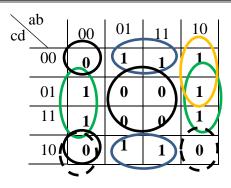
Exercice 1: Simplification de fonction

$$f = (a\overline{a} + b\overline{a} + a\overline{b} + b\overline{b} + a\overline{c} + b\overline{c})(a + c) = (b\overline{a} + a\overline{b} + a\overline{c} + b\overline{c})(a + c)$$

$$f = b\overline{a}a + aa\overline{b} + aa\overline{c} + ab\overline{c} + b\overline{a}c + a\overline{b}c + a\overline{c}c + b\overline{c}c$$

$$f = a\overline{b} + a\overline{c} + ab\overline{c} + b\overline{a}c + a\overline{b}c = a\overline{b}(1 + c) + a\overline{c}(1 + b) + b\overline{a}c = a\overline{b} + a\overline{c} + b\overline{a}c$$


Exercice 2: Simplification de fonction

$$\begin{split} S_1 &= \overline{(\overline{a}\,\overline{b}\,c + \overline{d} + \overline{b})}\,\,\overline{b} + \overline{(\overline{d} + \overline{a} + \overline{b}(\overline{c} + \overline{a}))} \\ &= \overline{a}\overline{b}\overline{c}(\overline{d} + \overline{b}) + \overline{b} + \overline{d}\overline{a}b(\overline{c} + \overline{a}) = (\overline{a} + b)\overline{c}(\overline{d} + \overline{b}) + \overline{b} + \overline{a}\overline{d}b\overline{c} + \overline{a}\overline{d}b\overline{a} \\ &= \overline{a}\overline{c}\overline{d} + \overline{a}\overline{c}\overline{b} + b\overline{c}\overline{d} + b\overline{c}\overline{b} + \overline{b} + \overline{a}\overline{d}b\overline{c} + \overline{a}\overline{d}b = \overline{a}\overline{c}\overline{d} + \overline{c}\overline{d} + \overline{b} + \overline{a}\overline{d} = \overline{c}\overline{d} + \overline{b} + \overline{a}\overline{d} \end{split}$$

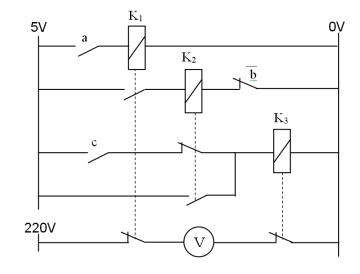
Exercice 3: Tableau de Karnaugh

$$F = b\overline{d} + \overline{b}d + a\overline{b}\overline{c}$$

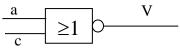
$$\overline{F} = bd + \overline{a}\overline{b}\overline{d} + \overline{b}c\overline{d}$$

Exercice 4 : schéma à contact

Q1 : Des rélais. Ils permettent de séparer le circuit de commande (0-5v) et le circuit de puissance (0-220V)


Q2:
$$V = \overline{K_1}.\overline{K_3}$$
 avec $K_1 = a$ et $K_3 = c.\overline{K_2} + K_2$
Or $K_2 = \overline{b}.K_1 = \overline{b}.a$ donc
$$K_3 = c.\overline{\overline{b}.a} + \overline{b}.a = cb + c\overline{a} + \overline{b}a$$
Ce qui donne: $V = \overline{K_1}.\overline{K_3} = \overline{a}.\overline{cb} + c\overline{a} + \overline{b}a$

$$V = \overline{a}(\overline{c} + \overline{b})(\overline{c} + a)(b + \overline{a})$$


$$V = \overline{a}(\overline{c} + \overline{b}\overline{c} + a\overline{c} + a\overline{b})(b + \overline{a})$$

$$V = \overline{a}(\overline{c} + a\overline{b})(b + \overline{a})$$

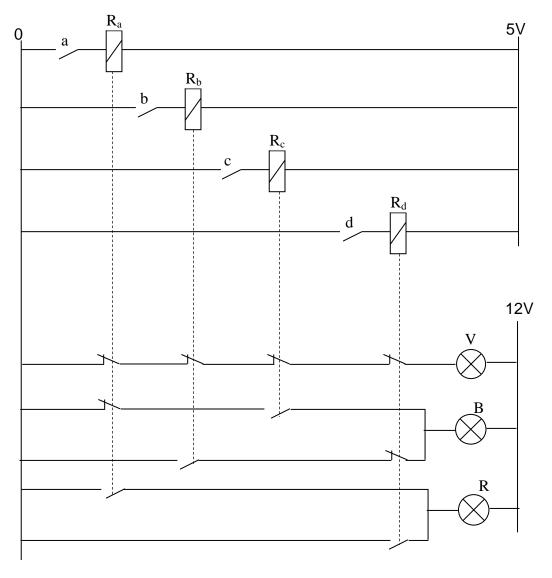
$$V = \overline{a}(b\overline{c} + \overline{a}\overline{c}) = \overline{a}b\overline{c} + \overline{a}\overline{c} = \overline{a}\overline{c} = \overline{a} + \overline{c}$$

Q3:

Lycée Claude Fauriel Page 1 / 4

Exercice 5 : contrôle de pièces

Q1 : Tableaux de Karnaugh et équations des voyants


Voyant vert V					voyant bleu B				voyant rouge R									
\	ab						\ ab						\ ab					
C	d	00	01	11	10		cd	00	01	11	10		cd	00	01	11	10	
	00	1	0	X	0		00	0	1	X	0		00	0	0	X	1	
	01	0	0	X	0		01	0	0	X	0		01	1	1	X	1	
	11	X	X	X	X		11	X	X	X	X		11	X	X	X	X	
	10	0	0	X	0		10	1	1	X	0		10	0	0	X	1	
$V = \overline{a} \overline{b} \overline{c} \overline{d}$					В	$= \overline{a} c +$	$b\overline{d}$			R = a + d								

Le voyant vert s'allume (pièce bonne) si aucun des capteurs n'est activé.

Le voyant bleu s'allume (pièce à ré-usiner) si l'une des deux cotes est trop forte (c = 1 ou b = 1) mais aucune n'est trop faible (a = 0 et d = 0).

Le voyant rouge s'allume (pièce mauvaise) si l'une des deux cotes est trop faible (a = 0 ou d = 0).

Q2: Schéma à contacts

Lycée Claude Fauriel Page 2 / 4

Exercice 6: Codeur absolu

Q1:

Binaire naturel: + codage simple.

Binaire réfléchi : + un changement d'état d'une variable gi entre chaque position. Cela évite les erreurs de lecture lorsque les cellules photosensibles ne sont pas parfaitement alignées. Ce code est très souvent utilisé.

- Nécessite un transcodeur

Q2 : Sur 4 bits on code les nombres de 0 à 2^4 -1, donc de 0 à 15. \Rightarrow résolution : $\frac{2\pi}{16}$

Sur 12 bits : résolution : $\frac{2\pi}{4096}$

Q3 : $B = \frac{N}{\theta} = \frac{16}{2\pi}$ c'est l'inverse de la résolution.

Q4 : variable à 0 si transparent et à 1 si opaque

position	b1=2 ⁰	b2=2 ¹	b3=2 ²	b4=2 ³	g1	g2	g3	g4
0	0	0	0	0	0	1	0	0
1	1	0	0	0	1	1	0	0
2	0	1	0	0	1	0	0	0
3	1	1	0	0	0	0	0	0
4	0	0	1	0	0	0	0	1
5	1	0	1	0	1	0	0	1
6	0	1	1	0	1	1	0	1
7	1	1	1	0	0	1	0	1
8	0	0	0	1	0	1	1	1
9	1	0	0	1	1	1	1	1
10	0	1	0	1	1	0	1	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	0	0	1	0
13	1	0	1	1	1	0	1	0
14	0	1	1	1	1	1	1	0
15	1	1	1	1	0	1	1	0

Q5:

$$b_4 = g_3$$

g3g4 g1g2	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	0	1	1
10	0	0		1

$$b_3 = \overline{g_3}.g_4 + \overline{g_4}.g_3$$

g3g4 g1g2	00	01	11	10
00	0	1	0	
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

Lycée Claude Fauriel Page 3 / 4

$$b_2 = (\overline{g_3}.\overline{g_4} + g_3.g_4)\overline{g_2} + (\overline{g_3}.g_4 + \overline{g_4}.g_3)g_2$$

g3g4 g1g2	00	01	11	10
00	11	0	1)
01	0	1	0	1
11	0		0	
10	(1)	0	1	0

$$b_1 = (\overline{g_3}.\overline{g_4} + g_3.g_4)(\overline{g_1}.\overline{g_2} + g_1.g_2) + (\overline{g_3}.g_4 + g_3.\overline{g_4})(\overline{g_1}.g_2 + g_1.\overline{g_2})$$

g3g4 g1g2	00	01	11	10
00	1		1	
01		1		1
11	1		1	
10		1		1

Pas de regroupement

Q6:

$$b_3 = \overline{g_3}. g_4 + \overline{g_4}. g_3 = g_3 \oplus g_4$$

$$b_2 = (\overline{g_3}. \overline{g_4} + g_3. g_4) \overline{g_2} + (\overline{g_3}. g_4 + \overline{g_4}. g_3) g_2 = \overline{g_3 \oplus g_4} \oplus g_2$$

Lycée Claude Fauriel Page 4 / 4