MPSI/MP2| Cours : Modélisation des systémes Linéaires Continus Invariants S21

MODELISATION DES SYSTEMES LINEAIRES
CONTINUS INVARIANTS

Extraits du référentiel :
Compétence visée Savoir-faire associé

 ldentifier la structure d'un systéeme asservi :
chaine directe, capteur, commande, consigne,
comparateur, correcteur

* ldentifier et positionner les perturbations

 Différencier régulation et poursuite

*  Qualifier les grandeurs d’entrée et de sortie
d’un systéme isolé

» Déterminer les fonctions de transfert a partir
d’équations physiques (modéle de
connaissance)

» Déterminer les réponses temporelles et
fréquentielles aux entrées de type signal

Proposer un modele de canonique

connaissance et de comportement * Analyser ou établir le schema-bloc du systeme

» Determiner les fonctions de transfert

* Linéariser le modéle autour d’un point de
fonctionnement

* Renseigner les paramétres caractéristiques d’un
modeéle de comportement

Appréhender les analyses
fonctionnelle et structurelle

Sciences Industrielles de [ Ingénieur
1ére année de CPGE
Lycée Claude Fauriel
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lHlustration 1 : Régulation de niveau

Le systeme hydraulique représenté ci-dessous comporte un réservoir de

section constante

* Débit d’eau entrant : qe(t)

* Deébit d’eau sortant : gs(t) supposé proportionnel a h(t) (approximation
linéaire)

*  Hauteur : h(t) mesurée par le limnimeétre

On cherche a réguler ce systéeme pour assurer un niveau d’eau constant.

”" II

oyl )

Limnimétre
l[lemt ell) -\

Niveau hit) Potentiométre %

helt) ‘

Moteur

Umes(t) ‘

Débit gg(t)
— Réservoir

IHlustration 2 : Suspension pilotée d’automobile

| l Limnimetre

INiveau hit)

1¢® étude : on s’intéresse au réservoir seul

2ieme étude : on régule le systéme grace a
une boucle d’asservissement

chassis du véhicule

Le schéma ci-contre représente la modélisation d'une
suspension hydrauliqgue d’un véhicule. L'axe de la roue est
guidé par rapport au chassis du véhicule par une liaison
glissiére verticale. Un ressort de raideur k et un vérin
hydraulique de section S montés en série constituent amortisseur
I'élément déformable de la suspension. Un amortisseur de

coefficient de frottement visqueux zest monté en paralléle

avec I'ensemble précédent. Un distributeur hydraulique

envoie vers le vérin un débit d’huile q.

On note (dans les conditions d’Heaviside) :
- x(t) et y(t) les déplacements des extrémités du ressort
par rapport a sa position de repos,
-f.(t), f.(t) et f(t) les variations des forces exercées par le sol

C roue

ressort,

Mise en éguations :

()

fa(t) :_]-1%

'amortisseur et le sol autour du point de repos. L

dg)«( t)

=1 () +1f, (1) +1(t)

£.(t) =k(x(t)-y(1) QO =S—— q(O) =K,(y.(D)-y(D)

Le but du probleme est d’étudier le comportement de la suspension pour différentes valeurs des

caractéristiques et dans différentes phases de fonctionnement.
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MPSI/MP2 Cours : Modélisation des systémes Linéaires Continus Invariants S21

1 — Présentation

entrée e(t) Systeme sortie s(t)

1.1 - Systéme automatisé

Systéme capable d’effectuer des opérations sans 1’intervention de ’homme.
- systéeme combinatoire : les entrées et sorties sont des variables logiques et les sorties sont indépendantes
du temps (ex : commande d’essuie-glace).
- systeme séquentiel : les entrées et sorties sont des variables logiques et les sorties sont dépendantes du
temps (ouvre portail)
- systeme linéaire continu invariant : les entrées et sorties sont des fonctions continues du temps (pilote
automatique de bateau).

1.2 — Systeme asservi
Chaine d’action ou

directe

\4

T,ache a Réflexion Action Tac.h?
réaliser réalisée
N

Observation

Chaine de retour

A

Structure d’un systéme asservi :

Perturbations
Comparateur i

Consigne € Partie Sortie
g S+ Correcteur opérative

Y
\4

¢ = écart Capteur

On parle de régulation lorsque le systéeme asservi est commandé par une grandeur physique constante et qu'il doit
maintenir une sortie constante quelles que soient les perturbations qu'il subit (régulation de la température d'une
piece ...).

On parle de poursuite ou de systéme suiveur lorsque la consigne du systéme asservi varie dans le temps. Le
systeme doit ajuster en permanence le signal de sortie a celui de I'entrée (radar de poursuite, table tragante ...).

1.1 — Performances des systémes asservis Ts
1.3.1- Rapidité 1+n% /-\
1 / \ T
. -y o s / \ =
La rapidité est caractérisée par le temps que met le systtme a 1-n%

réagir a une variation brusque de la grandeur d’entrée.

Cependant la valeur finale étant le plus souvent atteinte de
maniére asymptotique on retient alors comme principal critere
d’évaluation de la rapidité d’un systéme, le temps de réponse a >t
n% (en pratique le temps de réponse a 5%).

C’est le temps mis par le systéme pour atteindre sa valeur de régime permanent a £5% pres et y rester.
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Cours : Modélisation des systémes Linéaires Continus Invariants S21

1.3.2— Précision statique i
La précision qualifie I’aptitude du systéme a atteindre la valeur
visée. Elle est caractérisée par I’écart entre la consigne et la
valeur effectivement atteinte par la grandeur de sortie. L’écart
éventuel s’exprime dans la méme unité que la grandeur de
sortie. On parlera alors d'erreur statique.

-écart 'E‘S

e(t)

o

s(t)

1.3.3— Stabilité ol

Un systeme est stable si a une entrée bornée correspond une sortie bornée. Le bouclage peut déstabiliser un
systeme.
Systemes instables :

3 2
Amplitude
1.5]
14 /’\ /\ /\ TemT(s)
U]\/DQ 0.4 0.6 !DB 1 12 14 1
1
Arnplitude
0.5
_2_
-3 Temps(s)
oh 01 02 03 04 3 06
Systemes stables :
1
124 //fﬁ\\\\
1 0.54
0.84
0.61
0.6 Arnplitude
0.4
0.41 Ardalitude
0.24
0.2}
T
Temps(s) Bmps(s)
oh 01 02 03 04 05 0k ob 0z o4 us g 1 12

Lorsque la réponse est stable, on utilise souvent un critére supplémentaire . Le ler dépassement exprimé en

pourcentage de la valeur asymptotique (ou a convergence).

On verra que suivant le systeme étudié, d'autres définitions de la stabilité peuvent étre utilisées.
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MPSI/MP2 Cours : Modélisation des systémes Linéaires Continus Invariants S21

2 — Définitions des SLCI : & S.L.C.I. &

2.1 — Systeme continu : Les variations des grandeurs physiques e(t) et s(t) sont des fonctions continues du

temps. On peut donc les définir Yt = systéeme analogique (par opposition aux systémes logiques ou numeriques
définis a temps discret).

2.2 — Systéme linéaire :

1.2.1 — Proportionnalité : "I'effet est proportionnel a la cause™
e(t s(t) re(t As(t
L S.L.C.. —> = o S.L.Cl. $

1.2.2 — Superposition :

ea(t) s1(t)

—> S.L.C.L —> e.(t) + ex(t) sa(t) + so(t)
= _—> S.L.ClI ———>

ex(t) So(t)

—> S.L.C.L —>

- zone d'étude

Pour les systemes non linéaires, on linéarise la fonction
entrée-sortie au voisinage du point de fonctionnement
étudié en remplacant la portion de courbe par une droite.

“~<  Pointde
fonctionnement

2.3 — Systéme invariant : on suppose que les caractéristiques du systéme (masse, dimensions, résistance,
impédance, ...) ne varient pas au cours du temps (*'le systéme ne vieillit pas™).

e(t) s(t) e(t+1) s(t+1)
—> S.L.C.L —> = —> S.L.C.IL —>
2.4 — Exemples :
tension u(t) — vitesse o(t) effort F(t) allongement
—————>1 moteur électrique [———> _— ressort >
tension u(t) tempeérature T(t) débit q(t) hauteur d'eau h(t)
— 5| fourélectrique > 5 réservoir —>

3 — Modélisation des SLCI :
3.1 — Deux types de modele :

Modele de connaissance : c¢’est le modele du physicien. On écrit les équations qui régissent le fonctionnement.
Les paramétres physiques apparaissent explicitement.

Exemple : circuit RC

tension tension

e(t) _ s(t)
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MPSI/MP2 Cours : Modélisation des systémes Linéaires Continus Invariants S21

Modéle d’identification ou de comportement : C’est le modéle de I’automaticien. Le systéme est une « boite
noire ». On cherche une représentation équivalente (qui soumise aux mémes sollicitations que le systeme réel
donne une réponse identique).Les parameétres ne sont pas explicitement des parametres physiques.

S

1234
3.2 — Représentation des SLCI :

En réalité, les systétmes qu'on étudiera ne sont ni continus (point de vue microscopique), ni invariants
(vieillissement), ni linéaires. En faisant des hypothéses simplificatrices, on se ramene a ce cas, c'est-a-dire a des
systemes dont le comportement peut étre représenté par des equations différentielles a coefficients constants :

d"s(t) d™e(t)
"odt” "odt”
Dans les cas réels, m < n : systeme causal: la cause e(t) précede I'effet s(t).

a

+.4+38,s(t)= D

+..4 b, e(t)

Résolution :

e solution générale so(t) de I'équation sans second membre: elle correspond au régime transitoire ou libre

e solution particuliere s;(t) suivant la forme de e(t) en déterminant les constantes par identification: elle
correspond au régime permanent ou force.

e d'ou la solution générale: s(t) = So(t) + s1(t).

Ilustration 1 : Régulation de niveau

1¢r étude : réservoir seul avec débit sortant = .-
proportionnel a h(t) et débit d’entrée constant.

Niveau bt}

On procede par analogie électrique avec un
circuit RC en paralléle. i, IR

P

k
¥

1E
|

u(t) —

Tous les signaux sont nuls avant I'instant t = 0.
A cetinstant i,(t) passe de 0 a |, et demeure constant ensuite (générateur non représenté)

Onaalors: u(t)=RL(1-e"%)

1. Exprimer g en fonction de u et R et i-en fonction de Cet de la dérivée du/dt. En déduire I'equation
différentielle qui permet de déterminer I'expression de u(t) donnée ci-dessus.

: : S u du
Loi des nceuds et loi d'Ohm: i, =iz +i, =—+C—
R dt

2. Alinstantt=t,, i-=iy. Exprimer u (t,;) en fonction de R et |,.

u(t,) , RI
ce quidonne u(t,)=—L
R d () 2
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MPSI/MP2I Cours : Modélisation des systémes Linéaires Continus Invariants S21

3. En déduire t, en fonction de R et de C (t, est le temps de demi-charge du condensateur).

at=t;: wu(t)=RL(1-¢" RC):%

i

" —t,/RC .
dou ¢ == ce quidonne t, =RCIn2

4. Par analogie avec le circuit électrique, déterminer I'équation différentielle régissant le
fonctionnement du systéme hydrauligue.

Le systéme hydraulique est analogue au systéme électrique précédent et si on remplace
i; par g, le débit d’entrée, i; par g le debit de sortie, u par h on trouve une équation

différentielle semblable a la précédente : q_(t)= %H.% avec K en s/m?

4 — Transformation de Laplace :

Cette transformation de I'équation différentielle va permettre de trouver une solution quel que soit le degré n de
I'équation.

4.1 - Définition : ) —S—>F(p) = [e ()t
0

domaine temporel (variable t) — domaine symbolique (variable p réelle ou complexe)

La transformée de Laplace de la fonction f(t) est notée F(p) = £ [f(1)].

Dans la pratique, on ne calcule que les transformées de Laplace de fonctions causales c'est-a-dire telles que f(t) =
0 pourt < 0. Ces fonctions f représentent des grandeurs physiques: intensité, température, effort, vitesse, ...

4.2 — Théorémes :

4.2.1 — Unicité : a f(t) correspond F(p) unique,
a F(p) correspond f(t) unique.

4.2.2 — Linéarité : £ [f1() + f(0] = £ [FL(O] + £ [F2(0] = F1(p) + F(p)
L[ (1= Lf()] =1 F(p)

4.2.3 — Facteur d'échelle : £ [f(at)] = je’ptf(at)dt =? posons: u=at—=du=adt
0

d'oll = | e o) U
0 a

soit Lf@t] = %F(g)

4.2.4 — Théoréme du retard : £ [f(t-1)] = je‘p‘f(t —1)dt =? posons:u=t-t = du=dt
0

f(t f(to) . .
= [e?If(u)du = e [e™f(u)du

or, par convention, f(u) =0 pouru<0
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MPSI/MP2 Cours : Modélisation des systémes Linéaires Continus Invariants S21

d'od L [f(t-1)] = €™ F(p)

R 4

4.2.5 — Transformée de la dérivée : £ [—= df (t) 1= j at

0
intégrons par parties en posant: u = e™ = du=-pe™

v=~f(t) = dv-?

d'od S[%]: [eptf(t)]j-T—pemf(t)dt or lim (e™'(1)) = O car f(t) bornée

donc e SR LOR(

Pour la dérivée seconde :

d? f(t)

=p* F(p) - p f(0") - F(0")

t
4.2.6 — Transformée de l'intégrale : £ [jf(u)du ]=2
0

soit 9 = ) done € [19] = F(p) = £ 021 = p 6(p) - 9(0) = p £ [[ ()] - 9(0")

d'ou Q@ [jf(U)dU] — ? + g(g+)

Remarque : si les conditions initiales sont nulles (conditions d'Heaviside)
e dériver par rapport a t dans le domaine temporel revient a multiplier par p dans le domaine symbolique

e intégrer dans le domaine temporel revient a diviser par p dans le domaine symbolique.

4.2.7 — Théoréme de la valeur initiale : lim f(t) = I|m pF(p)
t—0

4.2.8 - Théoréme de la valeur finale : lim f(t) = I|m pF(p)
t—ow

Remarque : ces deux derniers résultats n'ont de sens que si les limites existent.

4.3 — Transformées de fonctions courantes : 5(0)

4.3.1 — Fonction de Dirac (ou impulsion unité) 3(t) :

par définition o(t)=0, VvVt=0

Cette fonction représente une action s'exercant pendant un temps tres court.
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t 51

5(t) = I|m— dou £ [5(t)] = j e * lim - dt = lim tl j e dt 1,
1[-e®]" e ™ e’ -1
= lim= = lim =i
t,—0 t p 0 t,—0 ptl x>0 X
t
LE@I=1
u(t)
4.3.2 — Fonction échelon unité u(t) : 1

uit)=0sit<0 et u(t)=1sit>0

o0

Lluw]= je“"u(t)dt = fe Pat = {—i p‘} =

0

Llul=

o |-

4.3.3 — Fonction rampe de pente unitaire :

f(t)
f(t)=0sit<0 et f(tf)=tsit>0 donc f(t)=t.u(t)
1 _________
_ _ U(p)  f(0) |
=u(t) = L[tu@®]= T+T = € ltu ] = é . t
1

4.3.4 — Fonction sinusoidale : f(t) = sin wt . u(t)

F(p) = Je’p‘ sinwt dt qu'on intégre par parties en posant du=sin otdt et v=e™
0

—cosmt ” . ” T
= [ ® e‘pt} jcoswte Pldt = 1—B{[lsm ot e"’t} +Bjsm ote™ dt} =
) 0 o o|lo 0o Oy

£ [sin ot.u(t)] =

2
- Z— F(p)

el

P’ +0°

4.3.5 — Fonction exponentielle : f(t) = e . u(t)

Lle®u®] = —

5 — Transformation de Laplace inverse et résolution d'une équation différentielle

Les transformees de Laplace donnent des fonctions de p qui sont des fractions rationnelles que I'on décompose en

éléments simples pour revenir au domaine temporel.

Exemple : soit un systeme régi par I'équation différentielle

avec s(0) =2,s'(0) =2 et e(t)=6u(t)

d’s(t) +5d5§tt) +65(t) =e(t)
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MPSI/MP2 Cours : Modélisation des systémes Linéaires Continus Invariants

S2l

On applique la transformation de Laplace a cette equation :

218 845 ¥y 656) =)
02 S(p) — pS(0) — '(0) + 5 [p S(p) — (O)] + 6 S(p) = E(D)

p2S(p) —2p—2+5[pS(p) - 2] +68(p):%

2p>+12p+6 _ 2p*+12p+6

soit S(p)= =
p(p*+5p+6)  p(p+2)(p+3)
, o e A B C
On décompose cette fraction en élements simples : S(p) = — + +
p+2 p+3
e 1 S 4
Par identification, on trouve S(p) = — + -
p p+2 p+3

On retourne au domaine temporel en prenant les transformées inverses, d'oti : s(t) = (1 + 5 e —4¢™"). u(t)

Ilustration 1 : régulation de de niveau

5. Transformer l'équation différentielle obtenue. q.(0)= % +8. dk;(t)
T
On transforme par Laplace avec C.I. nulles : “ o i«\
Q) =2 +SpH(p) = (- +SPHE)
Ce quidonne: H(p)=
q (P)=T S Q.(p) 2 | L

Le réservoir est vide et les 2 débits nuls jusqu’a I'instant t = 0 ou on établit le débit g,(t) =
Q,, qui demeure constant ensuite.

6. En déduire l'expression de h(t) pour t > 0.

1+KS 'QE:%:éJF & Ce quidonne: H(p)= 9 _ le
Sp P p N > A
Ks*PP Ks ¢ Ks "

d’ou :h(t) =K.Q_.(1—e " ®)u(t)

H(p) =

7. Exprimer la hauteur atteinte par l'eau dans le réservoir apres stabilisation.

h, = lim h(t) = lim pH(p) = K.Q,
t— r—

6 — Fonction de transfert d'un systeme :
d"s(t)

. . . , . ceer . d™e(t
Soit un systeme décrit par I'équation différentielle : a, e +.+ 8, S(t) = b, ©

dt™

+ b, e(t)

On se place dans le cas de conditions initiales nulles (conditions d'Heaviside) : le niveau initial du systéeme
importe peu, c'est sa réaction a une perturbation a partir d'un état stable que I'on souhaite étudier. On peut donc

toujours se ramener a des conditions initiales nulles avec un changement d'origine.
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s R o d"s(t), _ .
d'aprés le théoréme de la dérivée :| £ [—n] =p F(p)
dt

On applique la transformation de Laplace a I'équation différentielle :

an p" S(p) + ... a0 S(p) = bm pP™ E(p) + ... + bo E(p)

On appelle fonction de transfert H(p) du systéme :
PP (p) du sy _S(p) _ by p™ +..t by

EP) a,p" +..+ag

H(p)

Dans le domaine symbolique, la relation entre I'entrée et la sortie s'écrit donc | S(p) = H(p).E(p)

E(p) H(p) S(p)

La fonction de transfert représente le comportement du systéme et s'exprime simplement comme le rapport de
deux polyndmes en p (fraction rationnelle) construits a partir des coefficients de I'équation différentielle régissant
son evolution.

Forme canonique de la fonction de transfert :

aveC n=n’+a= ordre du systéme H(p) = K@+..+bym p™)
a. = classe du systéme PU(L+..+ an-p”')
K = gain statique

En explicitant les racines (complexes éventuellement) de ces polyndmes, H(p) peut s'écrire :

H(p) = k(P—z1)(P—22)..(0—2Zm)
(P—P1)(P—P2)--(O—Pn)
les z; sont les zéros et les p;j les ples de la fonction de transfert.

Remarque : si I'entrée est une impulsion de Dirac, on a alors S(p) = H(p).1 = H(p)

La fonction de transfert représente donc la transformée de Laplace de la réponse “impulsionnelle".
Malheureusement, on ne sait pas génerer physiquement un tel signal. Cependant, cette propriété est utilisée par les
logiciels de simulation.

Illustration 1 : Régulation de niveau

8. En deduire la fonction de transfert canonique du systéme

Equa.diff. : q.(0) = 2 g S : ik
qua.diff.: 4.(0 == T
Aveclaplace: Q.(p)= Hlip) +SpH(p)= (%+S.p)H (p) -

. . H ] —
Ce qui donne la fonction de transfert : ® _

Q.(p) (% +Sp)

Caractéristiques de la fonction de transfert mise sous forme canonique :

H(p) - K 1° ordre

= Gain statique: K
Q.(p) 1+KSp Classe : nulle

T(p)=
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7 —Systémes asservis :
7.1 - Structure :

Le comportement d'un systéme asservi peut étre décrit par le schéma-bloc suivant :

consigne sortie

,|chaine directe
(ou d'action)

chaine de retour .
(ou d'observation)

Exemple : chauffage d'un four

- la consigne est la température a atteindre et a conserver

- la chaine d’action comprend, entre autre, la résistance électrique qui, soumise a une certaine tension,
permet de chauffer le four

- la sortie est la température réelle (pas forcément égale a la consigne a cause des pertes, etc..)

- dans la chaine de retour, on a un capteur qui permet de mesurer la température reelle.

- le comparateur permet de comparer la consigne a la sortie.

Les chaines d'action et de retour sont caractérisées par leur fonction de transfert.

Es
Un sommateur (généralisation du comparateur) comporte E. | AV S= El'E%+E3
plusieurs entrées et une seule sortie:
E>
— . . X X
Une jonction est un « prélevement » qui a le méme signal que )
la branche principale: X
7.2 — Fonctions de transfert en série :
=] E E Ex S
—» Hl 2 > H2 3 > H3 i, : —> H 5
S=E3zH3;=E>.H,.H; =E;.H;.H,.H; = E1.H donc H=H..H,.H;
7.3 — Fonctions de transfert en parallele :
S
> Hl !
E S
E S _ - ==
Sz
»> H2
Si=EH; et S,=EH, dou S=81+SZZE(H1+H2) donc H=H; +H;
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7.4 — Fonction de transfert Boucle fermée : Formule de « Black »

E € S E S
— H > — > H'
G [«
Equations:S=H.c et e=E-G.S d'ou S=H.(E-G.S)=H'E
H
H' =
donc 1+ GH

E € S E
—— H/(1+H)

7.5 — Déplacement d'une jonction :

S=H.E E=H.S doi | H=1H
E S n s | _ E " S
] =
| S, s,

S=H.E=H.E dou H=H
7.6 — Déplacement d'un sommateur :
B < vpn TN N v N s
Ex - E
EE— H'
S=H.(E; +E)) S=H.E; +H.E; dou H=H
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E S
E E
2 2 H'

S=H.E, +E, S=H.(E; +H.E,) dod | H'=1/H
IHlustration 1 : Régulation de niveau
L
I Réducteur]| By t) \roteur
2'*me étude : on régule le systéeme grace a une o
boucle d’asservissement lf’?‘h“ L Gt
On dote le systeme d’une électrovanne actionnée e
par un ensemble moteur + réducteur. Le tout est — potentiomeire
piloté par un régulateur recevant les informations et
du limnimeétre et d’un potentiomeétre (consigne de et (1)
— Réservoir - o

hauteur). =1

Constituant

Caractéristique

Modéle de connaissance

Il tourne a la vitesse angulaire o, (f) pour une

da t
dom(l)

(nterface HM)

en tension u.(t), image de cette consigne

?

Régulateur
(comparateur
+ comecteur)

Il compare la tension de consigne u,(f) a la tension
de mesure ype(t) pour en déduire la tension &(f),
image de l'erreur, puis comige (amplifie) cette tension
£(t) en une tension de commande du moteur i, (t)

et) = U (1) — Umes(t)

U (t) = As(t)

D (L) = K t
Moteur tension de commande up(f) Oy (t) = Km im(t)
) Il réduit Fangle de 'axe de rotation du moteur 8, (f) _
Réducteur i B, (t) = rBy(t)
en un angle douverture 6,(t) de la vanne T Km r KV aet A sont des
Elle délivre un débit g.(f) pour un angle d'ouveriure ! _’ . ! !
Vanne 8, (1) Ge(t) = Ky 8, (1) coefficients constants
. ) Il est de section constante S, et a pour débit d'entrée dh(t)
Réservoir - Gelt)—qs(t) =5
Ge(f)et de sorte 4(1) ot On suppose les conditions
Limnimétre Il traduit le niveau d'eau h(f) atteint dans le réservoir . it PP
(capteur) en tension U, (t), image de ce niveau Umes(t) = aMt) In |t|a|es nulles.
Potentiométre | |l traduit la consigne de niveau d'eau h, (f) souhaiié

1. Appliquer, pour chacun des modéles de connaissance des constituants du systéme, la transformation de Laplace. Puis
indiquer sa fonction de transfert, et enfin en déduire son schéma-bloc.

Q
Moteur: (tp+1).Q_(p)=K_.U_(p) dou: %: :;ﬁ = TI;Hil -
Réducteur : 0.(p)=r6,(p)  dou: P SN
em (p) =
Vanne: Q.(p)=K_.6.(p) d'ou: Q.(p) _ K. i q’?v‘ &
0.(p)
Réservoir : Q. (p)—-Q.(p)=S.p.H(p) e —9—1—H%»
\ I >
dou: H(p) = —(Q.(p)—-Q.(p)) Q
Sp :
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\ H U,..
d’ou : Umc‘s(p) — 3 E ma
H(p)
2. Donner la relation entre h{t) et ut) qui assure que &t) soit bien une image de 'erreur du niveau d’eau. En déduire le
schéma-bloc correspondant au potentiométre.

Limnimetre : Umes (p)=a.H(p)

Régulateur + _ H: o Yz s(p)=U(p) = U, (p)=2H.(p) - aH(p)
. . H U.
correcteur : U, éli_ &(t) proportionnel a h(t) >U (p) =aH(p) = = s[a] >

3. Donner la relation temporelle générale qui lie vitesse et position angulaires. En déduire le schéma-bloc qui passe de Q,(p)

a Cm{p}
Q m (p) = — mt(t) d’o ‘| : 7@“1 ((p)) = — Qm 1 m

4. Donner les variables d'entrée et la variable de sortie du systéme. Puis, représenter le schéma-bloc du systéme entier en

précisant le nom des constituants sous les blocs, ainsi gue les flux d’énergie ou d’information entre les blocs
Entrée du systéme en
régulation = perturbation

Qs
lp] [s2]

+1 1 L
P p P Sortie =

Entrée
du systéme

asservi = H réponse
consigne = @ = hauteur
hauteur voulue obtenue
Hi;
5. Déterminer les expressions des fonctions de transfert : F,(p)= 2 et F(p)= He)
H.(p) Os( p)=0 Q.(p) He(p0
AK _K.r
Ep) = H(p) Sp'l+twp) aAK K. r B 1
) H.(p) Qs(p)=0 1_M sz (1+tp)+aAK _K.r 1= S . 8 P
Sp’(1+1p) aAK K.  aAK_K.r
H 1/ aAK K. r . 1 1+1
RO ol g QORI dol: B -- _ (e
QMg SP p(1+p) ) aAAK Ko, © Pl 5
aAK K. r aAK K. r

6. En déduire, & I'aide du théoréme de superposition, l'expression de H(p).

H,(p)+ 2@

Q.(p)

H(p) = 20

(p)=E(pH F, )
H.(p) Q.(P)=EM@H.(p)+E[PQ.[P)

He(p)=0

Qs(p=0

8 — Systemes linéaires fondamentaux :

La fonction de transfert de nombreux systemes est une composition de fonctions de transfert de systemes
élémentaires qu'on va étudier en détail. On va soumettre chacun de ces systéemes élémentaires a des signaux
d'entrée tests e(t) et on va calculer la réponse s(t):

e ¢(t) = 8(t) = impulsion de Dirac = s(t) = réponse impulsionnelle

e ¢(t) = u(t) = échelon unitaire = s(t) = réponse indicielle

e ¢(t) = t.u(t) = rampe = s(t) = réponse a une rampe.

8.1 — Systéme a action proportionnelle : la sortie est proportionnelle a I'entree.

() = K e(t) - SP=KER = | Hp)=K
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E(p) K S(p)

Exemple : résistance, capteur

8.2 — Systéme intégrateur :

L _
B = ke pSM) =KER = | HO=
E(p) K S(P)
p

. _ o di _ _I(p_ 1
Exemple: inductance u=L — =UD)=Lpl(p) = Hp) = /= _—
p m (P) =L pI(p) () Uo)_ Lp

8.2.1 — Réponse impulsionnelle :
e(t) st
K

£ =1 5) = L s(t) = K u(t)

8.2.3 — Réponse indicielle :

s(t)
1
e =L =sp= K.t s() = K tu(t) pM
p p P . e(t)

t

8.3 — Systéme du premier ordre :

L
dZ(t) +5(t) = K e(t) TP S(p) + S(p)= KE(p)

K = gain statique
T = constante de temps

D’ou la fonction de transfert sous forme canonique : H(p) =

1+rp

Exemples : circuit RC pour lequel z=RC et K =1, moteur a courant continu (avec inductance négligeable)

8 .3.1 - Réponse indicielle :

K

Ep)= = = Sp)=——.=
P 1+tp p
K Kp _K e
I|m s(t) = I|m 1pS(p) = I|m —— =0 et Ilm s'(t) = I|m p® S(p) = lim — = pente a l'origine
—e 14+1p P 1+rp T

Ilm s(t) = Ilm p S(p) = Im]) Trep = K = asymptote horizontale de valeur K

p—0 141

Pour connaitre completement s(t), il faut décomposer S(p) en éléments simples :
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A K K 1 1 1 t
S =" + =" - =K(= - — L -
(P) p l+tp p 1+71p p+1) s)=K(@-e T)u(t)
T
K
Points caractéristiques a connaitre : 0,95K
e pourt=rt,s(r)=K(1-e)=063K ]
0,63K |
e temps de réponse a 95% = instant t;
pour lequel  s(t;) = 0,95 Smax 0al
L _b
K(l-e 7)=095K=¢e T®=0,05=it,=3t
t

o oA 0z 03 0.4 05 0.6 o7
t
T 3t

Si on connait le tracé de la réponse indicielle d'un systéme du 1* ordre, on peut trouver facilement, par
identification, le gain K et la constante de temps .

8 .3.2 — Réponse a une rampe de pente a:

a ak a at’
e()=atut) = E(P)=— = SP)= 5——— =K(— at
p p-(1+1p) P

2 -? 1+7p
L ot W
— > |s()=aK(t-t+te T)u(t) % » .
t t t

lHlustration 1 : Régulation de niveau

1% étude : Systéme non asservi et on suppose un ” e -"\
débit sortant proportionnel a h(t).

9. En déduire l'allure de la réponse a un échelon unitaire

h() ¢ dh(D)
K

dt Débit qgit

Niveau hit)

Equa. diff. : q.(t) =

Hpp) = K

Q.(p) 1+KSp
Réponse indicielle. :

FT.:

H(p) =

1
1+KSp'p | p 1
= h(t) =K(1-¢e =)u(t)

Pente a I’origine :

_—
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2'¥me étude : Systéme asservi avec perturbation (qg,(t) = h(t)/K)
avec une consigne de niveau de 1,5 m de type échelon.

Le gain de l'adaptateur noté A est fixé arbitrairement.
e ||"
7. Donner les caracteristiques de la fonction de transfert ] — ‘ | @IL
du systéme asservi : T(p) = He) -
H_(p) Débit sortie

proportionnel a h(t)

T moteur
négligé

Hc (p) a 1+ 1 P + KS p2
aAKK _K.r  aAKK _K.r

dou 1y HO) % 1

8. Déterminer numériquement ces caractéristiques a partir de I'enregistrement (h en fonction du temps)

ci-dessous:

Lenregistrement présente la forme de la

135 réponse indicielle d’'un ler ordre :

MW 120 3 B E

1 1 - K = — =
/I'{/u Le gain statique vaut : Ki=—=—
85 90

— La constantede tempsvaut : t=2500s
carat=71:h(t) = 63%de la valeur
asymptotique (85cm = 63% de 135cm)

Il s’agit d’un modéele de fonction de

— e A000 transfert associé au comportement du
- systéme:
135/150
T(p)x ———
1+2500p
8.4 — Systéme du second ordre :
2 _ - -
9’5 4 2 m e ds(t) . 2 (1) = K a2 e() K = gain statique
dt? dt oo = pulsation propre

m = coefficient d'amortissement

Exemple : masse liée a un support fixe par un ressort et un amortisseur visqueux.

La transformée de Laplace de cette équation donne : p> S(p) + 2 m wo p S(p) + wo® S(p)= K wo® E(p)
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_ K
. , : H(p) =
d'ou la fonction de transfert sous forme canonique: 1+27mp+ip2
®g (2)
8.4.1 — Réponse impulsionnelle :
KOJZ K o?
E(p)=1 = S(p) = : = 0

p’+2mo,p+m’  D(p)

avec D(p) de discriminant réduit A' = m?mg” - wo® = @o*(mM? — 1)

e premier cas : m>1 = D(p) a alors 2 racines réelles p; et p,

PL=-Mao-w VvM® =1 etp,=-ma+m VM —1 avecp;<p,<0
: A B Ko 1 1

do Se)= (p—pl)(;—pz) -° moz((p—pl) +p—p2 - 2\/m270—1(|o—|01 p-p, :
d'oll s(t) = %(epzt- e”) u(t)
= systéme amorti (régime apériodique) s(t) t
e deuxieme cas : m<1 = D(p) a alors 2 racines complexes conjuguées
On peut alors écrire S(p) sous la forme: S(p) = ijf) > >
(p+me,) +o,(1-m°)
soient @’ =we’ (1-m?) eta=mw; = S(p)= \/% (p+a;)2 e
dou s(t) = Ko omo sin(mom t) u(t)
1-m? L
= systéme sous-amorti (régime pseudo-périodique) _t

s(t)
2n

0o V1- m? enveloppe

Lorsqu'il n'y a pas d'amortissement (m = Q), on a une réponse
sinusoidale de pulsation wo (ce qui justifie le nom de pulsation propre donné a wy).

La pseudo-periode des oscillations vaut T =

e troisiéme cas : m=1 = D(p) a alors une racine double.
L'allure de la réponse serait comparable a celle obtenue dans le cas du régime apériodique mais ce cas est
impossible dans la réalité: on ne peut avoir une valeur réelle de m exactement égale a 1!

8.4.2 — Réponse indicielle :

Remarque : la réponse indicielle est I'intégrale de 0 a t de la réponse impulsionnelle.
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En effet, Simp = H(p).1 et Sing = H(p). 1
p
La réponse impulsionnelle étant nulle pour t = 0, la pente de la réponse indicielle est nulle a l'origine.

e premier cas : m>1 (systéme amorti) s(t) = _ Koy j(e'Ozu —eP)du
2vym? -1

t t Pt apit
I(epzu _ep1u)du e |:iepzu _ieplu:| = iepzt_i - ieplt_i_i = pz _pl + e - e
0 P2 P1 o P2 P2 Py P1 PP P2 P1

zm N epzt eplt ]

®g P> P1

Pt Pt

dou | =K+ (& &y
2dm? -1 P2  Pg

u(t)

K
Dés qu'on s®éloigne de t = 0, le systtme du second ordre est /

comparable a un premier ordre. Au début de I'évolution, le premier Systéme du second ordre
ordre réagit plus vite (pente a I'origine non nulle). Systéme du premier ordre

» t

T

t
= R . K _ .
e deuxiéme cas : m<1 (systéme sous-amorti) S(t) = %J' e ™ sin(wyv1-m? u)du
1-m- o

En intégrant deux fois par parties :

J1=m? < 1’ s(t)

s() = kK @~

Les dépassements Dy sont les maxima et minima de la
courbe aux temps tx (zéros de la réponse @ T

impulsionnelle). 0sf
—ntm T t
Premier dépassement Dl = Ke 1_m2 o 0z 04 08 08 \ 1 12 14 16 18
pour| t; = T T "
1= —— = —
Oy v1— m2 2

La valeur du premier dépassement (tres importante dans les applications) ne dépend que du coefficient
d'amortissement. On la donne souvent en pourcentage de la valeur finale.

On utilisera trés souvent les abaques suivants pour éviter 'utilisation des formules. Ils donnent les dépassements
relatifs et le temps de réponse réduit (produit pulsation propre par temps de réponse a 5%) en fonction du coefficient
d'amortissement. IIs sont a échelles logarithmiques.
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Ilustration 2 : Suspension pilotée d’automobile

debit ¢

chissis du véhicule

€rin

—L

ressort

>

roue

le sol est parfaitement plat donc f (t) = 0.

1°re étude

1 -Transformer les équations traduisant le fonctionnement du

amortisseur

systeme et Donner le schéma-bloc du systeme : entrée Yc, sortie Y.

Y(p)

15

sol

1

d

Mp
np

X(p) : " Fi(p)
-Fa(p)

1

Sp

Qp)

Y p)

=50kg, k=2.10*N/m et p=3.10°Ns /m.

On donne M

sous forme canonique. Déterminer

_Y()
X(p)
analytiquement puis numériquement le gain statique K, la pulsation propre o, et le coefficient

terminer la fonction de transfert H, (p)

2.De

d‘amortissement m.

=1

— Gain statique

416
(p+8)p+52)

2

1
1+0.15p+0.0025 p

H,(p)
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3. Déterminer I'équation de y(t) en réponse & un échelon de 50mm et donner l'allure de la réponse y(t)

416 50 y()
Y(p)=Hi(p). X(p) = — 50 mm
(p+8)(P+352) p

A B c _50 59 9

= + _ = . —

p p+8 p+352 p p+8 p+52

dou  [y(t) =(50- 59 et + 9 e32t) u(t)

t

On modifie le coefficient d'amortissement visqueux p et on soumet a nouveau le systeme a
un échelon de déplacement x(t) égal a 50 mm. La réponse y(t) est donnée ci contre.

y(t) en mm
80

4. Quelle valeur faudrait-il donner a 1. Pour avoir un
temps de réponse minimal ?

On aurait un temps de réponse minimal avec

m = 0,7 donc
U= 2m~kM
=2.0,74/2.10%.50 ”
=1,4.10°Ns/m

404

| P
VY

tens

9 — Identification :

0.6

0.8

16 1.8 2

On ne peut pas toujours déterminer un modéle mathématique (donc calculer une fonction de transfert) pour
un systeme réel a partir des lois physiques qui régissent son comportement (systeme trop complexe ou mal connu).
L'approche expérimentale consiste a soumettre le systéme a des entrées connues puis a rechercher une fonction de

transfert (par identification) qui approche au mieux la relation observée entre I'entrée et la sortie.

On peut se fixer a priori I'ordre du modele étudié : plus I'ordre sera élevé, plus la précision du modele sera
grande mais la fonction de transfert sera plus lourde a manipuler. D'autre part, les mesures étant entachées
d'erreurs inévitables et les caractéristiques du systeme pouvant évoluer dans le temps, il ne sert a rien de

rechercher un modele trop fin.

10 - Analyse fréquentielle ou harmonique :
10.1 — Définitions :

On soumet un systeme linéaire a une entrée sinusoidale e(t) = e sin ot.
La réponse en régime permanent est

[o]
s(t) = so sin (ot + @) : méme fréequence ® que I’entrée avec un déphasage I:S

¢ et une amplitude sp qui dépendent de w. Les réponses pour différentes
valeurs de o sont dites fréquentielles ou harmoniques.

On pose e = eg &' et =509, Alors, e(t) et s(t) représentent les
parties imaginaires de e et s.

de(l),a, (jo)"s+.+as=by (jo)" e+.+bye dol

_ byt tb (jo)"

1D |1n

= H(jo) = e
a,+...+a, (jo) €,

&g Sinot

H(p)

0

s(t)

différence d'amplitude

O

-p/®

e(t)
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H(jw) est donc un nombre complexe :

e le module A(w) = [ H(jo)| = Z—O
0

e [’argument est le déphasage ¢(®) = Arg(H(jo))

10.2 - Représentations graphiques de la fonction de transfert:

10.2.1 — Diagramme de Bode :

On représente H(jw) sur 2 courbes en fonction de o
(axes des abscisses gradué en log(w) )

- le module G (gain) en décibels (dB): G = 20 log | H(jo)|

- la phase ¢ en degrés ou radians

Intérét :

si H = Hj . Hy (fonctions de transfert en série) :

alors 20 log |H| =20 log [H1| + 20 log |H,| et
Nota :

G =20 log | H(jow)|

Arg (H) = Arg (Hy) + Arg (Hy)

v en mécanique, ¢ < 0 (réponse en retard) et G — 0 quand @ — oo (caractére passe-bas des servo-

mécanismes).

v’ variation de K = translation verticale de G et ¢ invariant

10.2.2 — Diagramme de Black (ou Black-Nichols)(hors prog)

On représente le module G de H(jw) en dB
en fonction de la phase exprimée en degrés
et on gradue la courbe en .

10.2.3 — Diagramme de Nyquist (hors prog)

Pour chaque valeur de , on représente H(jo)
dans le plan complexe et on gradue la courbe
en . Le gain (OA) et le déphasage sont

directement lisibles pour chaque valeur de o.

G
. “‘ ()
%ens des ®
croissants
Im(H(w))
o Re(H(j)

sens des m
croissants

:
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10.3 - Systéme a action proportionnelle :

H(jo) =K

exemple: capteur

10.4 - Intégrateur pur :

. K
H(jo) = —
jo

gain G =20 log K -20 log ®

phase ¢ = - 90°

Remarque : La pente du gain est de - 20 dB par décade (noté -1).

10.5 - Dérivateur pur :

H(jo) = jJKo

gain G =20 log K + 20 log ®

phase ¢ = 90°

10.6 - Retard pur:

H(jo) = 7™
gainG =0
phase ¢ = - ot
® 0 1/t )
logw | - | -logt | o
[ 0 |-1rad | -

G
I 20 log K ) pourinfo
G Im(H(jo))
¢ 20 log K K .
o 0 * Re(H(jw))
Bode | Black | Nyquist
G .
~ (A1) pourinfo G Im(H(jo))
20 loa K_I1 K 10 ®
g Re(H(jw))
-90°| _
20 log K-20, . o o!
. ol
-90 Bode Black Nyquist
G (+1)
20 log K i
g 1 o pouncr;fo Im(H(jo))
1K ol
A
90° ¢ 90 2 OJT
. =LK Re(H(jo))
Bode Black Nyquist
G
1 ® pourinfo Im
G
ol ﬁ \ Re
Y 0} Q \/1
ol
Bode Black Nyquist
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10.7 - Systéme du 1 ordre  >o):

K [P K
H(im) = _ dou | G=20log ————— | €t =-arc tan (ot
7 o N ° (©
10.7.1 - Diagramme de Bode:
G
On trace d'abord les diagrammes asymptotiques : 20 log K | Treceasympotie A
— 3dB
-quand ot <<1l,Hj o) =K et ¢=0° ©
(cf systéeme a action proportionnelle ) 1
12t 1kt 2t
f K Tracé réel (-1)
- quand ot >>1, H(j ®) » —— et ¢ =-90°
jor
(cf intégrateur donc pente -20dB/déecade)
Pulsation de cassure en A': 0
20 log K =20 log K - 20 log ot = ot =1 d'ou | ot aymprote U S
-45°
G(1/t)=20log K - 20 log v2 =20 log K - 3dB
G(1/2t) =20 log K- 20 log v125 =20 log K- 1 dB -90° Trace réel
de méme, pour o = 2/t, I'écart entre le gain et
le lieu asymptotique vaut 1 dB.
® 0 [1/2t| 1 | 2t |
[ 0 |-26° | -45° | -63° | -90°
Remarques:
e une modification de K se traduit par une translation verticale de la courbe de gain et n'a pas
d'influence sur la phase (vrai v H(p)).
e une modification de la constante de temps t déplace la pulsation de cassure.
10.7.2 - Diagramme de Black:
G s o ) )
©= |00 10g K Une modification du gain statique K se
_ °g traduit par une translation verticale de la
ow=1r p
/— 20logK -3 courbe de gain.
(On utilisera ce diagramme pour la correction
des systemes asservis).
ol
-90° -45° ¢
l pourinfo
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10.7.3 - Diagramme de Nyquist: Im
K/2 K Re
. K(l- jor) K Kro .. 979 s/ ©=0
H(jo) = 1+ w®7? - 1w’ 1+’ =atib
& +b’=Ka = (a-K/2)*+b?*=(K/2)
donc le lieu de Nyquist est un cercle de rayon K/2 =1
centre en (K/2,0) (en fait, seul le ¥ cercle inférieur
est parcouru car —90° < ¢ < 0°). pourinfo
K
10.10 - Systéme du 2éme ordre :  H(p) = 5
2m p
1+—p+—
Q) g
. K
H(J(’O) = 2 2 ()] - -
(1-2 ) +j mo on note u = — = pulsation réduite
®, ©, Mg
. K 2\2 2,2
e module: |H(jw)| = \/(1 N+ amie = Ggg =20 log K - 10 log[(1-u“)“ + 4m“u”]
—u’)* +4m°u
o J2 | : )
= la dérivee s'annule pourjm < B résonance pour la pulsation o, = mg y1—2m
K
= [H(o) = ——
r 2my/1-m?

Plus m est faible, plus la résonance est importante: caractérisée par le facteur de surtension (rapport entre gain a la

1

2m,/1—m?

résonance et gain statiqgue) = Q =

e phase: (pouru<1)

2mu
@ = -arc tan 1

10.10.1 - Diagramme de Bode:
G(w) = 20 log K - 10 log [(1 - u®)? + 4 m* u? ] 20 log K

-0—>0:G->20logK et ¢ >0

GdB

oo (1-ud)*+4m’u® > ut
= G—>20logK-40logu
@ — -180°

-o=wy : G=20log K/2m
¢ =-90°

Tr

(-2)

Tracésréels

acé asymptotique

o

_900\

-180°

Hl/‘ Tracésréels
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Nota: si m > 1, on a alors 2 racines réelles
K 1

H= = H; . H, (diagramme asymptotique plus précis)

T 1+ ,p 1+ 7,p

= Iogl +Iogi =2 logo,
) L7

11.12:—2
o0

- 1 1
donc log o est au milieu de log — et log—
b 1,

GdB

Tracé asymptotique

——

(-1)

T~

§§\\f)m

1/t ®o 1/%5 tracs reel \

10.10.2 - Diagramme de Black:

<0,7 G
20 log K

m>0,7

ol

-180° ¢

pourinfo

10.10.3 - Diagramme de Nyquist:

Im

K Re

Hjo)=—— 5 G

m/

%)

2Kmu

®=0:H(jo) =K

(1—u2)2+4m2u2 J(1—u2)2+4m2u2

i . K
(Ozﬁ)o:H(J(D):-Jﬁ et (p:-90°

® = oy (Si m<0,7) : gain max
®— o H(jo) >0 et ¢ —»-180°
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Hlustration 2 : Suspension pilotée d’automobile

2¢me gtude : la garde au sol est fixée donc y(t) = 0. On étudie
maintenant I'influence du profil du sol sur la suspension donc f (t) # 0.

5. Donner le schéma-bloc du systéeme d’entrée Fs, de sortie Y puis déterminer la

fonction de transfert H (p) = Y(p)
E.(p)
gl ; ; 1 Y(p) Ce Qll,’oo
: Vip y
Fu{[‘} %
p a
Fdp) [ . X(p) 1 Qp) r
: S
l.‘s“)]__ < 1 Y{P) .
Mp* +up
K
K(—+1) |
N Y(p) Mp * + pup S p
dou H.(p)= = _
s Fs(p) ¢, _k(E,;+5p) deHier Su b4 SM 0
Sp(Mp ™ +up) K, Kk Kk

L'action f(t) est maintenant modélisée par un signal sinusoidal d’amplitude 250 et une
pulsation de 15 rad/s correspondant au roulage du véhicule sur une route bosselée.

6. A l'aide du diagramme de Bode de H(p) donnée ci-contre, donner 'expression numerique de y(t) en

régime permanent.

G dB ~ B
/‘F \" {P
,—I '\ S,
] Y T—
-804 ﬂ/ b1 T—
A \ 02 04 06 B8 1 1,2 14 16 18 2
i\ ° TN log(®)
— - ! “. 0P L ™ W
- . ‘. \._
-90 1 ' 4
: -50 '
H hY
\\‘ 1
. \
1001 5 N\ -100+ \
\
Y
N\
o] \ = \
i \
1,18} log(@) ™\ ~——

02 04 06 08 1 12 14 18 18 2
f.(t) = 250 sin (15 t) donc y(t) =y, sin (15t + @)
pour ® = 15 ,log(15) = 1,18 et on lit sur le diagramme de Bode : 20 log |H.(15j)| =-79dB et ¢@=-20°
79
dot 2% =10 2=1,1.10+ soityo=0,028 et (p=-20.%=-0,35rad y()=0,028 sin (15 t— 0,35])

250
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A partir d’une pulsation ®,, on peut approximer H,(p) par la fonction de transfert

1
H -
p) k+up+Mp~

avec M =50kg, k=2.10*N/m et pn=3.102N s /m.

7. Tracer le diagramme asymptotique de H(p) sur le méme diagramme que H.(p).

1

5.107°

H(p) =

GdB

2.10° +300p+50p°

1+0.015p+ ——
400

fonction de transfert du 2°™¢ ordre avec o, =20 rad/s 20log(5.10°)=-86 dB et log(20) = 1,3

a ©°
-80- T
02 04 0588 1. 12 14 186 18 3
86 e . . log(w)
— N
b
-901 !
-50 1
1004 100
=110+ -1504 \
13 log(o) S~
02 04 06 08 1 12 14 1868 18 28 180 —
8. Remplir le tableau ci-contre . Reporter ces o) 1.5 3 10 50 100 | ©,=19,5
valeurs sur le diagramme de Bode et donner log(®) 0,18 0,48 1 1,7 2 1,29
2 H |
."a.".r'u.re des courbes de gain et de phase. A G dB 86 858 837 100 114 755
partir de quelle valeur ¢, peut-on
. 0° -1,3 2,6 -11,3 -172 -176 -80
approximer Hy(p) par H (p) ?

H(p) = 1 _ 5107 G = -201log \[(2.10° =500 )* + (300 ®)’
2.10* +300p + 50p* 140.015p + p° o = — arctan 300 - 20vad)
' 400 210" —500° = our@<sorad/s
GdB cp“ (WDS
80 0.2 U,;%-. 0E 88 1 12 14 16 18 2
- log(®)
-86 —
-S04 =50 1
100 -1001
110 : -1507
13 log(e) 1804
02 04 086 08 1 12 14 18 18 2

A partir de ®, = 10 rad/s, on peut approximer H_(p) par H(p)
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