manivelle}} =$$

Q8 Validation expérimentale :

Lycée Claude Fauriel Page 7 sur 19

Q9 Action sur la manivelle :

Notons : R_T le rayon du tambour,

R_M le rayon de la manivelle, F l'effort sur la manivelle.

Supposons que le rendement global vale 0,8.

Application numérique :

F =

<u>Conclusion</u>:

Lycée Claude Fauriel Page 8 sur 19

BARRIERE SYMPACT

-	$\boldsymbol{\cap}$	7	
			•

Q2: Isolons ______ et écrivons le _____ :

 $Q3: C_r(\theta) =$

Q4: A l'équilibre, on obtient donc :

Q5: Mesure des positions d'équilibre:

y _m en m	0.200	0.250	0.300	0.350	0.400
θ _{éq} mini en °					
θ _{éq} maxi en °					

Q6: Caractérisation du ressort: imprimer les courbes tracées sous Excel et mesurer:

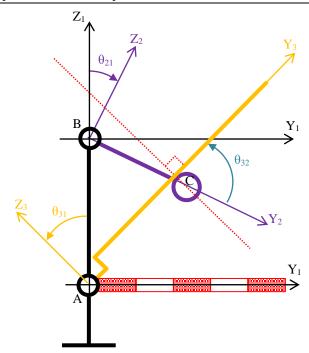
Pour l'évolution de θ_{maxi} : $K \approx N.m.rad^{-1}$ et $C_0 \approx N.m$

Pour l'évolution de θ_{mini} : $K \approx N.m.rad^{-1}$ et $C_0 \approx N.m$

<u>Donnée constructeur</u>: $K_{const} = N. m. rad^{-1}$

<u>Conclusion</u>:

Lycée Claude Fauriel Page 9 sur 19



 $\theta_{21} =$

 $\theta_{31} =$

 $Y_{23} =$

Dans cette configuration, on trouve:

Application numérique :

Q8: Couple moteur théorique:

Ainsi on trouve pour $\theta = 0$:

 $C_{B\,th} =$

Lycée Claude Fauriel Page 10 sur 19

Q9: La mesure donne : $C_{B \text{ mesuré}} = N. m$

Conclusion:

Q10: Le phénomène physique est

Exploitation des mesures:

<u>Conclusions:</u>

Lycée Claude Fauriel Page 11 sur 19

SUSPENSION DE MOTO

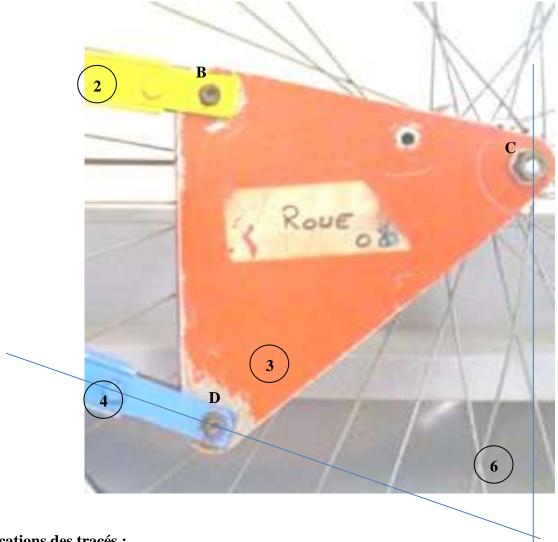
Q1:	Effort déduit de la longueur du ressort :
	Longueur du ressort à vide : $l_0 =$
	Longueur du ressort pour la charge maxi : l =
	Effort dans le ressort : F =
Q2:	hypothèse :
	Incertitude de mesure :
	écart moyen sur une série de mesures de l'ordre de :mm
	incertitude de l'ordre de :N
Q3:	Détermination de l'effort par simulation sous Mecaplan
	Valeur de l'effort relevée :
	Démarche suivie :
Q4:	hypothèses :

Lycée Claude Fauriel Page 12 sur 19

Q5: Détermination graphique de l'effort:

Justifications des tracés :

Lycée Claude Fauriel Page 13 sur 19



Q6: hypothèses:

incertitudes:

Poids estimé de la pièce rouge : Q7:

Position du centre de gravité de la pièce rouge :

Justifications des tracés :

Lycée Claude Fauriel Page **14** sur **19**

Inconvénient d'une suspension raide :

Ω	•
Vσ	•

Lycée Claude Fauriel Page 15 sur 19

BRAS MAXPID

Q1: $m-h = 6n-Ns : d'où h = m-6n + Ns = (m_u+m_i)-6n+Ns$

- $m_u =$
- $m_i =$
- Ns =

Donc h =

Défauts géométriques possibles :

Q2: On résout : barrer les composantes nulles

$$T_{1\rightarrow 5} = \begin{cases} X_{15} & L_{15} \\ Y_{15} & M_{15} \\ Z_{15} & 0 \end{cases}_{A,B_1} \qquad T_{1\rightarrow 2} = \begin{cases} X_{12} & L_{12} \\ Y_{12} & M_{12} \\ Z_{12} & 0 \end{cases}_{B,B_2} \qquad T_{4\rightarrow 5} = \begin{cases} X_{45} & L_{45} \\ Y_{45} & M_{45} \\ Z_{45} & 0 \end{cases}_{C,B_2} \qquad T_{3\rightarrow 4} = \begin{cases} X_{34} & -\frac{p}{2\pi}X_{34} \\ Y_{34} & M_{34} \\ Z_{34} & N_{34} \end{cases}_{C,B_2} \qquad T_{2\rightarrow 3} = \begin{cases} X_{23} & 0 \\ Y_{23} & M_{23} \\ Z_{23} & N_{23} \end{cases}_{B,B_2}$$

PFS sur 5: dans B₁

 $X_{15}+X_{45}\cos\alpha - Y_{45}\sin\alpha = 0$ (1) $Y_{15}+X_{45}\sin\alpha + Y_{45}\cos\alpha = 0$ (2)

 $Z_{15}+Z_{45}=0$ (3)

 $L_{15}+L_{45}\cos\alpha - M_{45}\sin\alpha + c Z_{45}\sin\theta = 0$ (4) $M_{15}+M_{45}\cos\alpha + L_{45}\sin\alpha - c Z_{45}\cos\theta = 0$ (5)

PFS sur 2 : dans B₂

$$c(X_{45}\sin\alpha + Y_{45}\cos\alpha)\cos\theta - c(X_{45}\cos\alpha - Y_{45}\sin\alpha)\sin\theta = 0$$
 (6)

$$X_{12}-X_{23}=0$$
 (7)

$$Y_{12} - Y_{23} = 0$$
 (8) $Z_{12} - Z_{23} = 0$ (9)

$$Z_{12}-Z_{23}=0$$
 (9

PFS sur 3 : dans B₂

$$L_{12} = 0 (10)$$

- $X_{34} + X_{23} = 0 (13)$

$$M_{12} - M_{23} = 0$$
 (11) $N_{23} = 0$ (12) $-Y_{34} + Y_{23} = 0$ (14) $-Z_{34} + Z_{23} = 0$ (15)

$$N_{23} = 0$$
 (12)

$$\frac{p}{2\pi}X_{34} = 0$$
 (16)

$$-M_{34} + M_{23} + Z_{23}.x(t) = 0$$
 (17) $-N_{34} + N_{23} - Y_{23}.x(t) = 0$ (18)

$$-N_{34} + N_{23} - Y_{23} \cdot x(t) = 0$$
 (18)

PFS sur 4: dans B₂

$$-X_{45}+X_{34}=0$$
 (19)

$$-Y_{45}+Y_{34}=0$$
 (20)

$$-Z_{45}+Z_{34}=0$$
 (21)

$$-L_{45} - \frac{p}{2\pi} X_{34} = 0 \quad (22) \qquad -M_{45} + M_{34} = 0 \quad (23) \qquad N_{34} = 0 \quad (24)$$

$$-M_{45}+M_{34}=0 (23)$$

$$N_{34} = 0$$
 (24)

Inconnues hyperstatiques de la liaison L_{15} :

Q3 : modèles isostatiques possibles :

solution 1:

Justification : $h = (m_u+m_i)-6n+Ns =$

solution 2:

Page 16 sur 19 Lycée Claude Fauriel

Justification: $h = (m_u+m_i)-6n+N_S =$

Manip 2 : Cm = Nmm

Q4: Justification Pb non plan:

Q5: on ajoute les torseurs suivants:
$$T_{-} = \begin{cases} - & - \\ - & - \\ - & - \end{cases}$$
 $T_{-} = \begin{cases} - & - \\ - & - \\ - & - \end{cases}$ $T_{-} = \begin{bmatrix} - & - \\ - & - \\ - & - \end{cases}$

Démarche :

- 1. _____: ce qui donne l'équation :
- 2. _____ : ce qui donne l'équation :
- 3. _____ : ce qui donne l'équation :
- 4. _____: ce qui donne l'équation :

Q6: résolution:

D'où
$$Cm = -\frac{p_{as}}{2\pi} \cdot \frac{\lambda P \cos \theta}{c \sin(\alpha - \theta)}$$

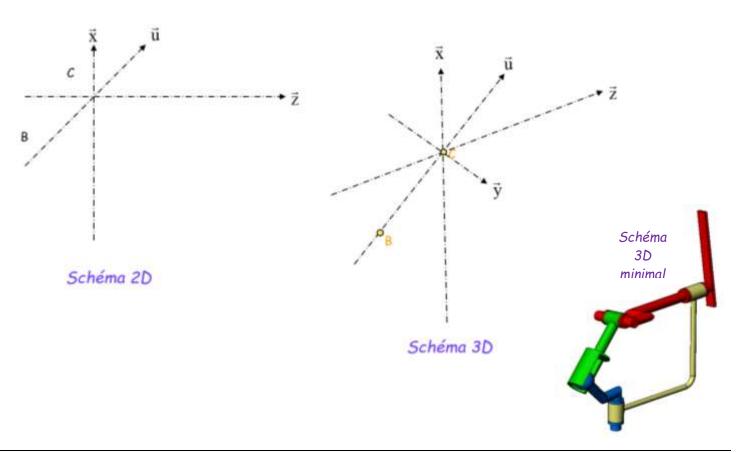
A.N.:
$$\tan \alpha = \frac{c \sin \theta - b}{a + c \cos \theta} \Rightarrow \alpha =$$
_____ pour $\theta = 45^{\circ}$ et Cm = _____ Nm avec une masse de 1.3kg (2 disques)

Q7: Cm mesuré = _____ mNm

Conclusion:

- l'écart entre Cm simulé et calculé :
- écart entre Cm simulé et mesuré

Lycée Claude Fauriel Page 17 sur 19



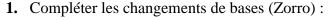
OUVRE BARRIERE SINUSMATIC

Q1: Graphe des liaisons

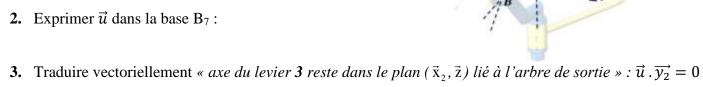
Q2: Liaison équivalente $L_{7/3}$

Q3: Schémas cinématique 2D et 3D:

Lycée Claude Fauriel Page 18 sur 19


Q4:

• Etude de l'isostatisme de 1-7-6-3-2-1 :


• Etude de l'isostatisme de 1-7-3-2-1 :

• Justification sur la liaison $L_{7/3}$:

\vec{x}	$\overrightarrow{x_7}$	\vec{x}	$\overrightarrow{x_2}$
$ec{y} \ ec{z}$	$\overrightarrow{\mathcal{Y}_7}$	$ec{\mathcal{Y}}$	$\overrightarrow{x_2}$ $\overrightarrow{y_2}$ $\overrightarrow{z_2}$
$ec{Z}$	$\overrightarrow{Z_7}$	$ec{Z}$	$\overrightarrow{Z_2}$

Q6:

•
$$\omega_{2/1}(\theta) = \omega_{2/1} \max =$$

• Allure de ω_{2/1}(θ) pour un tour de l'arbre d'entrée.

Lycée Claude Fauriel Page 19 sur 19