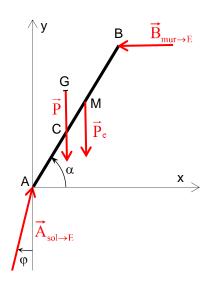

Exercice:


Déterminer analytiquement la distance AC = s (en fonction de P, P_e , f, l et a) à laquelle le peintre peut monter sans provoquer le glissement à l'extrémité inférieure A de l'échelle.

Données:

- poids de l'échelle: $P_e=15~\mathrm{daN}$ au centre D de l'échelle
- longueur de l'échelle: $l=4~\mathrm{m}$
- -OA = a = 1,5 m
- coefficient de frottement en A: f = 0.25
- frottement négligé en B (roulette)
- poids du peintre: $P_p = 90$ daN en G à la verticale de ses pieds passant par C
- problème plan.

Bilan des actions mécaniques sur l'ensemble E = {échelle, peintre} :

- o le glisseur $\overrightarrow{A}_{sol \to E}$ (contact ponctuel en A) est incliné de ϕ par rapport à la normale \vec{y} au plan tangent commun en A au sol et à l'échelle et la composante tangentielle (suivant \vec{x}) s'oppose à $\overrightarrow{V}(A \in E/sol)$.
- o le glisseur $\overrightarrow{B}_{mur \to E}$ (contact ponctuel en B sans frottement) est perpendiculaire au plan tangent commun en B au mur et à l'échelle donc dirigé suivant \vec{x}
- o le poids du peintre, glisseur vertical de norme P passant par G (et C)
- o le poids de l'échelle, glisseur vertical de norme Pe passant par M

Théorème de la résultante appliqué à E:

$$\vec{A} + \vec{B} + \vec{P} + \vec{P}_e = \vec{0}$$

en projection sur \vec{x} : A sin φ - B = 0 (1)

en projection sur \vec{y} : A cos φ - P - P_e = 0 (2)

Théorème du moment appliqué à E en A en projection sur \vec{z} :

B 1 sin
$$\alpha$$
 - P s cos α - P_e $\frac{1}{2}$ cos α = 0 (3)

$$de~(1)~et~(2):~tan~\phi=f=\frac{B}{P+P_e}~~soit~~B=f~(P+P_e)$$

de (3) : f (P + P_e) 1 sin
$$\alpha$$
 - P_e $\frac{1}{2}$ cos α = P s cos α

$$\Rightarrow s = \frac{1}{P} [f l \tan \alpha (P + P_e) - P_e \frac{1}{2}] \text{ avec } \tan \alpha = \frac{OB}{OA} = \frac{\sqrt{l^2 - a^2}}{a^2} \Rightarrow s = \frac{1}{P} [f l \frac{\sqrt{l^2 - a^2}}{a^2} (P + P_e) - P_e \frac{1}{2}]$$

A.N.: s = 2,5 m