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MODELISATION DES SYSTEMES LINEAIRES 

CONTINUS INVARIANTS 
 

Extraits du référentiel :  

Compétence visée Savoir-faire associé 

Appréhender les analyses 

fonctionnelle et structurelle 

• Identifier la structure d'un système asservi : 

chaine directe, capteur, commande, consigne, 

comparateur, correcteur 

• Identifier et positionner les perturbations 

• Différencier régulation et poursuite 

• Qualifier les grandeurs d’entrée et de sortie 

d’un système isolé 

Proposer un modèle de 

connaissance et de comportement 

• Déterminer les fonctions de transfert à partir 

d’équations physiques (modèle de 

connaissance) 

• Déterminer les réponses temporelles et 

fréquentielles aux entrées de type signal 

canonique 

• Analyser ou établir le schéma-bloc du système  

• Déterminer les fonctions de transfert 

• Linéariser le modèle autour d’un point de 

fonctionnement 

• Renseigner les paramètres caractéristiques d’un 

modèle de comportement 
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Illustration 1 : Régulation de niveau  

 
 

 

Illustration 2 : Suspension pilotée d’automobile  
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1 – Présentation 

 

 
1.1 - Système automatisé   
 

Système capable d’effectuer des opérations sans l’intervention de l’homme. 

- système combinatoire : les entrées et sorties sont des variables logiques et les sorties sont indépendantes 

du temps (ex : commande d’essuie-glace). 

- système séquentiel : les entrées et sorties sont des variables logiques et les sorties sont dépendantes du 

temps (ouvre portail) 

- système linéaire continu invariant : les entrées et sorties sont des fonctions continues du temps (pilote 

automatique de bateau). 

 

1.2 – Système asservi  

 

 

 

 

 

 

 

 

 

Structure d’un système asservi : 

 

 

 

 

 

 

 = écart 

 

 
On parle de régulation lorsque le système asservi est commandé par une grandeur physique constante et qu'il doit 

maintenir une sortie constante quelles que soient les perturbations qu'il subit (régulation de la température d'une 

pièce …). 

 

On parle de poursuite ou de système suiveur lorsque la consigne du système asservi varie dans le temps. Le 

système doit ajuster en permanence le signal de sortie à celui de l'entrée (radar de poursuite, table traçante …). 

 

 

1.1 – Performances des systèmes asservis  

 

1.3.1– Rapidité  

 

La rapidité est caractérisée par le temps que met le système à 

réagir à une variation brusque de la grandeur d’entrée. 

 

 
Cependant la valeur finale étant le plus souvent atteinte de 

manière asymptotique on retient alors comme principal critère 

d’évaluation de la rapidité d’un système, le temps de réponse à 

n% (en pratique le temps de réponse à 5%). 

C’est le temps mis par le système pour atteindre sa valeur de régime permanent à 5% près et y rester. 

Système 
entrée e(t) sortie s(t) 

Correcteur 
Partie 

opérative 

Consigne Sortie 

Capteur 

+ 
- 

 

Comparateur 

Perturbations 

Réflexion Action 
Tâche à 

réaliser 

Tâche 

réalisée 

Observation 

Chaîne de retour 

Chaîne d’action ou 

directe 
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 1.3.2– Précision  

 

La précision qualifie l’aptitude du système à atteindre la valeur 

visée. Elle est caractérisée par l’écart entre la consigne et la 

valeur effectivement atteinte par la grandeur de sortie. L’écart 

éventuel s’exprime dans la même unité que la grandeur de 

sortie. 

 

 

 

  1.3.3– Stabilité  

 

Un système est stable si à une entrée bornée correspond une sortie bornée. Le bouclage peut déstabiliser un 

système. 

Systèmes instables : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Systèmes stables : 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

SII
Texte tapé à la machine
Lorsque la réponse est stable, on utilise souvent un critère supplémentaire . Le 1er dépassement exprimé en pourcentage de la valeur asymptotique (ou à convergence). 
On verra que suivant le système étudié, d'autres définitions de la stabilité peuvent être utilisées.
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2 – Définitions des SLCI : 
 

2.1 – Système continu :  Les variations des grandeurs physiques e(t) et s(t) sont des fonctions continues du 

temps. On peut donc les définir t  système analogique (par opposition aux systèmes logiques ou numériques 

définis à temps discret). 

 

 2.2 – Système linéaire :  
 

  1.2.1 – Proportionnalité : "l'effet est proportionnel à la cause" 

 

        
 

  1.2.2 – Superposition : 

 

 

        
        

 

 

 

 

 

 

 

 

 2.3 – Système invariant : on suppose que les caractéristiques du système (masse, dimensions, résistance, 

impédance, …) ne varient pas au cours du temps ("le système ne vieillit pas"). 

 

        

 
 2.4 – Exemples : 

 

 

 

 

 

 

 

3 – Modélisation des SLCI : 
 

 3.1 – Deux types de modèle : 

 

Modèle de connaissance : c’est le modèle du physicien. On écrit les équations qui régissent le fonctionnement. 

Les paramètres physiques apparaissent explicitement. 

 

Exemple : circuit RC 

 
 

i 

e s 

R 

C 

e(t) s(t) 
S.L.C.I. 

e(t) s(t) 
S.L.C.I. 

.e(t) .s(t) 
S.L.C.I. 

e1(t) s1(t) 
S.L.C.I. 

e2(t) s2(t) 
S.L.C.I. 

e1(t) + e2(t) s1(t) + s2(t) 
S.L.C.I. 

Pour les systèmes non linéaires, on linéarise la fonction 

entrée-sortie au voisinage du point de fonctionnement 

étudié en remplaçant la portion de courbe par une droite. 

e(t) s(t) 
S.L.C.I. 

e(t+) s(t+) 
S.L.C.I. 

tension u(t) vitesse (t) 
moteur électrique 

effort F(t) allongement 

x(t) ressort 

tension u(t) température T(t) 
four électrique 

débit q(t) hauteur d'eau h(t) 
réservoir 

zone d'étude 

e 

s 

Point de 

fonctionnement 

SII
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Modèle d’identification ou de comportement : C’est le modèle de l’automaticien. Le système est une « boîte 

noire ». On cherche une représentation équivalente (qui soumise aux mêmes sollicitations que le système réel 

donne une réponse identique).Les paramètres ne sont pas explicitement des paramètres physiques. 

 
3.2 – Représentation des SLCI : 
 

En réalité, les systèmes qu'on étudiera ne sont ni continus (point de vue microscopique), ni invariants 

(vieillissement), ni linéaires. En faisant des hypothèses simplificatrices, on se ramène à ce cas, c'est-à-dire à des 

systèmes dont le comportement peut être représenté par des équations différentielles à coefficients constants : 

 

a
d s t

dt
a s tn

n

n

( )
... ( )  0  =   b

d e t

dt
b e tm

m

m

( )
... ( )  0  

Dans les cas réels, m  n : système causal: la cause e(t) précède l'effet s(t). 

 

Résolution : 

 

 solution générale s0(t) de l'équation sans second membre: elle correspond au régime transitoire ou libre 

 solution particulière s1(t) suivant la forme de e(t) en déterminant les constantes par identification: elle 

correspond au régime permanent ou forcé.  

 d'où la solution générale: s(t) = s0(t) + s1(t). 

 

 

Illustration 1 : Régulation de niveau 

 

e s 
? 

s 

e 

t 
1 2 3 4 

1 

2 
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4 – Transformation de Laplace :  

 

Cette transformation de l'équation différentielle va permettre de trouver une solution quel que soit le degré n de 

l'équation. 

 

 4.1 – Définition : 

   

 

domaine temporel (variable t)  domaine symbolique (variable p réelle ou complexe) 

 

La transformée de Laplace de la fonction f(t) est notée F(p) = L [f(t)].  
Dans la pratique, on ne calcule que les transformées de Laplace de fonctions causales c'est-à-dire telles que f(t) = 

0  pour t < 0. Ces fonctions f représentent des grandeurs physiques: intensité, température, effort, vitesse,… 

 

 4.2 – Théorèmes : 
 

  4.2.1 – Unicité : à f(t) correspond F(p) unique, 

       à F(p) correspond f(t) unique. 

 

  4.2.2 – Linéarité : L [f1(t) + f2(t)] = L [f1(t)] + L [f2(t)] = F1(p) + F2(p) 

         L [ f(t)] =  L [f(t)] =  F(p) 

 

  4.2.3 – Facteur d'échelle : L [f(a t)] = 




0

pt dt)at(fe  = ?          posons: u = a t  du = a dt 

d'où               = 




0

a

u
p

a

du
)u(fe   

 

 soit   

 

 

  4.2.4 – Théorème du retard : L [f(t-)] = 


 
0

pt dt)t(fe  = ?      posons: u = t -     du = dt 

 

          = 




 du)u(fe )u(p
  =  





 du)u(fee pup
 

     or, par convention, f(u) = 0 pour u < 0 

 

L [f(a t)] = 
a

1
F(

a

p
) 

f(t) L
F(p) = 





0

pt dt)t(fe  

t 

f(t) f(t-) 

 
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   d'où  
 

  4.2.5 – Transformée de la dérivée :   L [
dt

)t(df
] = 





0

pt dt
dt

)t(df
e  = ? 

intégrons par parties en posant : u = e
-pt

   du = -p e
-pt 

        
v = f(t)     dv = 

dt

)t(df
dt 

d'où L [
dt

)t(df
] =  

0

pt )t(fe  - 



0

pt dt)t(fpe         or 
t

lim (e
-pt

f(t)) = 0 car f(t) bornée 

 

donc        

 

Pour la dérivée seconde : 

 

 

 

 

  4.2.6 – Transformée de l'intégrale :   L [ 
t

0

du)u(f ] = ? 

soit f(t) = 
dt

)t(dg
  donc  L [f(t)] = F(p) = L [

dt

)t(dg
] = p G(p) - g(0

+
) = p L [ 

t

0

du)u(f ] - g(0
+
) 

 

d'où 

 

 

 

Remarque : si les conditions initiales sont nulles (conditions d'Heaviside) 

 

 dériver par rapport à t dans le domaine temporel revient à multiplier par p dans le domaine symbolique 

 

 intégrer dans le domaine temporel revient à diviser par p dans le domaine symbolique. 

 

4.2.7 – Théorème de la valeur initiale :  

 

 

4.2.8 - Théorème de la valeur finale : 

 

Remarque : ces deux derniers résultats n'ont de sens que si les limites existent. 

 

 

 

 4.3 – Transformées de fonctions courantes : 
 

  4.3.1 – Fonction de Dirac (ou impulsion unité) (t) : 

 

  par définition   (t) = 0,   t  0 

 

Cette fonction représente une action s'exerçant pendant un temps très court. 

 

L [f(t-)] = e
-p

 F(p) 

L [
dt

)t(df
] = p F(p) - f(0

+
) 

L [
2

2

dt

)t(fd
] = p

2
 F(p) – p f(0

+
) – f'(0

+
) 

L [ 
t

0

du)u(f ] = 
p

)0(g

p

)p(F 

  

)p(Fplim)t(flim
p0t 

  

)p(Fplim)t(flim
0pt 

  

t 

(t) 
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(t) = 
1

0t t

1
lim
1

  d'où   L [(t)] = dt
t

1
lime

1

1

t

0 1
0t

pt

 


 = 

1
0t t

1
lim
1

dte
1t

0

pt




 

    = 
1

0t t

1
lim
1

1t

0

pt

p

e







 

= 
1

pt

0t pt

e1
lim

1

1






= 

x

1e
lim

x

0x




 

 

 

 

 

 

  4.3.2 – Fonction échelon unité u(t) : 

 

u(t) = 0 si t < 0   et   u(t) = 1 si t  0 

 

 

L [u(t)] = 




0

pt dt)t(ue  = 




0

pt dte  = 















0

pte
p

1
     

 

 

  4.3.3 – Fonction rampe de pente unitaire : 

 

 

 

dt

df
 = u(t)     L [t.u(t)] = 

p

)0(f

p

)p(U
      

 

 

  4.3.4 – Fonction sinusoïdale : f(t) = sin t . u(t) 

F(p) = 


 
0

pt dttsine   qu'on intègre par parties en posant  du = sin t dt     et   v = e
-pt

 

    = 


















0

pte
tcos

- 





0

pt dtetcos
p

 = 




























 








0

pt

0

pt dtetsin
p

etsin
1p1

 = )p(F
p1

2

2





 

 

 

 

 

 4.3.5 – Fonction exponentielle : f(t) = e
-at

 . u(t) 

 

 

 

 

 

5 – Transformation de Laplace inverse :  

 

Les transformées de Laplace donnent des fonctions de p qui sont des fractions rationnelles que l'on décompose en 

éléments simples pour revenir au domaine temporel. 

 

Exemple : soit un système régi par l'équation différentielle  )t(e)t(s
dt

)t(ds

dt

)t(sd
 65

2

2

 

avec s(0) = 2, s'(0) = 2   et   e(t) = 6 u(t) 

t 

1/t1 

t1 

L [ (t)] = 1 

L [u (t)] = 
p

1
 

L [sin t.u(t)] = 
22p 


 

L [e-at
.u(t)] = 

ap

1


 

f(t) = 0 si t < 0   et   f(t) = t si t  0    donc    f(t) = t.u(t) 

t 

u(t) 

1 

t 

f(t) 

1 

1 

L [t u (t)] = 
2

1

p
 

SII
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et résolution d'une équation différentielle 

SII
Rectangle 

SII
Rectangle 

SII
Texte tapé à la machine
MPSI/MP2I



PCSI/MPSI Cours  : Modélisation des systèmes Linéaires Continus Invariants S2I 

Lycée Claude Fauriel  Page 10 sur 29 

On applique la transformation de Laplace à cette équation : 

 

L [
2

2

dt

)t(sd
] + 5 L [

dt

)t(ds
] + 6 S(p) = E(p) 

 

p² S(p) – p s(0) – s'(0) + 5 [p S(p) – s(0)] + 6 S(p) = E(p) 

 

p² S(p) – 2 p – 2 + 5[p S(p) – 2] + 6 S(p) =
p

6
 

soit     
)6p5p(p

6p12p2
)p(S

2

2




 = 

)3p)(2p(p

6p12p2 2




 

 

On décompose cette fraction en éléments simples : S(p) = 
3p

C

2p

B

p

A





  

Par identification, on trouve  S(p) = 
3p

4

2p

5

p

1





  

On retourne au domaine temporel en prenant les transformées inverses, d'où :   s(t) = (1 + 5 e
-2t

 – 4 e
-3t

 ). u(t) 

 

Illustration 1 : régulation de de niveau 

 
 

 

6 – Fonction de transfert d'un système :  

Soit un système décrit par l'équation différentielle :  a
d s t

dt
a s tn

n

n

( )
... ( )  0  = b

d e t

dt
b e tm

m

m

( )
... ( )  0  

On se place dans le cas de conditions initiales nulles (conditions d'Heaviside) : le niveau initial du système 

importe peu, c'est sa réaction à une perturbation à partir d'un état stable que l'on souhaite étudier. On peut donc 

toujours se ramener à des conditions initiales nulles avec un changement d'origine. 
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d'après le théorème de la dérivée : L [
n

n

dt

)t(sd
] = p

n
 F(p)  

 

On applique la transformation de Laplace à l'équation différentielle : 

 

an p
n
 S(p) + … a0 S(p) = bm p

m
 E(p) + … + b0 E(p) 

 

On appelle fonction de transfert H(p) du système : 

 

 

 

 

Dans le domaine symbolique, la relation entre l'entrée et la sortie s'écrit donc  

 

 

 

 

La fonction de transfert représente le comportement du système et s'exprime simplement comme le rapport de 

deux polynômes en p (fraction rationnelle) construits à partir des coefficients de l'équation différentielle régissant 

son évolution. 

 

Forme canonique de la fonction de transfert : 
 

avec n = n’+α = ordre du système 

  = classe du système 

 K = gain statique 

 

En explicitant les racines (complexes éventuellement) de ces polynômes, H(p) peut s'écrire : 

 

H(p) = 
)pp)...(pp)(pp(

)zp)...(zp)(zp(k

n21

m21




 

les zi sont les zéros et les pi les pôles de la fonction de transfert. 

 

Remarque : si l'entrée est une impulsion de Dirac, on a alors S(p) = H(p).1 = H(p) 

La fonction de transfert représente donc la transformée de Laplace de la réponse "impulsionnelle". 

Malheureusement, on ne sait pas générer physiquement un tel signal. Cependant, cette propriété est utilisée par les 

logiciels de simulation. 

 

Illustration 1 : Régulation de niveau 

 

H(p) = 
)p(E

)p(S
 = 

0
n

n

0
m

m

a...pa

b...pb




 

S(p) = H(p).E(p) 

H(p)  = 
)pa...1(p

)pb...1(K

'n
'n

'm
'm






 

 

H(p) 
E(p) S(p) 
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7 –Systèmes asservis :  

 

 7.1 – Structure : 

 

Le comportement d'un système asservi peut être décrit par le schéma-bloc suivant : 

 

 

 

 

 
 

 

 

 

 

Exemple : chauffage d'un four 

- la consigne est la température à atteindre et à conserver 

- la chaîne d’action comprend, entre autre, la résistance électrique qui, soumise à une certaine tension, 

permet de chauffer le four 

- la sortie est la température réelle (pas forcément égale à la consigne à cause des pertes, etc..) 

- dans la chaîne de retour, on a un capteur qui permet de mesurer la température réelle. 

- le comparateur permet de comparer la consigne à la sortie. 

 

Les chaînes d'action et de retour sont caractérisées par leur fonction de transfert. 

 

 

 

Un sommateur (généralisation du comparateur) comporte  

plusieurs entrées et une seule sortie: 

 

 

 

Une jonction est un « prélèvement » qui a le même signal que  

la branche principale: 

 

 

 7.2 – Fonctions de transfert en série : 

 

 

          

 

  

S = E3.H3 = E2.H2.H3 = E1.H1.H2.H3 = E1.H  donc 

 

 

 7.3 – Fonctions de transfert en parallèle : 

 

 

 

         = 
 

 

 

 S1 = E H1  et   S2 = E H2  d'où    S = S1 + S2 = E (H1+ H2)  donc  

  

chaîne directe 

(ou d'action) 

sortie 

chaîne de retour 

(ou d'observation) 

consigne 
+ 

- 

E1 
+ 

- 

E2 

+ 

E3 

S = E1-E2+E3 

X X 

X 

H1 

E1 S 
H2 

E2 
H3 

E3 
H 

E1 S 

H = H1.H2.H3 

H1 

S1 

H2 

E 

S2 

 
+ 

+ S  H 

E S 

H = H1 + H2 

= 

SII
Rectangle 

SII
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7.4 – Fonction de transfert Boucle fermée : Formule de « Black » 

 

      

       = 

 

 

 

Equations : S = H.  et   = E – G.S  d'où   S = H.(E-G.S) = H'.E 

 

 

donc     

 

 

Cas d'un système à retour unitaire : G = 1 

 

 

          

 

 

 

 

 7.5 – Déplacement d'une jonction : 

 

 

 

       = 

 

 

 

   S = H.E    E = H'.S    d'où  

 

 

 

        =  

 

 

 

        S = H'.E = H.E   d'où 

 

 

 7.6 – Déplacement d'un sommateur : 

 

 

 

            = 

 

 

 

  S = H.(E1 + E2)    S = H.E1 + H'.E2   d'où 

 

H 
S E 

+ 
- 

 

G 

H' 
E S 

H 
S E 

+ 
- 

 
H/(1+H) 

E S 

H 
S E 

E 

H 
S E 

H' 
S 

H' = 1/H 

H 
S E 

S 

H 
S E 

H' 
E 

H' = H 

H 
S E1 

E2 

+ 
+ 

H 
S E1 

E2 

+ 
+ 

H' 

H' = H 

H' = 
H.G1

H


 

= 

SII
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              = 
 

 

 

  S = H.E1 + E2     S = H.(E1 + H'.E2)   d'où  

 

 

 

Illustration 1 : Régulation de niveau 

 
 

 
 

 

H 
S E1 

E2 

+ 
+ 

H 
S E1 

E2 
H' 

+ 
+ 

H' = 1/H 

SII
Rectangle 
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8 – Systèmes linéaires fondamentaux : 

 

 La fonction de transfert de nombreux systèmes est une composition de fonctions de transfert de systèmes 

élémentaires qu'on va étudier en détail. On va soumettre chacun de ces systèmes élémentaires à des signaux 

d'entrée tests e(t) et on va calculer la réponse s(t): 

 e(t) = (t) = impulsion de Dirac  s(t) = réponse impulsionnelle 

 e(t) = u(t) = échelon unitaire  s(t) = réponse indicielle 

 e(t) = t.u(t) = rampe  s(t) = réponse à une rampe. 

 

 

8.1 – Système à action proportionnelle : la sortie est proportionnelle à l'entrée. 

 

 

 

 

s(t) = K e(t) 
L 

S(p) = K E(p)  H(p) = K 

SII
Rectangle 

SII
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Exemple : résistance, capteur 

 

8.2 – Système intégrateur : 

 

 

 

 

 

 

 

 

Exemple: inductance   u = 
dt

di
L   U(p) = L p I(p)   H(p) = 

)(

)(

pU

pI
= 

Lp

1
 

 

  8.2.1 – Réponse impulsionnelle : 

 

E(p) = 1  S(p) = 
p

K
 

 

 

  8.2.3 – Réponse indicielle :    

 

E(p) = 
p

1
  S(p) = 

p

K
.
p

1
 

 

 

 

8.3 – Système du premier ordre : 

 

 

 

 

D’où la fonction de transfert sous forme canonique :     K = gain statique 

 = constante de temps 

 

Exemples : circuit RC pour lequel  =RC et K = 1,   moteur à courant continu (avec inductance négligeable) 

 

  7.3.1 – Réponse indicielle :    

 

E(p) = 
p

1
    S(p) = 

p1

K


.
p

1
 

0t
lim


s(t) = 
p

lim p S(p) = 
p

lim
p1

K


 = 0    et  

0t
lim


s'(t) = 
p

lim p
2
 S(p) = 

p
lim

p1

pK


 = 



K
  pente à l'origine 

t
lim s(t) = 

0p
lim


p S(p) = 
0p

lim
 p1

K


 = K  asymptote horizontale de valeur K 

 

Pour connaître complètement s(t), il faut décomposer S(p) en éléments simples : 

 

 

 

K 
E(p) S(p) 

dt

)t(ds
 = K e(t) 

L 
p S(p) = K E(p)  H(p) = 

p

K
 

 

 
E(p) S(p) 

L-1 
s(t) = K u(t) 

t 

s(t) 
K 

e(t) 

L-1 
s(t) = K t u(t) 

t 

s(t) 

1 
e(t) 

pente K 


dt

)t(ds
+ s(t) = K e(t) 

L 
 p S(p) + S(p)= K E(p) 

H(p) = 
p1

K


 

8
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0,63K 

K 

0,95K 

 3 

S(p) = 
p

A
 + 

p1

B


 = 

p

K
 - 

p1

K




 = K (

p

1
 - 




1
p

1
) 

 

Points caractéristiques à connaître : 

 

 pour t =  , s() = K(1 – e
-1

) = 0,63K 

 

 temps de réponse à 95% = instant tr  

pour lequel     s(tr) = 0,95 smax 

K(1- 
 r

t

e ) = 0,95K  
 r

t

e = 0,05  tr  3 

 

 

 

Si on connaît le tracé de la réponse indicielle d'un système du 1
er

 ordre, on peut trouver facilement, par 

identification, le gain K et la constante de temps . 

 

  7.3.2 – Réponse à une rampe de pente a :    

e(t) = a t u(t)     E(p) = 
2p

a
    S(p) = 

)p1(p

Ka
2 

 = K(
2p

a
-

p

a 
+

p1

a 2




) 

 

 

 

 

 

 

 

 

Illustration 1 : Régulation de niveau 

 

L-1 

s(t) = K (1 - 


t

e ) u(t) 

L-1 

s(t) = a K (t -  +  


t

e ) u(t) 

t 

s(t) 
e(t) 

K = 1 K < 1 K > 1 

t 

t t 

8
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8.4 – Système du second ordre : 
                 

K = gain statique 

         0 = pulsation propre 

         m = coefficient d'amortissement 

 

Exemple : masse liée à un support fixe par un ressort et un amortisseur visqueux. 

 

La transformée de Laplace de cette équation donne : p
2
 S(p) + 2 m 0 p S(p) + 0

2
 S(p)= K 0

2
 E(p) 

 

2

2

dt

)t(sd
 + 2 m 0

dt

)t(ds
+ 0

2
 s(t) = K 0

2
 e(t) 

  

SII
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d'où la fonction de transfert sous forme canonique: 

   

 

8.4.1 – Réponse impulsionnelle :    

E(p) = 1    S(p) = 
2

00

2

2

0

pm2p

K




 = 

)p(D

K 2

0  

 

avec D(p) de discriminant réduit ' = m
2
0

2
 - 0

2
 = 0

2
(m

2
 – 1) 

 

 

 premier cas : m>1  D(p) a alors 2 racines réelles p1 et p2 

 

p1 = - m 0 - 0 1m2    et p2 = - m 0 + 0 1m2    avec p1 < p2 < 0 

d'où    S(p) = 
)pp)(pp(

K

21

2

0




 = K 0

2
 (

)pp(

A

1
 +

2pp

B


) = 

1m2

K

2

0




(

1pp

1


-

2pp

1


) 

 

 

d'où 

 

 

    système amorti (régime apériodique) 

 

 deuxième cas : m<1  D(p) a alors 2 racines complexes conjuguées  

 

On peut alors écrire S(p) sous la forme: S(p) = 
)m1()mp(

K
22

0

2

0

2

0




 

soient  
2
 = 0

2
 (1 – m

2
)   et  a = m 0           S(p) = 

222

0

)ap(m1

K








 

d'où 

 

 

 

  système sous-amorti (régime pseudo-périodique) 

 

La pseudo-période des oscillations vaut T = 
2

0 m1

2




 

 

Lorsqu'il n'y a pas d'amortissement (m = 0), on a une réponse  

sinusoïdale de pulsation 0 (ce qui justifie le nom de pulsation propre donné à 0). 

 

 troisième cas : m=1  D(p) a alors une racine double. 

L'allure de la réponse serait comparable à celle obtenue dans le cas du régime apériodique mais ce cas est 

impossible dans la réalité: on ne peut avoir une valeur réelle de m exactement égale à 1! 

 

 

8.4.2 – Réponse indicielle :    

 

Remarque : la réponse indicielle est l'intégrale de 0 à t de la réponse impulsionnelle.  

H(p) = 
2

2

00

p
1

p
m2

1

K







 

s(t) = 0

22 1

K

m




(

tp2e - 
tp1e ) u(t) 

s(t) 

s(t) = )tm1sin(e
m1

K 2
0

tm

2

0 0 


 
u(t) 

t 

T 

enveloppe 

exponentielle 

t 

s(t) 

SII
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En effet, Simp = H(p).1 et Sind = H(p).
p

1
 

La réponse impulsionnelle étant nulle pour t = 0, la pente de la réponse indicielle est nulle à l'origine. 

 premier cas : m>1 (système amorti)         s(t) = 
1m2

K

2

0




du)ee(

up
t

0

up 12   

du)ee(
up

t

0

up 12   = 

t

0

up

1

up

2

12 e
p

1
e

p

1








 = 

2

tp

2 p

1
e

p

1
2   - 

1

tp

1 p

1
e

p

1
1   = 

21

12

pp

pp 
+ 

2

tp

p

e 2

- 
1

tp

p

e 1

 

 

        =  
0

2 1m2




+ 

2

tp

p

e 2

- 
1

tp

p

e 1

 

 

d'où 

 

 

 

 

Dès qu'on s'éloigne de t = 0, le système du second ordre est 

comparable à un premier ordre. Au début de l'évolution, le premier 

ordre réagit plus vite (pente à l'origine non nulle). 

 

 

 deuxième cas : m<1 (système sous-amorti)    s(t) = du)um1sin(e
m1

K 2
0

um
t

0
2

0 0 


 
  

En intégrant deux fois par parties :  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La valeur du premier dépassement (très importante dans les applications) ne dépend que du coefficient 

d'amortissement. On la donne souvent en pourcentage de la valeur finale. 

 

Il arrive très souvent que l’on détermine le temps de réponse à 95% graphiquement à partir de l’abaque suivant : 

s(t) = [K +
1m2

K

2

0




(

2

tp

p

e 2

- 
1

tp

p

e 1

)] u(t) 

K 

K 

 

s(t) = )))marccos(tm1(sine

m1

1
1(K 2

0
tm

2

0 




  

Les dépassements Dk sont les maxima et minima de la 

courbe aux temps tk (zéros de la réponse 

impulsionnelle). 

 

Premier dépassement:    D1 = 
2m1

m

eK 



 

pour   t1 = 
2

0 m1


 = 

2

T
 

T 

D1 

K 

t1 

t 

s(t) 

t 

s(t) 

SII
Rectangle 

SII
Texte tapé à la machine
On utilisera très souvent les abaques suivants pour éviter l'utilisation des formules. Ils donnent les dépassements relatifs et le temps de réponse réduit (produit pulsation propre par temps de réponse à 5%) en fonction du coefficient d'amortissement. Ils sont à échelles logarithmiques.
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Illustration 2 : Suspension pilotée d’automobile 

 

Le temps de réponse est 

minimal pour m = 0,69 

SII
Texte tapé à la machine
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SII
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9 – Identification : 
 

 On ne peut pas toujours déterminer un modèle mathématique (donc calculer une fonction de transfert) pour 

un système réel à partir des lois physiques qui régissent son comportement (système trop complexe ou mal connu). 

L'approche expérimentale consiste à soumettre le système à des entrées connues puis à rechercher une fonction de 

transfert (par identification) qui approche au mieux la relation observée entre l'entrée et la sortie. 

 On peut se fixer à priori l'ordre du modèle étudié : plus l'ordre sera élevé, plus la précision du modèle sera 

grande mais la fonction de transfert sera plus lourde à manipuler. D'autre part, les mesures étant entachées 

d'erreurs inévitables et les caractéristiques du système pouvant évoluer dans le temps, il ne sert à rien de 

rechercher un modèle trop fin. 

 

 

10 - Analyse fréquentielle  ou  harmonique : 

 
 10.1 – Définitions : 

 
On soumet un système linéaire à une entrée sinusoïdale e(t) = e0 sin t. 

La réponse en régime permanent est  

s(t) = s0 sin (t + ) : même fréquence  que l’entrée avec un déphasage 

 et une amplitude s0 qui dépendent de . Les réponses pour différentes 

valeurs de  sont dites fréquentielles ou harmoniques. 
 

On pose e = e0 e
jt

   et  s = s0 e
j(t+)

. Alors, e(t) et s(t) représentent les 

parties imaginaires de e et s. 

 

de (1) , an (j )
n
 s+...+ a0 s = bm   (j )

m
  e +...+ b0 e  d'où   

 

 )j(H
)j(a...a

)j(b...b

e

s
n

n0

m

m0





  = 

s

e
e j0

0


 

H(p) 
e0 sint   ? 

SII
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 H(j) est donc un nombre complexe : 

 le module A() = | H(j)| = 0

0

s

e
 

 l’argument est le déphasage () = Arg(H(j)) 

 
 

 

 10.2 - Représentations graphiques de la fonction de transfert: 

 

 

  10.2.1 – Diagramme de Bode : 

 

On représente  H(j) sur 2 courbes en fonction de   

(axes des abscisses gradué en log() )  : 

 

- le module G (gain) en décibels (dB): G = 20 log | H(j)| 

 

- la phase  en degrés ou radians 

 

 

Intérêt :  

si H = H1 . H2 (fonctions de transfert en série) : 

alors       20 log |H| = 20 log |H1| + 20 log |H2|    et      Arg (H) = Arg (H1) + Arg (H2) 

 

 

Nota :  

 en mécanique,  < 0 (réponse en retard) et G  0 quand    (caractère passe-bas des servo-

mécanismes). 

 variation de K      translation verticale de G et  invariant 

 

 

 

 

  10.2.2 – Diagramme de Black (ou Black-Nichols)(hors prog) 

 

On représente le module G de H(j) en dB  

en fonction de la phase exprimée en degrés  

et on gradue la courbe en . 

  

 

 

 

 

  10.2.3 – Diagramme de Nyquist (hors prog) 

 

Pour chaque valeur de , on représente H(j) 

dans le plan complexe et on gradue la courbe 

en . Le gain (OA) et le déphasage sont  

directement lisibles pour chaque valeur de . 

 
  

G 

 

sens des  

croissants 

log 

 

 = Arg (H(j)) 
 0 1 3 

log  

G = 20 log | H(j)| 
 

0 1 2 

Im(H(j)) 

Re(H(j)) 

sens des  

croissants 

O 

 

A 
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10.3 - Système à action proportionnelle :   

 

  
      

 exemple: capteur 

 

 
       Bode    Black   Nyquist 

  

 

 
 10.4 - Intégrateur pur : 

 

  

 

 

gain G = 20 log K - 20 log  

phase  = - 90° 

      

Bode    Black   Nyquist 

 

Remarque : La pente du gain est de - 20 dB par décade (noté -1). 

  

 

 
10.5 - Dérivateur pur : 

 

  

 

 

gain G = 20 log K + 20 log  

phase  = 90° 

 
 
     Bode    Black   Nyquist 

  

 

 10.6 - Retard pur: 
 

 

  

 

gain G = 0 

phase  = -  

 

 0 1/  

log  -  - log   

 0 - 1 rad -  
      Bode    Black         Nyquist 

 

  

  

G  

 

 

  

20 log K 

G  

 
20 log K 

Re(H(j)) 

Im(H(j)) 

K 

20 log K 

G  

 

  

  

K 1 10 

20 log K-20 

-90° 

(-1) 

Re(H(j)) 

Im(H(j)) 
G  

 -90° 

 

 
=K 

G  

 

  

  

1/K 

1 
20 log K 

90° 

(+1) 

Re(H(j)) 

Im(H(j)) 
G  

 90° 

 

 
=1/K 

Re 

Im 

G  

 
 

G  

 

    

1 

0 

1 

 

H(j) = K 
 




j

K
)j(H  

H(j) = jK 

H(j) = e
-j
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 10.7 - Système du 1

er
 ordre (K > 0): 

 

 

     d'où     et   

 

  

 

  10.7.1 - Diagramme de Bode: 

 

On trace d'abord les diagrammes asymptotiques : 

 

 - quand  <<1, H(j )  K    et    = 0° 

 (cf système à action proportionnelle ) 

 

 - quand  >>1, H(j )  
K

j
 et    = -90° 

 (cf intégrateur donc pente -20dB/décade)  

 

 

Pulsation de cassure en A : 

20 log K = 20 log K - 20 log    = 1 d'où 

   = c = 1/ 

  

G(1/) = 20 log K - 20 log 2  = 20 log K - 3 dB 

G(1/2) = 20 log K - 20 log 125.  = 20 log K - 1 dB 

 

de même, pour  = 2/, l'écart entre le gain et  

le lieu asymptotique vaut 1 dB. 

 

 

Remarques: 

 une modification de K se traduit par une translation verticale de la courbe de gain et n'a pas 

d'influence sur la phase (vrai  H(p)). 

 une modification de la constante de temps  déplace la pulsation de cassure. 

 

  10.7.2 - Diagramme de Black: 

    

 

           Une modification du gain statique K se  

        traduit par une translation verticale de la 

        courbe de gain. 

 

        (On utilisera ce diagramme pour la correction 

        des systèmes asservis). 

 

 

 

 

 

 

  

 0 1/2 1/ 2/  

 0 -26° -45° -63° -90° 

 

 G dB 

20 log K 

-45° -90° 

20 log K - 3 
 = 1/ 

 = 

0 

 

H(j) = 
 j1

K
 G = 20 log 

K

1 2 2  
   = - arc tan () 

G  

 
1 

  
  

20 log K 

3 dB 

-45° -45° 

-90° -90° 

1/ 

A 
G  

 
1 

  
  

20 log K 

1/ 

3 dB 

1/2 2/ 
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  10.7.3 - Diagramme de Nyquist: 

 

H j
K j K

j
K

( )
( )




   



 












1

1 1 12 2 2 2 2 2
 = a + j b   

a
2
 + b

2
 = Ka    (a - K/2)

2
 + b

2
 = (K/2)

2
 

 

donc le lieu de Nyquist est un cercle de rayon K/2 

centré en (K/2,0) (en fait, seul le ½ cercle inférieur 

est parcouru car –90°    0°).  

 

 10.10 - Système du 2ème ordre : 

2

0

2p
p

m2
1

K
)p(H









0

 

 

      on note u = 
0


 = pulsation réduite 

 

 

 module :          GdB = 20 log K - 10 log[(1-u
2
)
2
 + 4m

2
u

2
] 

 

  la dérivée s'annule pour m < 
2

2
:  résonance pour la pulsation r = 0 1 2 2 m     

         |H(jr)| = 
K

m m2 1 2
   

Plus m est faible, plus la résonance est importante: caractérisée par le facteur de surtension (rapport entre gain à la 

résonance et gain statique)        Q  = 
1

2 1 2m m
 

 

 

 phase :     (pour u < 1) 

 

 

  10.10.1 - Diagramme de Bode: 

 

G() = 20 log K - 10 log [(1 - u
2
)
2
 + 4 m

2
 u

2
 ] 

 

-   0 : G  20 log K  et    0 

 

-    : (1 - u
2
)
2
 + 4 m

2
 u

2
   u

4
     

     G  20 log K - 40 log u 

           -180° 

 

-  = 0  :  G = 20 log K/2m 

          = -90° 

  

 

 

 

  

Im Im 
Re K K/2 
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K
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

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


  

|H(j)| = 
K

u m u( )1 42 2 2 2 
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Nota: si m > 1, on a alors 2 racines réelles  

 H = 
K

p p1

1

11 2  
.  = H1 . H2  (diagramme asymptotique plus précis) 

 

1 . 2 = 
2

0

1


  0

21

log2
1

log
1

log 





 

 

donc log 0 est au milieu de log
1

1


 et log

2

1


 

 

 

 

 

   

10.10.2 - Diagramme de Black:  10.10.3 - Diagramme de Nyquist: 

 

 

 

 

 

 

 

 

 

 

        
22222222
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um4)u1(

umK2
j

um4)u1(

)u1(K
)j(H







  

         

 = 0 : H(j) = K 

 = 0 : H(j) = - j 
m2

K
   et     = - 90° 

 = r (si m<0,7) : gain max 

   : H(j)  0
-
  et    -180° 

  

(-2) 

1/1 1/2 
0 

(-1) 

 

 G dB 

20 log K 

 
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-180° 

m>0,7 

Im 

Re 

 = 0 

 

m 
0 

K 

 

GdB  

 

Tracé asymptotique 

Tracé réel 

SII
Polyligne 

SII
Texte tapé à la machine
pour info

SII
Rectangle 

SII
Texte tapé à la machine
MPSI/MP2I



PCSI/MPSI Cours  : Modélisation des systèmes Linéaires Continus Invariants S2I 

Lycée Claude Fauriel  Page 28 sur 29 

Illustration 2 : Suspension pilotée d’automobile 
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