
TD1 MPSI 25–26 LOGIQUE, ENSEMBLES, ÉQUATIONS

1. Résoudre dans R les équations ou inéquations suivantes : autrement dit, donner l’ensemble des solutions.

Dans chaque cas il faut se ramener à une équation d’un type connu.

a) (E) : x+ 1 =
√
x+ 1

b) (E) : x− 1 =
√
x+ 1

c) (E) : 2e−2x − e−x − 1 = 0

d) (E) : 2e−2x − e−x − 1 6 0

e) (E) :
1

x− 1
− 1

2x− 1
> 1

2. Équation à paramètre

Soit a un paramètre réel. On considère l’équation (E) : 1 + x = a(1− x) d’inconnue x.

Donner en fonction de a l’ensemble des solutions.

3. Étude de signe, simplification d’expression

Soit f(x) =
√

x+ 2
√
x− 1 +

√

x− 2
√
x− 1 et g(x) = x− 2

√
x− 1.

a) Donner Dg, l’ensemble de définition de g.

b) Montrer que pour tout x dans Dg, g(x) > 0.

c) Déterminer Df , l’ensemble de définition de f

d) Simplifier f(x)2, et en déduire une expression de f(x) plus simple que celle de départ.

e) Tracer le graphe de f (sans utiliser de calculatrice, bien sûr)

4. Soit f une fonction de R dans R.

Traduire à l’aide de quantificateurs les propriétés suivantes (sans utiliser la dérivée) et faire un dessin qui
traduit la propriété.

a) f est constante (avec deux ∀).
b) f est constante (avec un ∀ et un ∃).
c) f n’est pas constante.

d) f est croissante.

e) f n’est pas croissante.

5. Pour chacune des propriétés suivantes :

• Écrire sa négation en utilisant des quantificateurs (∃ et ∀)
• Dire si elle est vraie.

a) p1 : ∀x ∈ R, x > 0

b) p2 : ∀x ∈ R+, ∃y ∈ R, x = y2

c) p3 : ∀x ∈ R, ∃y ∈ R, x = y2

d) p4 : ∃y ∈ R, ∀x ∈ R+, x = y2

e) p5 : cet été, il a fait tous les jours plus de 30°.
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6. Dire si les expressions ensemblistes suivantes ont un sens et si oui, les traduire en une phrase.

a) {x ∈ R, x2 6 2}
b) {x3 − x, x ∈ [−1, 3]}
c) {x ∈ R, x2}
d) {ex > 1, x ∈ R}

7. Décrire explicitement les ensembles suivants sous forme d’intervalle ou de réunion d’intervalles.

a) E1 = {x ∈ R, ex 6 2}
b) E2 = {x ∈ R, x2 > 4x}
c) E3 =

{

cosx, x ∈
[

0,
π

2

]}

d) E4 = {x2, x ∈ [−1, 2]}

8. Propriétés diverses

Montrer les propriétés suivantes :

a) ∀x ∈ R, x2 + x 6 20 ⇒ |x| 6 5

b) Pour tout n ∈ N, n(n− 1) est pair.

c) ∀(x, y) ∈ R2,
[

x2 + xy + y2 = 0 ⇒ (x, y) = (0, 0)
]

d) Pour tout y ∈ R :

(

∃x ∈ R∗+, y = x+
1

x

)

⇔ y > 2

9. Quel est le plus grand : 475 ou 3100 ?

(Seuls objets autorisés : papier, crayon, cerveau)
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TD2 MPSI 25–26 RÉCURRENCES, SOMMES, PRODUITS

Récurrences

1. Montrer les propriétés suivantes :

a) ∀n ∈ N∗,
n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

b) ∀n ∈ N∗,
n
∑

k=1

k × k! = (n+ 1)!− 1

c) ∀n > 4, n! > 4n−2

d) ∀n ∈ N∗,
n
∏

k=1

(4k − 2) =
(2n)!

n!

e) ∀n ∈ N, ∀θ ∈ [0, π], | sin(nθ)| 6 n sin θ

Rappels :

• Inégalité triangulaire : ∀(x, y) ∈ R2 / |x+ y| 6 |x|+ |y|
• Formule d’addition : ∀(x, y) ∈ R2, sin(x + y) = sinx cos y + sin y cosx

2. Principe de récurrence double

a) Soit pn une propriété dépendant de l’entier n, définie pour n > n0.

On suppose que

{

pn0
et pn0+1 sont vraies

∀n > n0, (pn et pn+1) ⇒ pn+2

Montrer que pour tout n > n0, pn est vraie.

Indication : on pourra appliquer le principe de récurrence simple à une propriété qn bien choisie.

b) Soit (un)n∈N la suite définie par :

{

u0 = u1 = 1
∀n ∈ N, un+2 = un+1 + un

(suite de Fibonacci)

Montrer que ∀n ∈ N, un 6

(

5

3

)n

Sommes

3. Écrire les sommes suivantes à l’aide d’un
∑

(on ne cherchera pas à les simplifier) :

a) x2 + x3 + x4 + . . .+ xn

b) 1 + x2 + x4 + x6 + x8 + x10

c) cos(x) + cos(3x) + cos(5x) + cos(7x)

4. Expliciter tous les termes des expressions suivantes, pour n = 1, 2, 3 successivement (ne pas chercher à
simplifier le résultat) :

a)
n
∑

k=1

1

k

b)
n
∏

k=1

(

1 +
k

n2

)
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5. Les formules suivantes sont-elles vraies ou inventées ?

a)
n
∑

k=1

(ukvk) =

(

n
∑

k=1

uk

)(

n
∑

k=1

vk

)

b)
n
∑

k=1

(uk + vk) =

(

n
∑

k=1

uk

)

+

(

n
∑

k=1

vk

)

c)
n
∑

k=1

(uk − vk) =

(

n
∑

k=1

uk

)

−
(

n
∑

k=1

vk

)

d)
n
∑

k=1

(uk + c) =

(

n
∑

k=1

uk

)

+ c

e)
n
∑

k=1

(u2
k) =

(

n
∑

k=1

uk

)2

f)
n
∑

k=1

uk

vk
=

n
∑

k=1

uk

n
∑

k=1

vk

g)
n
∑

k=1

cos(uk) = cos

(

n
∑

k=1

uk

)

6. Simplifier (si possible) la somme (ou le produit) en une expression explicite.

n est un entier strictement positif.

a) Calculable ou pas ?

i)
n
∑

k=1

e−k

ii)
n
∑

k=1

1

n

iii)
n
∑

k=1

1

k

iv)
n
∑

k=1

e−k2

b) Sans coefficients binomiaux

i)
n
∑

k=1

(

3× 2k + 1
)

ii)
n
∑

k=0

(2k − 1 + 2k)

iii)
n
∑

k=1

22k+1

iv)
1

n

n−1
∑

k=0

exp

(

k

n

)

v)
n
∑

k=1

ln

(

k

k + 1

)

vi)
1

1× 2
+

1

2× 3
+ · · ·+ 1

n× (n+ 1)
.

Indication : on pourra chercher deux réels a et b tels que ∀k ∈ N∗,
1

k(k + 1)
=

a

k
+

b

k + 1
.

vii)
n
∏

k=1

exp

(

k

n

)

viii)
n
∑

k=0

|k − 1|
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c) Avec coefficients binomiaux

(a, b) ∈ C2.

i)
n
∑

k=1

( n

k

)

akbn−k

ii)
n
∑

k=0

( n

k

)

ak

iii)
n
∑

k=0

( n

k

)

iv)
n
∑

k=0

( n

k

)

a2k+1bn−k

v)
n
∑

k=0

( n

k

)

akbn+k

d) Sommes doubles

i)
n
∑

i=1

n
∑

j=i

i

j

ii)
n
∑

i=0

n
∑

j=0

(

i

j

)

iii) Sn =
n
∑

i=1

n
∑

j=1

min(i, j) Pour simplifier le calcul, considérer Sn+1 − Sn

7. Soit n ∈ N∗ et S =
n
∑

k=1

k
( n

k

)

.

a) On pose, pour x ∈ R, f(x) =
n
∑

k=1

( n

k

)

xk. Simplifier f(x).

b) En déduire pour tout x ∈ R, la valeur explicite de g(x) =
n
∑

k=1

k
( n

k

)

xk−1.

c) En déduire S.

d) Vérifier que pour tous k, n tels que 1 6 k 6 n, on a k
( n

k

)

= n

(

n− 1

k − 1

)

, et retrouver l’expression

explicite de S par un calcul direct.
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TD3 MPSI 25–26 DÉRIVATION

1. Justifier que f est dérivable sur l’ensemble précisé, et calculer sa dérivée.

a) f : x 7−→ xx sur R∗+

b) f : x 7−→
√
1− x2 sur [0, 1[

c) f : x 7−→ 1

xn
sur R∗ (n ∈ N∗)

d) f : x 7−→ ln
[

(x2 + 1)3
]

sur R

e) f : x 7−→ 1

2
ln

(

1 + x

1− x

)

(ensemble à déterminer)

f) f : x 7−→
√√

x− 2− 1 (chercher l’ensemble de définition et l’ensemble de dérivabilité)

2. Inégalités à démontrer

a) ∀x ∈ R+, ln(1 + x) > x− x2

2
b) ∀x ∈ R+, sinx 6 x

c) ∀x ∈ R+, ex 6 1 + xex

d) Inégalité de Young : ∀x, y ∈ R∗+, xy 6
xp

p
+

yq

q
,

p, q étant deux réels dans ]1,+∞[ tels que
1

p
+

1

q
= 1.

3. Soit f : ]− 1, 1[ −→ R

x 7−→ 1

x+ 1

et g : ]− 1, 1[ −→ R

x 7−→ 1

x2 − 1

a) Donner l’expression de f ′, f ′′, f ′′′.

b) Recommencer le calcul, sans se tromper cette fois.

c) Déterminer pour tout n ∈ N l’expression de f (n).

d) Donner l’expression de g(n).

On pourra chercher (a, b) ∈ R2 tel que ∀x ∈]− 1, 1[, g(x) =
a

x+ 1
+

b

x− 1
.

4. Soit f : R −→ R

x 7−→







x2 cos

(

1

x

)

si x 6= 0

0 sinon

Montrer que f est dérivable sur R mais pas de classe C1.
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TD4 MPSI 25–26 TRIGONOMÉTRIE RÉELLE

1. Pour chacun des réels suivants, donner une expression par radicaux (c’est à dire une expression qui n’utilise
que les 4 opérations et la racine carrée).

On pourra penser aux formules d’addition et de duplication.

cos
π

12
sin

π

12
cos

7π

12
cos

5π

8
sin

5π

8

2. Résoudre dans R :

a) −
√
2 cosx+

√
2 sinx = 1

b) cos(2x) +
√
3 sin(2x) =

√
2

c) cosx = sin 4x

d) 2 sinx− 1 < 0

e) 2 sinx− 1 <
√
1− cos2 x

3. Soit n ∈ N∗. Résoudre dans [0, π] l’équation sin(nx) = 0. Combien a-t-elle de solutions ?

4. Soit f la fonction définie sur R par f : x 7−→ 4

3
x3 +

1

6
.

a) Montrer que l’équation (E1) : f(x) = x a exactement 3 solutions réelles, qui sont dans ]− 1, 1[.

Les solutions seront notées respectivement α, β, γ par ordre croissant.

b) Montrer que ∀t ∈ R, sin(3t) = 3 sin(t)− 4 sin3(t).

c) Résoudre dans
]

−π

2
,
π

2

[

l’équation (E2) : sin(3t) =
1

2
.

On donnera les solutions par ordre croissant.

d) Montrer que pour toute solution x de (E1), il existe un unique t ∈
]

−π

2
,
π

2

[

tel que x = sin t.

e) Montrer que β = sin
π

18
.

Exprimer α et γ de la même façon.

5. Équations et inéquations diverses à résoudre dans R (sauf mention explicite du contraire)

a) 2 sin2 x =
√
3 sin(2x)

b) 2 cos2(x) + cos(x)− 1 > 0 (résoudre dans ]− π, π])

c) sin4 x+ cos4 x = 1

d) (cos3 x) sin(3x) + (sin3 x) cos(3x) =
3

4
On pourra commencer par exprimer sin(3x) en fonction de sinx, et cos(3x) en fonction de cosx.

6. Étudier la fonction f : x 7−→ 3 sinx− sin(3x) et représenter sa courbe.
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TD5 MPSI 25–26 COMPLEXES (1)

1. Exercice d’entrâınement

a) Mettre sous la forme a+ ib (a, b ∈ R) les nombres :

3 + 6i

3− 4i

(

1 + i

2− i

)2

+
3 + 6i

3− 4i

2 + 5i

1− i
+

2− 5i

1 + i

b) Même question avec les nombres :

(

−1

2
+ i

√
3

2

)3
(1 + i)9

(1− i)7

2. Forme algébrique / trigonométrique (complexe)

Mettre les complexes suivants sous forme algébrique (A) ou sous forme trigonométrique généralisée (T).

a) z1 =
1

i

2
− 1

2
√
3

(A+T)

b) z2 = 1 + eiθ θ ∈ [0, 2π[\{π} (T)

c) z3 = 1− eiθ θ ∈]0, 2π[ (T)

d) z4 =
1 + cos θ + i sin θ

1 + cos θ − i sin θ
θ ∈ [0, 2π[\{π} (T+A)

e) z5 = (j + 1)2025 avec j = exp

(

i2π

3

)

(A+T)

3. Vrai ou faux ?

a) ∀(a, b) ∈ R2, (a+ ib) + i(a− 2ib) = 0 ⇒
{

a+ ib = 0
a− 2ib = 0

b) ∀(a, b) ∈ R2, (a+ ib) + i(a− ib) = 0 ⇒
{

a+ ib = 0
a− ib = 0

4. Soit θ ∈ R. On considère l’équation (E) :
1 + iz

1− iz
= eiθ, d’inconnue z ∈ C.

Résoudre (E). On donnera le nombre de solutions en fonction de θ et on donnera les solutions sous forme
trigonométrique.

5. Montrer que ∀z ∈ C \ {−i}, z − i

1− iz
∈ R ⇔ |z| = 1

6. Soit a ∈ R. Déterminer en fonction de a l’ensemble des complexes z tels que z + az ∈ R.

7. Pour chaque question, on pourra soit faire une résolution calculatoire, soit une résolution géométrique.

a) Déterminer l’ensemble E = {z ∈ C / |z − i| = |z + 3i|}.
b) Déterminer l’ensemble F = {z ∈ C / |z + 1| 6 1 et |z − 1| 6 1}
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TD6 MPSI 25–26 INTÉGRALES, PRIMITIVES (1)

1. Donner une primitive de la fonction f sur l’ensemble précisé.

a) f(t) = t(t2 + 1)3 sur R

b) f(t) = e2t sin t sur R

c) f(t) = (2t+ 1)4 sur R

d) f(t) =
1

1− t2
sur ]− 1, 1[

2. Compréhension de la notion d’intégrale

a) Quand cela a un sens, on pose f(x) =

∫ x+1

2x

1

t2
dt

i) Donner l’ensemble de définition de f .

ii) Sans faire de calcul explicite, donner le tableau de signe de f .

b) Déterminer lim
x→1

1

x− 1

∫ x

1

et

t
dt. Appliquer la définition de l’intégrale.

c) Soit f : R∗+ −→ R

x 7−→
∫ x

1
x

ln t

1 + t2
dt

Montrer que f est dérivable sur R∗+, puis donner l’expression explicite de f .

3. Calculer les intégrales suivantes :

a)

∫ 2

0

2x dx

b)

∫ 2

1

lnx

x
dx

c)

∫ π

0

| cosx| dx

d)

∫ t

1

xn lnxdx (t ∈ R∗+, n ∈ N)

e)

∫ π

2

0

x cosxdx

f)

∫ 1

0

t3e−t2 dt

g)

∫ π

4

0

x tan2 xdx

h)

∫ 3

2

x2

x− 1
dx

4. Calculer les intégrales suivantes par changement de variable :

a)

∫ 1

0

1

ex + 1
dx t = ex

b)

∫ 2

1

1

1 +
√
x
dx

c)

∫ π

6

0

(tanx+ tan3 x) dx

d)

∫ π

0

sin3 x cos2 xdx

e)

∫ π

4

0

tan2 x− 2 tanx+ 5

cos2 x
dx

f)

∫ π

−π

x2025 cosxdx t = −x

5. Soit f : R −→ R

x 7−→
∫ 2x

x

e−t2 dt

a) Étudier la parité de f (on pourra faire un changement de variable).

b) Montrer que f est dérivable sur R. Étudier les variations de f .

1



6. Série harmonique alternée

Soit, pour n ∈ N, un = 1− 1

2
+

1

3
− · · ·+ (−1)n

n+ 1
, c’est à dire un =

n
∑

k=0

(−1)k

k + 1

a) En considérant

∫ 1

0

tk dt, montrer que pour tout n ∈ N, un =

∫ 1

0

1− (−1)n+1tn+1

1 + t
dt

b) Soit In =

∫ 1

0

tn

1 + t
dt. Montrer par encadrement que (In) converge et donner sa limite.

c) En déduire que (un) converge et donner sa limite.

7. Lemme de Riemann 1-Lebesgue 2

Soit f une fonction de classe C1 sur [a, b]. On définit pour pour n ∈ N∗, In =

∫ b

a

f(t) sin(nt) dt.

Montrer que In −−−−−→
n→+∞

0 (on pourra faire une intégration par parties).

Remarque : On a un résultat analogue avec cos à la place de sin.

1. Bernhard Riemann (1826-1866), mathématicien allemand. Il a été le premier à formaliser la théorie de l’intégration que nous
utilisons en prépa. Il a également travaillé sur les géométries non euclidiennes et la répartition des nombres premiers.

2. Henri Lebesgue (1875-1941), mathematicien français. Il a élaboré une théorie de l’intégration plus puissante et plus générale
que celle de Riemann et qui est largement utilisée aujourd’hui.
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TD7 MPSI 25–26 COMPLEXES (2)

Transformations trigonométriques, utilisation de l’exponentielle complexe

1. a) Linéariser sin5(x).

b) Déterminer une fonction P telle que ∀x ∈ R, cos(5x) = P (cosx).

2. Soit x ∈ R et n ∈ N. Expliciter les sommes suivantes. Il ne doit pas rester de complexes dans la réponse.

a) An(x) =
n
∑

k=0

( n

k

)

cos(kx) et Bn(x) =
n
∑

k=0

( n

k

)

sin(kx)

b) Cn(x) =
n
∑

k=0

cos(kx)

cosk(x)
(x 6≡ 0

[π

2

]

)

c) Dn(x) =
n
∑

k=0

(−1)k
cos(kx)

2k

Équations - racines nes

3. Résoudre dans C les équations suivantes.

a) (E1) : z3 = i

b) (E2) : z4 + 1 = 0

c) (E3) : z6 = −64

d) (E4) : z4 − z2 + 1 + i = 0

e) (E5) : z = iz

4. Banque CCINP exercice 84

a) Donner la définition d’un argument d’un nombre complexe non nul (on ne demande ni l’interprétation
géométrique, ni la démonstration de l’existence d’un tel nombre).

b) Soit n ∈ N∗. Donner, en justifiant, les solutions dans C de l’équation zn = 1 et préciser leur nombre.

c) En déduire, pour n ∈ N∗, les solutions dans C de l’équation (z + i)n = (z − i)n et démontrer que ces
nombres sont réels.

On précisera le nombre de solutions.

5. Banque CCINP exercice 89

Soit n ∈ N tel que n > 2. On pose z = ei
2π
n .

a) On suppose k ∈ [[1, n− 1]].

Déterminer le module et un argument du complexe zk − 1.

b) On pose S =
n−1
∑

k=0

|zk − 1|. Montrer que S =
2

tan( π
2n )

.

6. Soit n ∈ N, n > 2. Donner la somme et le produit des racines nes de l’unité.
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7. a) Déterminer une fonction P polynômiale telle que ∀x ∈ R, sin(5x) = P (sinx).

b) Résoudre sur R l’équation P (t) = 0.

c) En déduire une expression par radicaux de sin
(

k
π

5

)

pour k ∈ [[0, 4]].

8. Soit ω = exp

(

i
2π

7

)

, A = ω + ω2 + ω4 et B = ω3 + ω5 + ω6.

Calculer A+B et AB (en particulier, montrer qu’ils sont entiers).

En déduire une expression par radicaux de A et B.

Géométrie

9. Soit ABCD un quadrilatère direct. On construit les triangles isocèles rectangles directs A′BA, B′CB,
C′DC, D′AD, d’angles droits respectifs A′, B′, C′, D′. Montrer que [A′C′] et [B′D′] sont orthogonaux et
de même longueur.

On commencera par traduire en terme d’affixe le fait que le triangle A′BA est direct et isocèle rectangle
en A′, et de même pour les autres.

10. Si a est un complexe non nul, on note p et q les racines carrées de a.

Les points d’affixes respectives a, p, q sont notés A,P,Q.

Déterminer l’ensemble des a tels que le triangle APQ soit rectangle en A.
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TD8 MPSI 25–26 ÉQUATIONS DIFFÉRENTIELLES

1. Résoudre les équations différentielles suivantes en tenant compte des éventuelles conditions initiales :

a) x′ + 2x = 3 sur R

b) (1 + t2)x′ + 2tx = 1 sur R

c) x2y′ − y = e−
1
x sur R∗+

d)

{

x′ − tx = t
x(0) = 0

sur R

e)

{

x′ + x tan t = sin(2t)
x(0) = 1

sur
]

−π

2
,
π

2

[

f)
√
1− t2x′ + tx = 1 sur ]− 1, 1[ (exprimer une solution particulière sous forme intégrale)

2. Même question

a) y′′ − 4y′ + 3y = 0, avec y(0) = 0 et y′(0) = 2

b) y′′ − 6y′ + 9y = 0, avec y(0) = 0 et y′(0) = −2

c) y′′ − 2y′ + 2y = 0

d) y′′ + 4y = e−x, avec y(0) = y′(0) = 0

e) y′′ − 4y′ + 3y = 2ex

f) 2y′′ − y′ − y = 2x− 1 Chercher une solution particulière affine.

3. Banque CCINP, exercice 42

On considère les deux équations différentielles suivantes :

2xy′ − 3y = 0 (H)

2xy′ − 3y =
√
x (E)

a) Résoudre l’équation (H) sur l’intervalle ]0,+∞[.

b) Résoudre l’équation (E) sur l’intervalle ]0,+∞[.

c) L’équation (E) admet-elle des solutions sur l’intervalle [0,+∞[ ?

4. Recollement de solutions

On considère l’équation différentielle (E) : tx′(t) + x(t) = 1

a) Résoudre (E) sur R∗+ puis sur R∗−

b) En déduire toutes les solutions de (E) sur R. On donnera en particulier le nombre de solutions.

Une solution de (E) sur R doit au minimum être définie et dérivable (donc continue) sur R.

5. Équation intégrale

Déterminer toutes les fonctions f continues sur R telles que ∀t ∈ R, f(t) = 2e
t
2

2 −
∫ t

0

xf(x) dx.

6. Résoudre les équations suivantes :

a) (1 + ex)y′′(x) + y′(x) − exy(x) = 0. On pourra poser z = y′ + y.

b) x2y′′(x) − 2y(x) = x sur R∗+. On pourra effectuer le changement de variable t = lnx.

1



7. Soit f : R −→ R continue.

Montrer que l’unique solution du problème de Cauchy

{

x′′ + x = f
x(0) = x′(0) = 0

a pour expression

∀t ∈ R, x(t) =

∫ t

0

sin(t− u)f(u) du

8. Équation logistique (dynamique des populations)

On considère l’équation différentielle non linéaire suivante :

(E) : y′ = ky(1− y)

où k est une constante strictement positive donnée.

Cette équation modélise l’évolution de la population d’une espèce animale 3 au cours du temps, dans un
territoire isolé (pas de prédateurs), présentant une quantité limitée de ressources (nourriture, territoire)

Soit y0 ∈ R∗+. On admet que (E) admet une unique solution y vérifiant y(0) = y0, définie sur R+, et que
celle-ci ne prend que des valeurs strictement positives.

a) On pose z =
1

y
.

Montrer que z est solution d’une équation différentielle linéaire (E′).

b) Résoudre (E′).

c) On suppose que y0 ∈]0, 1[. Déterminer l’expression de y. Étudier ses variations et sa limite en +∞.

d) Mêmes questions si y0 > 1.

Interprétation de cette équation y′ = ky(1− y) :

On peut imaginer, en première approximation, que l’accroissement de la population est proportionnel à
la population : y′ = ky.

Mais dans ce cas, la population va crôıtre très rapidement, exponentiellement (y(t) = y0e
kt), ce qui n’est

pas compatible avec le caractère fini des ressources.

C’est pourquoi on rajoute un facteur correctif 1 − y pour traduire le fait que plus la population est
nombreuse, moins elle va pouvoir s’étendre. Au contraire, si elle dépasse un certain seuil (ici égal à 1), il
n’y a pas assez de ressources pour tout le monde, donc la population va diminuer (y′ < 0).

3. Ce type d’équation peut aussi se rencontrer en cinétique chimique, dans le cas d’une réaction A −→ B où la vitesse de réaction
est proportionnelle à [A][B]

2



TD9 MPSI 25–26 FONCTIONS POLYNÔMIALES

Coefficients, degré

1. Soit n ∈ N∗. Déterminer le degré et le coefficient dominant des fonctions polynômiales suivantes :

P1(x) = (x4 − 1)3 P2(x) = (x+ 1)n − (x − 1)n P3 = P 2 − P + 1

P : fonction polynômiale de degré n, unitaire.

2. Formule de Vandermonde

Soit m,n ∈ N. Déterminer de deux façons différentes la suite des coefficients de la fonction polynômiale

P (x) = (1 + x)n(1 + x)m

En déduire que ∀r ∈ N,

(

m+ n

r

)

=
r
∑

k=0

( n

k

)

(

m

r − k

)

.

3. Identification ? Questions indépendantes

Soit (ak)k∈N une suite presque nulle, et P : x 7−→ ∑

k>0

akx
k.

Montrer que :

a) Si ∀t ∈ R, P (et) = 0, alors ∀k ∈ N, ak = 0.

b) P est paire (resp. impaire) ⇔ ∀k ∈ N, a2k+1 = 0 (resp. ∀k ∈ N, a2k = 0)

4. Interpolation

Montrer qu’il existe une unique fonction polynômiale P (à déterminer) de degré 3 telle que :

P (1) = 0, P (2) = 1, P (3) = 0, P (4) = 3

Racines, factorisation

5. a) Montrer que la fonction polynômiale P (x) = 2x3 − 6x+1 a trois racines réelles distinctes (qu’on ne
cherchera pas à calculer). On les note α, β, γ.

b) Calculer αβγ, α+ β + γ, αβ + αγ + βγ.

c) Question subsidiaire : calculer
1

α
+

1

β
+

1

γ
et α2 + β2 + γ2.

1



6. Factoriser entièrement les polynômes suivants.

a) P (x) = x4 + 2x3 + 5x2 + 4x+ 6 Indication : P a une racine imaginaire pure.

b) P (x) = x5 − x4 + x3 − x2 − 12x+ 12.

c) P (x) = x4 + 12x− 5 Indication : il y a deux racines dont la somme est 2.

d) P (x) = x3 + 1.

e) P (x) = x8 + x4 + 1.

f) P (x) = 2xn − 1 (n ∈ N∗).

7. Soit n > 2. Factoriser (dans C) le polynôme

P : z 7−→
n−1
∑

k=0

zk

8. D’après CCINP Exercice 84

Questions b)c)d) déjà faites (TD sur les complexes), seules les questions a) et e) sont nouvelles ici.

Pour la question e), on pourra reprendre l’expression des solutions de l’équation sans justifier.

Soit n ∈ N∗. On considère l’équation (E) : (z + i)n = (z − i)n, d’inconnue z dans C.

a) (question supplémentaire) Justifier, sans la résoudre, que (E) a au plus n− 1 solutions dans C.

b) Donner la définition d’un argument d’un nombre complexe non nul (on ne demande ni l’interprétation
géométrique, ni la démonstration de l’existence d’un tel nombre).

c) Soit n ∈ N∗. Donner, en justifiant, les solutions dans C de l’équation zn = 1 et préciser leur nombre.

d) Déduire de la question c) les solutions dans C de l’équation (E) et démontrer que ces nombres sont
réels.

e) (question supplémentaire) Factoriser dans C la fonction polynomiale P : x 7−→ (x+ i)n − (x − i)n.

9. Polynômes de Chebychev

On définit la suite de fonctions polynômiales (Pn)n∈N par :

∀x ∈ R,







P0(x) = 1
P1(x) = x
∀n ∈ N, Pn+2(x) = 2xPn+1(x) − Pn(x)

a) Déterminer pour tout n ∈ N le degré de Pn et son coefficient dominant (noté αn).

b) Montrer que ∀n ∈ N, ∀t ∈ R, Pn(cos t) = cos(nt).

c) Soit n ∈ N. Montrer que Pn est l’unique fonction polynômiale vérifiant la propriété précédente,
autrement dit si Q est une fonction polynômiale telle que ∀t ∈ R, Q(cos t) = cos(nt), alors Q = Pn.

d) Dans toute la suite, n ∈ N∗. Déterminer toutes les racines de Pn dans [−1, 1].

e) Montrer qu’on obtient ainsi toutes les racines de Pn dans C, et en déduire la factorisation complète
de Pn.
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TD10 MPSI 25–26 THÉORIE DES FONCTIONS

1. Soit f : E −→ F . Traduire avec des quantificateurs :

a) f n’est pas injective.

b) f n’est pas surjective.

2. Soit f : R −→ R

x 7−→ 2x

1 + x2

a) f est-elle injective ? surjective ?

b) Déterminer f(R), f

([

1

2
,+∞

[)

c) Déterminer f−1

([

1

2
,+∞

[)

d) Soit g : ]0, 1] −→ ]0, 1]
x 7−→ f(x)

Montrer que g est bien définie et qu’elle est bijective. Déterminer l’expression de sa réciproque.

3. Pour chaque fonction, dire si elle injective, puis surjective.

— Pour celles qui ne sont pas surjectives, préciser l’ensemble image.
— Pour celles qui sont bijectives, donner l’expression de la réciproque quand c’est possible.

a) f : N −→ N
n 7−→ n+ 1

b) f : Z −→ Z
n 7−→ n+ 1

c) f : R2 −→ R
(x, y) 7−→ x+ y

d) exp : R −→ R

e) f : [1,+∞[ −→ [0,+∞[

x 7−→ x− 1

x

f) f : P([[1, 3]]) −→ P([[1, 3]])
A 7−→ A ∪ {1}

g) f : R2 −→ R2

(x, y) 7−→ (x+ y, x− y)

h) f : C([0, 1],R) −→ R

u 7−→
∫ 1

0

u(x) dx

i) exp : C −→ C

j) f : R2 −→ R2

(x, y) 7−→ (x, xy − y3)

4. Soit E, F et G trois ensembles. Soit f : E −→ F et g : F −→ G.

Soit h = g ◦ f
a) Montrer que si h est injective, alors f est injective.

b) Montrer que si h est surjective, alors g est surjective.

c) Montrer que si h est injective et f surjective, alors g est injective.

d) Montrer que si h est surjective et g injective, alors f est surjective.

1



5. On considère les applications :

f : N −→ N

x 7−→ 2x
et g : N −→ N

x 7−→







x

2
si x est pair

x+ 1

2
si x est impair

a) f est-elle injective ? surjective ?

b) Mêmes questions avec g.

c) Déterminer g ◦ f et f ◦ g, et dire si elles sont injectives, surjectives.

6. Soit f : R \
{

1

2

}

−→ R \
{

−1

2

}

x 7−→ x− 1

1− 2x
Montrer que f est bien définie, qu’elle est bijective, et déterminer l’expression de f−1

7. Soit f : E −→ F . On définit les deux fonctions g et h par :

g : P(E) −→ P(F )
X 7−→ f(X)

et h : P(F ) −→ P(E)
Y 7−→ f−1(Y )

Montrer que :

a) f est surjective ⇔ g est surjective.

b) f est injective ⇔ g est injective.

c) f est injective ⇔ h est surjective.

d) f est surjective ⇔ h est injective.
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TD11 MPSI 25–26 FONCTIONS USUELLES

1. Soit f : x 7−→ arctan(x) + arctan

(

1

x

)

.

Montrer que f est dérivable sur R∗ et calculer f ′. Que peut-on en déduire ?

2. Expressions de la forme arctrigo ◦ trigo
a) Soit f : x 7−→ arccos(cosx)

i) Déterminer l’ensemble de définition de f .

ii) Étudier les symétries de la fonctions f (parité, périodicité,. . .) et en déduire qu’on peut restreindre
l’étude à un intervalle I dans lequel l’expression de f est simple.

iii) Tracer la courbe de f en expliquant pas à pas la construction de la courbe.

iv) Déterminer f

(

23π

19

)

sous la forme
aπ

b
, où a et b sont deux entiers.

b) Mêmes questions avec la fonction g : x 7−→ arcsin(sinx).

c) Mêmes questions avec la fonction h : x 7−→ arctan(tanx).

3. Simplification d’expressions de la forme trigo ◦ arctrigo
Pour chacune des fonctions suivantes : donner l’ensemble de définition, puis la simplifier en une expression
par radicaux (n’utilisant plus de fonction trigonométrique ni réciproque).

a) g : x 7−→ cos(arctanx) réponse : g(x) =
1√

1 + x2

b) h : x 7−→ sin(arctanx)

c) i : x 7−→ tan(arcsinx)

d) j : x 7−→ sin2
(

1

2
arccosx

)

4. a) Montrer que ∀x ∈ R, arctan(x+ 1)− arctanx = arctan

(

1

x2 + x+ 1

)

b) Soit un =
n
∑

k=0

arctan

(

1

k2 + k + 1

)

.

Calculer un explicitement, et déterminer lim(un).

5. Calculer les intégrales suivantes :

a) f(x) =

∫ x

0

arcsin t dt (x ∈]− 1, 1[)

b) I =

∫ 1
2

0

dx

(
√
1− x2)3

(CdV t = arcsinx)

c) I =

∫ 1

0

1

t+ i
dt

d) f(x) =

∫ x

0

1√
R2 − t2

dt (R > 0, x ∈]−R,R[)

e) I =

∫ R

−R

√

R2 − x2 dx (R > 0)

(CdV x = R cos t)
Interprétation géométrique?

f) f(x) =

∫ x

0

arctan t dt (x ∈ R)

g) I =

∫ 3
2

− 1
2

4x− 2

4x2 + 4x+ 17
dx

1



6. Résoudre les équations suivantes.

a) arcsinx = 2 arctanx

b) arccos
1

3
+ arccos

1

4
= arcsinx

7. Fonctions hyperboliques réciproques

a) Montrer que sh est une bijection de R dans un ensemble à déterminer. La réciproque est notée argsh
(argument sinus hyperbolique).

b) Calculer l’expression explicite de argsh.

c) Sans utiliser son expression, déterminer l’ensemble de dérivabilité de argsh et l’expression de sa
dérivée.

d) Mêmes questions pour ch|R+ .

e) Mêmes questions pour th.
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TD12 MPSI 25–26 CALCUL MATRICIEL

1. Exercice-cours (méthodes à connâıtre)

a) Soit B =





0 3 1

0 0 −2

0 0 0



.

Calculer B2, B3. En déduire Bk pour tout k ∈ N.

b) On pose M = 2I3 +B. Calculer Mn explicitement pour tout n ∈ N.

c) On considère les suites (un), (vn), (wn) définies par u0 = v0 = w0 = 1 et

∀n ∈ N,







un+1 = 2un + 3vn + wn

vn+1 = 2vn − 2wn

wn+1 = 2wn

On pose Xn =





un

vn

wn





Exprimer Xn+1 en fonction de M et Xn.

d) En déduire Xn explicitement (sans puissance matricielle), puis un, vn, wn.

2. Soit A =





−1 1 2

0 −1 3

0 0 −1





a) Calculer An pour tout n ∈ N

b) Montrer que A est inversible et donner A−1.

3. a) Soit p ∈ N∗, et J la matrice dans Mp(R) dont tous les coefficients valent 1.

Calculer J2, J3 puis conjecturer une expression pour Jn, n ∈ N puis la démontrer.

b) Soit A ∈ Mp(R) la matrice dont les coefficients diagonaux valent 2, les autres 1.

Exprimer A comme combinaison linéaire de I et J .

c) Calculer An pour tout n ∈ N.

d) Montrer que A est inversible et donner A−1. On pourra considérer xI + yJ .

4. Diagonalisation d’une matrice.

On considère la matrice A =

(

1 −1

2 4

)

.

On veut calculer les puissances successives de A.

a) Soit P =

(

1 1

−1 −2

)

Montrer que P est inversible et que P−1 =

(

2 1

−1 −1

)

b) Soit D = P−1AP . Calculer D puis calculer Dn pour tout n ∈ N.

c) Pour tout n ∈ N, trouver une relation exprimant Dn en fonction de An, P et P−1.

On pourra regarder ce qui se passe pour n = 2 puis essayer de généraliser.

d) En déduire An.

e) Soit (un) et (vn) définies par u0 = v0 = 1 et ∀n ∈ N,

{

un+1 = un − vn
vn+1 = 2un + 4vn

Calculer explicitement ces deux suites. On pourra poser Xn =

(

un

vn

)

1



5. Commutant et racines carrées d’une matrice diagonale

Soit A =





1 0 0

0 2 0

0 0 3



.

a) Soit M ∈ M3(R). Montrer que

AM = MA ⇔ M est diagonale

b) Montrer que si M2 = A, alors AM = MA.

c) Trouver toutes les matrices M telles que M2 = A. Combien y en a-t-il ?

6. Soit n ∈ N∗. Montrer que toute matrice M ∈ Mn(K) se décompose de manière unique sous la forme
M = A+B, avec A symétrique et B antisymétrique.

7. Soit A ∈ Mnp(R). Montrer que A = 0 ⇔ tr(A⊤A) = 0.

8. Soit A =





0 1 −1

−3 4 −3

−1 1 0





a) Calculer A2 et vérifier que A2 − 3A+ 2I = 0.

b) Pour tout n ∈ N, on pose Bn = An+1 − 2An

Montrer que la suite (Bn) est constante.

c) Pour tout n ∈ N, on pose Cn = An +A− 2I.

Montrer que ∀n ∈ N, Cn+1 = 2Cn

d) En déduire l’expression de An comme combinaison linéaire de A et I.

e) On considère les 3 suites (un) (vn) et (wn) définies par :

u0 = 0 v0 = 1 w0 = −1 et ∀n ∈ N,







un+1 = vn − wn

vn+1 = −3un + 4vn − 3wn

wn+1 = −un + vn
Calculer leur terme général.

9. Existe-t-il A,B ∈ Mn(C) telles que AB −BA = In ?

10. Matrice qui commute avec tout

Soit A ∈ Mn(K). Montrer que :

∀M ∈ Mn(K), AM = MA ⇔ ∃λ ∈ K /A = λIn

2



TD13 MPSI 25–26 COMPARAISON DE FONCTIONS

1. Croissances comparées

Dans chacun des cas, déterminer la limite éventuelle de la fonction ou de la suite au point considéré.

a) f(x) =
ln(1 + x)

x
en +∞.

b) f(x) = ln(x) +
1

x
en 0.

c) f(x) =
xln x

(lnx)x
en +∞.

d) f(x) = x− ln(2x + 1) en +∞.

e) f(x) =
e
√
ln x

x2
en +∞.

f) un =
2
√
n + n2

nlnn
en +∞.

g) un =
2n√
n!

en +∞.

h) un =
2
√
n

1, 001n
en +∞.

2. Au voisinage de 0, compléter si possible par o(xn) avec le plus grand n ∈ N possible et justifier :

o(x2) + o(x4) = x2o(x3) = o(x2)− o(x2) =

o(x2)o(x3) = x2 + o(x3) =
o(x3)

o(x2)
=

o(x3)

x2
=

x3

o(x2)
= o(x2 + 3x) =

3. a) À l’aide d’une formule de trigonométrie (2 possibilités), montrer que

cos(x) − 1 ∼
x→0

−x2

2

b) En déduire un équivalent simple de ln(cos(x)) en 0.

4. Limites

Donner la limite éventuelle de la fonction au point considéré.

a) f(x) =
x+ sinx− tanx

cosx− 1 + ln(1 + x)
en 0

b) f(x) =
x5 − 1

x3 − 1
en 1

c) f(x) =
√
x2 + 1 + x en −∞

d) f(x) =
x+

√
x2 + 1√

x2 − 5x+ 1
en +∞

e) f(x) = x sin
1

x
en +∞

1



5. Vrai ou faux ? (Compréhension de la notion d’équivalents)

a) i) lnx = o
x→0

(x)

ii) x2 + lnx ∼
x→+∞

x2

iii) exp(x2 + lnx) ∼
x→+∞

exp(x2)

b) C’est faux jusqu’à preuve du contraire !

i) Si g ∼
x0

f et h ∼
x0

f , alors g + h ∼
x0

2f

ii) Si f(x)− 1 ∼
x→0

x, alors f(x) ∼
x→0

1 + x

iii) Si f(x) ∼
x→0

1 + x, alors f(x)− 1 ∼
x→0

x

iv) Si (un) et (vn) ont la même limite finie, alors un ∼
n→+∞

vn.

6. Donner l’équivalent le plus simple de la fonction au point considéré.

a) f(x) =
√
x+ 5−

√
x− 3 en +∞ réponse : f(x) ∼

x→+∞
4√
x

b) f(x) =
ln(1− x2)

sinx+ ln(1 + x)
en 0.

c) un =
√
1 + ne−n − 1 en +∞.

d) un =
√

n+
√
n en +∞.

e) un = 4n − 2n7 − 4 ln(n20) en +∞.

2



TD14 MPSI 25–26 SYSTÈMES LINÉAIRES

1. Systèmes sans paramètres

Résoudre les systèmes suivants :

(S1) :







x + 2y − 3z = 2
x + y − z = −1

4x + 5y − 7z = 0
(S3) :















x+ t = 1
y + x = 0
z + y = 1
t+ z = −1

(S2) :

{

x + 2y + 3z + 2t = 1
x + 3y + 3z + t = 0

(S4) :







x + y + z = 1
x + jy + j2z = 1
x + j2y + jz = 1

j = exp

(

2iπ

3

)

2. Systèmes à paramètres

Dans cet exercice, les inconnues sont X (matrice colonne) ou x, y (scalaires).

Résoudre les systèmes en discutant éventuellement suivant les valeurs des paramètres.

a) MX = λX avec M =





1 1 1

1 1 1

1 1 1



 (λ : paramètre réel)

b) Même question avec M =





3 −1 −2

4 −2 −2

1 −1 0





c)

{

mx + y = 1
x + my = 1

(m : paramètre réel)

3. Dire si la matrice est inversible, et si oui, déterminer son inverse.

A =





1 0 2

0 −1 −1

1 −2 0



 B =





1 1 2

1 −1 2

2 1 5



 C =





1 2 −1

3 1 0

−1 0 0



 D =











1 · · · · · · 1

0
. . .

...
...

. . .
. . .

...

0 · · · 0 1











4. Soit f : R2 −→ R2

(x, y) 7−→ (2x+ 5y, x+ 2y)
Montrer qu’elle est bijective et déterminer l’expression de sa réciproque.

5. Géométrie

Soit λ un paramètre réel. L’espace est muni d’un repère R = (O,~i,~j,~k).

On considère les plans P1, P2, P3 d’équations respectives dans R :

P1 : x+ y + 2z + 1 = 0
P2 : 2x+ y + λz + 2 = 0
P3 : x+ λy + 4z + 1 = 0

Montrer qu’il existe deux valeurs de λ pour lesquelles E = P1 ∩ P2 ∩ P3 est une droite.

Dans chacun des cas, décrire la droite en en donnant un point particulier et un vecteur directeur.
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TD15 MPSI 25–26 SUITES PARTICULIÈRES, RELATIONS BINAIRES

Suites

1. Calculer le terme général de la suite (un).

a) u0 = 0, ∀n ∈ N, 2un+1 + un = 3.

b) u0 = u1 = 1, ∀n ∈ N, 4un+2 + 4un+1 + un = 0.

c) u0 = 0, u1 = 1, ∀n ∈ N, un+2 = 2un+1 − 4un.

d) u0 = 1, ∀n ∈ N, 2(un+2 + un) = 5un+1 et (un) converge.

e) ∀n ∈ N, un+2 = 5un+1 − 6un + 2.

On pourra commencer par chercher une suite constante c qui convient, et considérer vn = un − c.

f) u0 = 0, u1 = 1 + i, ∀n ∈ N, un+2 = 2un+1 − un

2. D’après CCINP exercice 55

Soit a un nombre complexe.

On note E l’ensemble des suites à valeurs complexes telles que

∀n ∈ N, un+2 = 2aun+1 + 4(ia− 1)un avec (u0, u1) ∈ C2.

a) Prouver que E est stable par combinaison linéaire.

b) Soit (un) et (vn) deux suites de E. Montrer que

si u0 = v0 et u1 = v1, alors ∀n ∈ N, un = vn.

c) Dans cette question, on considère une suite de E définie par : u0 = 1 et u1 = 1.

Exprimer, pour tout entier naturel n, le nombre complexe un en fonction de n.

Indication : discuter suivant les valeurs de a.

Relations binaires

3. Dire si la relation R est réflexive / symétrique / transitive / antisymétrique.

Quand c’est une relation d’ordre, dire s’il est total ou partiel.

a) E = C zRz′ ⇔ Re z 6 Re z′ et Im z 6 Im z′.

b) E = R xRy ⇔ x2 = y2

c) E = N∗ xRy ⇔ ∃k ∈ N∗, x = yk.

4. Montrer que

a) ∀n ∈ N, 34n+3 ≡ 2[5]

b) ∀n ∈ N∗, 5n + 2× 3n−1 ≡ 7[8]

5. Quel est le chiffre des unités de 987789 ?

Inégalités dans R, valeur absolue

6. Montrer les inégalités suivantes :

a) ∀x ∈ R−, |ex − 1| 6 |x|

b) ∀x, y ∈ [1,+∞[, |√x−√
y| 6 |x− y|

2
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c) ∀n ∈ N, ∀θ ∈ [0, π], | sin(nθ)| 6 n sin θ

7. Résoudre dans R l’inéquation |2x+ 4| 6 |x+ 1|.

8. Soit a ∈ R. Montrer que si ∀ε ∈ R∗+, |a| 6 ε, alors a = 0.

Inf, sup, max, min

9. Parties minorées, majorées, max, min, sup, inf

a) Les parties suivantes sont-elles majorées ? minorées ? Ont-elles un plus grand élément ? Un plus petit
élément ? Une borne supérieure ? Une borne inférieure ?

i) A = {0, 1} ∪ [2, 3[

ii) B =

{

1 +
1

x
, x ∈ R∗+

}

iii) C =

{

1

n
, n ∈ N∗

}

b) Dire si la fonction f : R −→ R

x 7−→ cosx

2− sinx

admet min/max/inf/sup, et déterminer ceux qui existent.

10. Soit A une partie de R. Traduire avec des quantificateurs :

a) A n’est pas majorée.

b) A n’a pas de plus grand élément.

11. Soit f et g deux fonctions de R dans R majorées.

a) Montrer que f + g est majorée et que sup(f + g) 6 sup(f) + sup(g) mais qu’en général on n’a pas
égalité.

b) Soit λ ∈ R∗+. Montrer que λf est majorée et que sup(λf) 6 λ sup f .

c) En appliquant ce résultat à des paramètres bien choisis, montrer que sup(λf) > λ sup f .

On a donc sup(λf) = λ sup(f).

12. Ordre lexicographique dans C

Dans C, on définit la relation 4 par

z 4 z′ ⇔







Re(z) < Re(z′)
ou
(

Re(z) = Re(z′) et Im(z) 6 Im(z′)
)

Montrer que 4 est une relation d’ordre total sur C.

13. Soit P un plan, et O un point de P .

Dans P \ {O}, on définit la relation R suivante :

MRN ⇔ ∃λ ∈ R∗+,
−−→
OM = λ

−−→
ON

a) Montrer que R est une relation d’équivalence sur P \ {O}.
b) Décrire la classe d’équivalence d’un point M donné.
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TD16 MPSI 25–26 LIMITES DE SUITES

1. Limites élémentaires.

Étudier la convergence des suites suivantes, et donner un équivalent simple quand c’est pertinent.

a) un = ln(n+ 1)− ln(n2)

b) un =
√
n+ 1−√

n

c) un = sin

[(

n+
1

n

)

π

]

d) un =
3n − 4n

3n + 4n

e) un = n
1
n

2. Encadrer les suites suivantes, et conclure quant à leur convergence.

a) un =
1

n2

n
∑

k=1

⌊kx⌋ x : réel fixé

b) un =
n
∑

k=1

n

k + n2

3. Pour n ∈ N∗, soit un =
n
∑

k=1

1

k2
et vn = un +

1

n
.

Montrer que (un) et (vn) sont adjacentes.

4. La série harmonique par 3 méthodes

Pour n ∈ N∗, on définit Sn =
n
∑

k=1

1

k
. On veut étudier la convergence de (Sn).

a) Première méthode

i) Soit k ∈ N∗. En encadrant la fonction x 7−→ 1

x
par deux constantes sur [k, k+1] et en intégrant,

montrer que
1

k + 1
6 ln(k + 1)− ln(k) 6

1

k
(un dessin est utile)

ii) En sommant l’encadrement précédent, en déduire pour tout n ∈ N∗ un encadrement de Sn.

iii) Donner un équivalent de (Sn).

b) Deuxième méthode

i) Pour n ∈ N∗, soit un = Sn − lnn et vn = Sn − ln(n+ 1).

Montrer que (un) et (vn) sont adjacentes.

On utilisera à deux reprises l’inégalité classique ∀x ∈]− 1,+∞[, ln(1 + x) 6 x.

La limite commune de (un) et (vn) est appelée constante γ d’Euler. Elle vaut environ 0,577.

ii) Donner un équivalent de (Sn).

c) Troisième méthode

i) Montrer que ∀n ∈ N∗, S2n − Sn >
1

2
.

ii) Montrer que Sn −−−−−→
n→+∞

+∞.

1



5. Suite implicite

a) Montrer que pour tout entier n > 3, l’équation x3 − 2nx + 1 = 0 a une unique solution dans ]0, 1[.
Cette solution est notée αn.

b) Comparer αn et
1

n
.

c) En déduire la nature de la suite (αn), puis donner un équivalent de (αn).

6. La série harmonique alternée.

Pour n ∈ N∗, soit Sn =
n
∑

k=1

(−1)k+1

k
.

a) Montrer que (S2n) et (S2n+1) sont adjacentes.

b) Montrer que (Sn) converge. Soit ℓ sa limite.

c) Déterminer par encadrement lim
n→+∞

∫ 1

0

tn

1 + t
dt. En déduire ℓ.

On pourra écrire Sn sous forme intégrale en partant de

∫ 1

0

tk−1 dt.

7. Vrai ou faux ? C’est faux jusqu’à preuve du contraire !

a) Si un+1 − un −−−−−→
n→+∞

0, alors (un) converge.

b) Si un −−−−−→
n→+∞

1, alors un
n −−−−−→

n→+∞
1.

c) Si ∀n ∈ N, un > 1, alors un
n −−−−−→

n→+∞
+∞.

d) Toute suite qui tend vers +∞ est croissante à partir d’un certain rang.

e) Si |un| −−−−−→
n→+∞

1, alors un −−−−−→
n→+∞

1 ou un −−−−−→
n→+∞

−1.

8. Autour de la définition de la limite. . .(vous voulez aller en MP* ?)

Soit u ∈ RN et ℓ ∈ R. On considère les propositions suivantes :

• P : ∀ε > 0, ∃n0 ∈ N / ∀n > n0, |un − ℓ| 6 ε (c’est la définition de un −−−−−→
n→+∞

ℓ)

• Q : ∀ε > 0, ∃n0 ∈ N / ∀n > n0, |un − ℓ| 6 ε

• R : ∀ε > 0, ∃n0 ∈ N / ∀n > n0, |un − ℓ| < ε

• S : ∀ε > 0, ∃n0 ∈ N / ∀n > n0, |un − ℓ| 6 2ε

A-t-on P ⇒ Q ? Q ⇒ P ? P ⇒ R ? R ⇒ P ? P ⇒ S ? S ⇒ P ?

9. Théorème de Cesàro

Soit (un)n∈N∗ une suite réelle. On définit (vn)n∈N∗ par

∀n ∈ N∗, vn =
u1 + . . .+ un

n
(moyenne arithmétique de u1, . . . , un)

a) Montrer que si un −−−−−→
n→+∞

ℓ ∈ R, alors vn −−−−−→
n→+∞

ℓ

On pourra commencer par le cas où ℓ = 0.

b) Même question si ℓ = +∞.
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10. Pour n ∈ N∗, on définit un =
1√
1
+

1√
2
+ · · ·+ 1√

n
=

n
∑

k=1

1√
k

a) À l’aide d’un encadrement simple, étudier la convergence de (un).

b) On pose pour n ∈ N∗ : vn = un − 2
√
n et wn = un − 2

√
n+ 1

Montrer que (vn) et (wn) sont adjacentes.

c) Étudier la convergence de la suite

(

un√
n

)

11. Une autre suite implicite

a) Montrer que pour tout n ∈ N∗, l’équation xn + x = 1 a une unique solution dans ]0, 1[.

Cette solution est notée un. Écrire l’équation vérifiée par un.

b) Calculer u1 et u2.

c) Montrer que (un)n∈N∗ est monotone. Indication : montrer que si un+1 < un, alors u
n+1
n+1 < un

n.

d) Montrer que (un) converge, et déterminer sa limite.

12. Soit (un) et (αn) deux suites à termes positifs telles que :







αn −−−−−→
n→+∞

0

∀n ∈ N, un+1 6
un + αn

2

Montrer que un −−−−−→
n→+∞

0.

13. Les questions sont indépendantes.

(un), (vn) sont deux suites réelles, a, b deux réels.

Montrer que :

a) Si (un + vn) et (un − vn) convergent, alors (un) et (vn) convergent.

b) Si u2
n + unvn + v2n −−−−−→

n→+∞
0, alors un −−−−−→

n→+∞
0 et vn −−−−−→

n→+∞
0.

c) Si

{

∀n ∈ N, un 6 a et vn 6 b
un + vn −−−−−→

n→+∞
a+ b , alors un −−−−−→

n→+∞
a et vn −−−−−→

n→+∞
b.

d) Si

{

∀n ∈ N, 0 6 un 6 1 et 0 6 vn 6 1
unvn −−−−−→

n→+∞
1 , alors un −−−−−→

n→+∞
1 et vn −−−−−→

n→+∞
1.

e) Si (un) est à valeurs dans N et injective, alors un −−−−−→
n→+∞

+∞.

14. Suite de Cauchy

Soit (un) une suite réelle telle que

∀ε > 0, ∃N ∈ N / ∀n, p > N, |un − up| 6 ε

Montrer que (un) converge.

On pourra commencer par montrer qu’elle est bornée.

15. Soit (un) une suite réelle bornée telle que (eiun) et (ei
√
2un) convergent.

Montrer que (un) converge.

On pourra utiliser le fait que
√
2 /∈ Q.
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TD17 MPSI 25–26 LCI, GROUPES

1. Compréhension

On considère un ensemble G contenant 3 éléments a, b, c.

On définit la lci * sur G par la table suivante :

∗ a b c
a b c a
b c a b
c a b c

Par exemple, la première ligne signifie que a ∗ a = b, a ∗ b = c, a ∗ c = a.

a) ∗ est-elle commutative ?

b) Montrer que ∗ a un élément neutre.

c) Quels sont les éléments inversibles ?

2. On considère les quatre fonctions suivantes de R∗ dans R∗ :

f1 : x 7−→ x f2 : x 7−→ 1

x
f3 : x 7−→ −x f4 : x 7−→ − 1

x

Montrer que G = {f1, f2, f3, f4} est un groupe pour la composition, et écrire sa table.

3. Dans R, on définit la lci ∗ par x ∗ y = x+ y − xy.

∗ est-elle associative ? commutative ? A-t-elle un élément neutre ? Si oui, quels sont les éléments inversibles ?
Donner leur inverse.

4. Montrer que l’ensemble est un sous-groupe du groupe considéré.

a) E = {M ∈ Mn(K), tr(M) = 0} : sous-groupe de
(

Mn(K),+
)

(tr : trace).

b) G =

{(

a b

0
1

a

)

, (a, b) ∈ R∗ × R

}

: sous-groupe de (GL2(R),×).

c) E : ensemble des fonctions affines, sous-groupe de (F(R,R),+).

d) F : ensemble des fonctions affines non constantes, sous-groupe de (S(R), ◦).
S(R) : ensemble des bijections de R dans R.

5. Morphisme de groupes

Dire si les applications f suivantes sont des morphismes de groupes. Si oui, donner l’image et le noyau.

a) f : (R∗,×) −→ (R∗,×)
x 7−→ x2

b) f : (R∗,×) −→ (R∗,×)
x 7−→ 2x

c) f : (R,+) −→ (C∗,×)
θ 7−→ eiθ

6. Soit (G, ∗) un groupe, H et K deux sous-groupes de G.

Montrer que si H ∪K est un sous-groupe de G, alors H ⊂ K ou K ⊂ H .

1



7. Sous-groupes de (Z,+)

a) Si m ∈ N, l’ensemble {mk / k ∈ Z} est noté mZ.

Montrer que mZ est un sous-groupe de (Z,+).

b) Inversement, soit H un sous-groupe de (Z,+) non réduit à {0}. Le but de cette partie est de montrer
qu’il existe m ∈ N∗ tel que H = mZ.

i) Montrer qu’il existe dans H un élément strictement positif.

ii) Montrer que H ∩ N∗ admet un plus petit élément. Il est noté m.

iii) Montrer que ∀x ∈ H, m|x.
Indication : effectuer la division euclidienne de x par m.

iv) Montrer que H = mZ (procéder par double inclusion).

8. Soit (G, ∗) un groupe. Montrer que tous ses éléments sont réguliers à gauche et à droite, c’est-à-dire :

pour tous x, y, z ∈ G,

{

si x ∗ y = x ∗ z, alors y = z
si x ∗ y = z ∗ y, alors x = z

9. Soit (G, ∗) un groupe d’élément neutre e.

a) Montrer que si ∀x ∈ G, x2 = e, alors G est abélien.

b) Montrer que si ∀x, y ∈ G, (x ∗ y)2 = x2 ∗ y2, alors G est abélien.

2



TD18 MPSI 25–26 LIMITES, CONTINUITÉ

1. Limites élémentaires

Donner la limite éventuelle de la fonction au point considéré.

a) f(x) = x sin
1

x
en 0 et en +∞

b) f(x) =
x2 cosx

x2 + 1
en +∞

c) f(x) =
(1− ex) sinx

x2 + x3
en 0

d) f(x) =
x3 + 8

|x+ 2| en −2

e) f(x) =
cos2 x− cosx

2 cos2 x− 3 cosx+ 1
en 0

f) f(x) =
√
x

⌊

1

x

⌋

en 0 à droite.

Continuité en un point

2. Peut-on prolonger par continuité les fonctions suivantes au point indiqué ?

a) h : x 7−→ sinx√
x

en 0

b) i : x 7−→ |x|
x

en 0

3. Déterminer l’ensemble des points où les fonctions suivantes sont continues.

a) f : x 7−→ ⌊x⌋ sin(πx)

b) f : x 7−→



















√
x2 + 1− 1

x
si x ∈ R∗+

0 si x = 0
ex − 1

x
si x ∈ R∗−

Utilisation de la continuité sur un intervalle

4. Petits exercices de colle (questions indépendantes)

a) Déterminer le nombre de solutions réelles de l’équation (E) : cosx = 2x.

b) Soit f et g deux fonctions continues sur [0, 1] telles que f(0) < g(0) et f(1) > g(1). Montrer qu’en
au moins un point, f et g prennent la même valeur.

c) Soit f ∈ C([0, 1],R) et In =

∫ 1

0

f(t)tn dt.

i) Montrer que In −−−−−→
n→+∞

0.

ii) Montrer que si f est de classe C1 et f(1) = 0, alors In = o
n→+∞

(

1

n

)

d) Montrer que toute fonction polynômiale réelle de degré impair a au moins une racine réelle.

e) Soit f ∈ C(R,R) qui admet des limites finies en −∞ et en +∞. Montrer que f est bornée.

f) Vrai / Faux ? Soit f ∈ C([−1, 1],R), g ∈ C(R,R).
Si ∀x ∈ [−1, 1], f(x) > 0 et g(x) −−−−−→

x→+∞
+∞, alors f(sinx)g(x) −−−−−→

x→+∞
+∞.

1



5. Soit I un segment, et f : I −→ R une fonction continue qui ne s’annule pas.

a) Montrer qu’il existe m > 0 tel que ∀x ∈ I, |f(x)| > m.

Interpréter graphiquement ce résultat.

b) Montrer que
1

f
est bornée.

c) Montrer que les deux résultats précédents sont faux en général si I est un intervalle non fermé ou
non borné.

6. CCINP exo 43

Soit x0 ∈ R.

On définit la suite (un) par u0 = x0 et ∀n ∈ N, un+1 = arctan(un).

a) i) Démontrer que la suite (un) est monotone et déterminer, en fonction de la valeur de x0, le sens
de variation de (un).

ii) Montrer que (un) converge et donner sa limite.

b) Déterminer l’ensemble des fonctions h, continues sur R, telles que : ∀x ∈ R, h(x) = h(arctanx).

7. Soit f : R −→ R continue en 0, telle que ∀x ∈ R, f(2x) = f(x).

a) Montrer que ∀x ∈ R, ∀n ∈ N, f
( x

2n

)

= f(x).

b) Montrer que f est constante.

c) Donner l’expression explicite d’une fonction g : R∗+ −→ R continue, non constante, telle que ∀x ∈
R∗+, g(2x) = g(x).

8. On allume une bougie haute de 10 cm.

10 heures plus tard, elle s’éteint, entièrement consumée.

Montrer qu’il existe un intervalle de temps d’une durée de 5 heures, pendant lequel elle a raccourci
d’exactement 5 cm.

9. Soit f ∈ C([0, 1],R) telle que f(0) = f(1) = 0 et ∀x ∈
[

0,
7

10

]

, f

(

x+
3

10

)

6= f(x).

Montrer que f s’annule au moins 7 fois sur [0, 1].
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TD19 MPSI 25–26 ANNEAUX, CORPS, NOMBRES RÉELS

1. Soit f, g ∈ C(R,R).
Montrer que si ∀x ∈ Q, f(x) = g(x), alors ∀x ∈ R, f(x) = g(x).

2. Entiers de Gauss

Les complexes de la forme a+ ib avec a, b ∈ Z sont appelés les entiers de Gauss.

L’ensemble des entiers de Gauss est noté Z[i].

a) Montrer que (Z[i],+,×) est un anneau.

b) Montrer que si z ∈ Z[i], alors |z|2 ∈ N.

c) Montrer que les seuls éléments inversibles de Z[i] sont 1, −1, i, −i.

3. Exemple de corps quadratique

L’ensemble
{

a+ b
√
2 , (a, b) ∈ Q2

}

est noté Q[
√
2].

a) Soit (a, b) ∈ Q2. Montrer que si a+ b
√
2 = 0, alors a = b = 0.

b) Montrer que (Q[
√
2],+,×) est un corps. Quel est l’inverse de 2 +

√
2 ?

4. Utilisation de la caractérisation séquentielle de la borne supérieure

Soit A, B deux parties non vides et majorées de R.

On note A+B = {a+ b , (a, b) ∈ A× B}.
Soit M = sup(A) et M ′ = sup(B).

Montrer que A+B est majorée et que sup(A+B) = M +M ′, c’est-à-dire

sup(A+B) = sup(A) + sup(B)

5. Morphismes de groupes de (R,+) dans lui-même.

a) Vérifier que pour tout α ∈ R, f : x 7−→ αx est un morphisme de groupe de (R,+) dans lui-même.

b) Inversement, soit f un morphisme de groupe continu de (R,+) dans lui-même.

i) Montrer que ∀x ∈ R, ∀λ ∈ R, f(λx) = λf(x) (commencer par λ ∈ N puis λ ∈ Z puis λ ∈ Q).

ii) Montrer qu’il existe α ∈ R tel que ∀x ∈ R, f(x) = αx.

c) Donner tous les morphismes de groupes continus

i) De (R,+) dans (R∗+,×).

ii) De (R∗+,×) dans (R,+).

iii) De (R∗+,×) dans (R∗+,×).

6. Éléments nilpotents d’un anneau

Soit (A,+, ·) un anneau. On dit qu’un élément a ∈ A est nilpotent lorsqu’il existe n ∈ N∗ tel que an = 0A.

a) Montrer que si a et b sont des éléments nilpotents qui commutent, alors ab et a+ b sont nilpotents.

b) Montrer que si ab est nilpotent, alors ba est nilpotent.

c) Montrer que si a est nilpotent, alors 1A − a est inversible et donner son inverse.

On pourra considérer 1A − an.

1



7. Morphismes d’anneau de R dans R

Soit f un morphisme d’anneau R dans R. On veut montrer que f = IdR.

a) Montrer que ∀x ∈ Q, f(x) = x.

Commencer par x ∈ N puis x ∈ Z puis x ∈ Q.

b) Montrer que ∀x ∈ R+, f(x) > 0.

En déduire que f est croissante.

c) Soit x ∈ R. Pour n ∈ N, soit an (resp. bn) une approximation décimale par défaut (resp. par excès)
de x à 10−n près.

En considérant les suites (an) et (bn), montrer que f(x) = x.

8. Sous-groupes de (R,+)

Soit G un sous-groupe de (R,+) non réduit à {0}.
Il existe dans G un élément strictement positif et donc G ∩ R∗+ admet une borne inférieure, notée m.

a) Premier cas : m > 0.

On veut montrer que dans ce cas, G = mZ, c’est-à-dire G = {mk , k ∈ Z}.
i) Soit (an) une suite d’éléments de G ∩ R∗+ qui converge vers m.

Montrer qu’à partir d’un certain rang, (an) est constante. En déduire que m ∈ G.

ii) Montrer que G = mZ.

b) Deuxième cas : m = 0.

Montrer que G est dense dans R.

c) Soit α, β deux réels incommensurables, c’est-à-dire non nuls et tels que
α

β
/∈ Q.

On pose G = {kα+ lβ , (k, l) ∈ Z2}.
Montrer que G est un sous-groupe de (R,+) qui n’est pas de la forme mZ (m ∈ R).

d) Montrer que l’ensemble A = {cos(n) , n ∈ N} est dense dans [−1, 1], c’est-à-dire que tout élément de
[−1, 1] est limite d’une suite d’éléments de A.

9. Quels sont les éléments inversibles dans l’anneau (F(R,R),+,×) ?

10. Soit E l’ensemble des matrices M ∈ M3(R) de la forme M =





a 0 0

0 b 0

0 0 0



.

Montrer que (E,+,×) est un anneau. Quels sont les éléments inversibles ?

11. Montrer que tout anneau intègre commutatif fini est un corps.

12. Questions diverses

a) Résoudre dans R l’équation cos(x) + cos(x
√
2) = 2.

b) Soit r =
p

q
un rationnel > 0 mis sous forme irréductible.

Montrer que la fonction f : x 7−→ cos(x) + cos(rx) est périodique et donner sa plus petite période

13. Soit E un ensemble non vide. Si A et B sont des parties de E on définit A∆B = (A ∪B) \ (A ∩B).

Montrer que (P(E),∆,∩) est un anneau commutatif. Est-il intègre ? Quels sont les éléments neutres ?
Quels sont les éléments inversibles ?
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TD20 MPSI 25–26 DÉRIVATION (2)

1. Dérivabilité d’un raccord

Donner l’ensemble de dérivabilité de f et l’expression de f ′, puis dire si f est de classe C1 sur son ensemble
de définition.

a) f : R −→ R

x 7−→ x

1 + |x|
b) f : R −→ R

x 7−→
{

ex si x > 0
cosx si x < 0

2. Limites, taux d’accroissement, DL d’ordre 1

Déterminer les limites suivantes, sous réserve d’existence.

a) lim
x→0

ex − sinx−
√
1 + x

ln(1 + x) + cosx− (1 + x)2

b) lim
x→0+

ex + cos(
√
x)− 2

sinx

c) lim
x→1

(arctanx)2 − π2

16
lnx

3. La fonction f est-elle lipschitzienne sur I ?

a) f : x 7−→ √
x I = [1,+∞[.

b) f : x 7−→ x2 I = R.

4. En utilisant le théorème (ou l’inégalité) des accroissements finis, montrer les inégalités suivantes :

a) Pour tous réels x et y tels que 0 6 x < y :
y − x

2
√
y

<
√
y −√

x <
y − x

2
√
x

b) ∀(x, y) ∈ R2, | arctan(x) − arctan(y) 6 |x− y|.
c) ∀x ∈]0, 1[, x < arcsinx <

x√
1− x2

5. Soit f : [0,
√
2] −→ R

x 7−→ arccos(1− x2)

a) Montrer que f est dérivable sur ]0,
√
2[ et calculer f ′ sur cet intervalle.

b) Étudier la dérivabilité de f en 0.

c) En déduire un équivalent simple de arccos(1− y) quand y tend vers 0 à droite.

6. Donner l’expression de la dérivée ne de f : x 7−→ x2e2x

7. Généralisation de l’IAF

Soit a, b deux réels (a < b), et soit f et g deux fonctions dérivables sur [a, b], telles que

∀x ∈ [a, b], |f ′(x)| 6 g′(x).
Montrer que |f(b)− f(a)| 6 g(b)− g(a).

1



8. CCINP exo 4

a) Énoncer le théorème des accroissements finis.

b) Soit f : [a, b] −→ R et soit x0 ∈]a, b[.
On suppose que f est continue sur [a, b] et que f est dérivable sur ]a, x0[ et sur ]x0, b[.

Démontrer que, si f ′ admet une limite finie en x0, alors f est dérivable en x0 et f ′(x0) = lim
x→x0

f ′(x).

c) Prouver que l’implication : (f est dérivable en x0) ⇒ (f ′ admet une limite finie en x0) est fausse.

Indication : on pourra considérer la fonction g définie par : g(x) = x2 sin
1

x
si x 6= 0 et g(0) = 0.

9. Soit f une fonction dérivable sur R, qui admet la même limite finie ℓ en +∞ et en −∞.

Montrer que f ′ s’annule au moins une fois.

On pourra considérer la fonction g = f ◦ tan sur
]

−π

2
,
π

2

[

.

10. Soit P : R −→ R une fonction polynômiale de degré n ∈ N.

Montrer que l’équation P (x) = ex a au plus n+ 1 solutions réelles.

11. Soit f : R −→ R dérivable en un point x0.

Donner une condition nécessaire et suffisante pour que |f | soit dérivable en x0.

12. Soit f dérivable sur [1, 2] telle que f(1) = f(2) = 0.

Montrer qu’il existe une tangente à la courbe qui passe par l’origine.

13. Version “continue” du théorème de Cesaro

Soit f : R+ −→ R dérivable, et ℓ ∈ R.

Montrer que si f ′(x) −−−−−→
x→+∞

ℓ, alors
f(x)

x
−−−−−→
x→+∞

ℓ.

14. Théorème de Darboux

Soit I un intervalle, et f : I −→ R dérivable.

Le but de l’exercice est de montrer que f ′ vérifie la propriété des valeurs intermédiaires, c’est-à-dire
∀x, y ∈ f ′(I), x < y ⇒]x, y[⊂ f ′(I).

a) Soit a < b dans I. On suppose que f ′(a) < 0 et f ′(b) > 0. Montrer que f|]a,b[ admet un extremum.

b) Conclure.

15. Soit f : R −→ R

a) Montrer que si f est dérivable en 0, alors
f(x)− f(−x)

2x
−−−−−→

x→0
f ′(0).

b) Montrer que







f(x)− f(−x)

2x
−−−−−→

x→0
ℓ ∈ R

f est continue en 0
n’entrâıne pas la dérivabilité de f en 0.
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TD21 MPSI 25–26 CONVEXITÉ, SUITES RÉCURRENTES

1. Inégalité de Young

Soit p, q des réels strictement positifs tels que
1

p
+

1

q
= 1.

Montrer que ∀x, y ∈ R∗+, xy 6
xp

p
+

yq

q
.

On pourra utiliser la concavité de ln.

2. Soit x0, . . . , xn des réels strictement positifs tels que xn = x0.

Montrer que
x0

x1
+

x1

x2
+ · · ·+ xn−1

xn
> n

On pourra utiliser la concavité de ln.

3. Soit f : R −→ R convexe et croissante.

Montrer que si f n’est pas constante, alors f(x) −−−−−→
x→+∞

+∞.

4. Soit I un intervalle, et f, g : I −→ R convexes.

Montrer que max(f, g) est convexe.

En est-il de même pour min(f, g) ?

5. Suite récurrente avec point fixe (modèle d’exercice classique)

On définit (un)n∈N par u0 = 0 et ∀n ∈ N, un+1 = cosun.

a) Montrer que la fonction cos a un unique point fixe sur R (noté α) et que α ∈ [0, 1].

b) Vérifier que ∀n ∈ N, un ∈ [0, 1].

c) À l’aide de l’inégalité des accroissements finis, montrer que ∀n ∈ N, |un+1 − α| 6
√
3

2
|un − α|

d) Montrer que ∀n ∈ N, |un − α| 6
(√

3

2

)n

. Que peut-on en déduire ?

6. Sur le modèle de l’exercice précédent, étudier les suites suivantes :

a) u0 = 1 et ∀n ∈ N, un+1 =
1

2
arctan(un)

b) u0 = 0 et ∀n ∈ N, un+1 = e−
u
2
n

2

Indication : commencer par déterminer sup
x∈R

|f ′(x)| avec f(x) = e−
x
2

2 .

7. On considère la suite (un) définie par u0 = 0 et ∀n ∈ N, un+1 =
√
un + 2

a) Montrer qu’elle est bien définie sur N et que ∀n ∈ N, 0 6 un 6 2.

b) Étudier la monotonie de la suite (un).

c) Montrer que (un) converge et donner sa limite.

1



8. Soit (tn) la suite réelle définie par

t0 =
1

2
et ∀n ∈ N, tn+1 = (1 − tn)

2

Pour n ∈ N, on pose vn = t2n et wn = t2n+1.

Soit f : R −→ R

x 7−→ (1 − x)2

a) Montrer que ∀n ∈ N, vn ∈
[

1

2
, 1

]

et wn ∈
[

0,
1

4

]

. La suite (tn) converge-t-elle ?

b) Montrer que f ◦ f est croissante sur [0, 1].

c) Factoriser la fonction polynômiale P : x 7−→ f(f(x))− x.

d) Montrer que (vn) crôıt et donner sa limite.

e) Montrer que (wn) décrôıt et donner sa limite.

9. Moyenne arithmético-géométrique

Soit a0 et b0 deux réels strictement positifs. On pose :

∀n ∈ N, an+1 =
√

anbn et bn+1 =
an + bn

2

On admet que les suites (an) et (bn) sont bien définies et que

∀n ∈ N, an > 0 et bn > 0

a) Montrer que ∀n ∈ N∗, an 6 bn.

b) Étudier la monotonie de (bn).

c) Montrer que les suites (an) et (bn) convergent et qu’elles ont la même limite.

La limite commune des suites (an) et (bn) ne dépend que de a0 et b0. On ne peut pas exprimer simplement
cette limite en fonction de a0 et b0 en utilisant les fonctions usuelles. On l’appelle moyenne arithmético-

géométrique de a0 et b0.

10. Soit (un) définie par u0 = 1 et ∀n ∈ N, un+1 = un +
1

un
.

a) Montrer que la suite (un) est bien définie et que ∀n ∈ N, un > 0.

b) Montrer que un −−−−−→
n→+∞

+∞.

Indication : que se passe-t-il sinon ?

c) Montrer que ∀n ∈ N, u2
n+1 − u2

n > 2 puis que ∀n ∈ N, un >
√
1 + 2n.

d) Montrer que ∀n ∈ N∗, un 6 1 +
n
∑

k=1

1√
2k − 1

.

e) Montrer que ∀k > 2,
1√

2k − 1
6

√
2k − 1−

√
2k − 3, puis que ∀n > 2, un 6 1 +

√
2n− 1.

f) Donner un équivalent de (un).

2



TD22 MPSI 25–26 POLYNÔMES

1. (Corrigé en ligne)

a) Factoriser dans C[X ] et R[X ] les polynômes suivants :

X3 − 3 X12 − 1 X6 + 1 X9 +X6 +X3 + 1

b) Factoriser les polynômes suivants :

X2 + (3i− 1)X − 2− i X3 + (4 + i)X2 + (5− 2i)X + 2− 3i

2. Effectuer la division euclidienne de A par B.

a) A = X7 − 1, B = X3 − 1.

b) A = X5 −X4 + 2X3 +X2 + 4, B = X2 − 1.

c) A = Xn (n ∈ N∗), B = X − 1.

3. (Corrigé en ligne) À quelle condition sur a, b, c ∈ R le polynôme X4 + aX2 + bX + c est-il divisible par
X2 +X + 1?

4. a) i) Soit n ∈ N. Déterminer le reste de la division euclidienne de Xn par X2 − 3X + 2.

ii) Soit M =

(

4 3

−2 −1

)

.

Vérifier que M2 − 3M + 2I2 = 0. En déduire Mn pour tout n ∈ N.

b) Déterminer le reste de la division euclidienne de Xn par X2 − 2X + 1.

5. Questions indépendantes.

a) Trouver une condition nécessaire et suffisante sur a et b pour que aXn+1 + bXn− 1 soit divisible par
X2 − 3X + 2.

b) Trouver une CNS sur a et b pour que aXn+1 + bXn + 1 soit divisible par (X − 1)2.

c) Montrer que pour tout n ∈ N, X2 +X + 1 divise (X + 1)2n+1 +Xn+2.

d) Montrer que pour tous n ∈ N et θ ∈ R, X2− 2(cos θ)X+1 divise (sin θ)Xn− (sinnθ)X+sin(n− 1)θ.

6. Soit n > 2. Trouver l’ordre de multiplicité de 1 en tant que racine de P = X2n − nXn+1 + nXn−1 − 1.

7. a) Appliquer la formule de Taylor à P = X4 −X2 − 2X + 2 pour obtenir P (X + 1)

b) Déterminer (si elle existe) ℓ = lim
x→1

x4 − x2 − 2x+ 2

(x− 1)2

8. Soit P = X5 − 5X4 + 8X3 − 4X2 −X + 1.

Exprimer P (X + 1) avec la formule de Taylor, et en déduire la factorisation de P .

1

https://www.youtube.com/watch?v=aYIfJ9ze69o
https://www.youtube.com/watch?v=J1GwUtSQ9D4


9. Soit f une fonction continue non constante de R dans R, et (a0, . . . , an) ∈ Rn+1.

Montrer que si ∀t ∈ R,
n
∑

k=0

akf(t)
k = 0, alors ∀k ∈ [[0, n]], ak = 0.

10. D’après CCINP exo 85

a) Soient n ∈ N∗, P ∈ Rn[X ] et a ∈ R.

i) Énoncer la formule de Taylor polynômiale.

ii) Soit r ∈ N∗. Montrer que si a est racine de P de multiplicité r, alors a est racine de P ′ de
multiplicité r − 1.

iii) En déduire que : a est une racine de P d’ordre de multiplicité r si et seulement si P (r)(a) 6= 0 et

∀k ∈ [[0, r − 1]], P (k)(a) = 0.

b) Déterminer deux réels a et b pour que 1 soit racine double du polynôme P = X5 + aX2 + bX et
factoriser alors ce polynôme dans R[X ].

11. D’après CCINP exo 87

Soit n ∈ N∗ et a0, . . . , an des réels distincts.

a) Dans cette question uniquement, n = 2

Donner un polynôme L0 de degré au plus 2 tel que L0(a0) = 1 et L0(a1) = L0(a2) = 0.

b) Soit k ∈ [[0, n]]. Déterminer un polynôme Lk de degré inférieur ou égal à n tel que

∀i ∈ [[0, n]], Lk(ai) =

{

0 si i 6= k
1 si i = k

c) Montrer que si b0, . . . , bn sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant

degP 6 n et ∀i ∈ [[0, n]], P (ai) = bi

d) Prouver que ∀p ∈ [[0, n]],
n
∑

k=0

apkLk = Xp.

12. Soit x1, . . . , xn+1 des scalaires 2 à 2 distincts.

Soit (Pi)i∈N une suite d’éléments de Rn[X ].

On suppose que pour tout k ∈ [[1, n+ 1]], la suite
(

Pi(xk)
)

i∈N
converge.

Montrer que pour tout x ∈ R, la suite
(

Pi(x)
)

i∈N
converge.

13. a) Soit P = (X − 1)2(X − 2)(X − 3).

Montrer sans calcul que P ′ admet 3 racines simples.

b) Plus généralement, montrer que si P ∈ R[X ] est scindé de degré > 2, alors P ′ est scindé aussi.

14. D’après CCINP exo 90

a) On se place dans R2 muni d’un repère orthonormé et on considère les trois points A(0, 1), B(1, 3),
C(2, 1).

Déterminer une fonction polynômiale de degré 2 dont la courbe passe par les points A, B et C.

b) Trouver tous les polynômes P (de degré quelconque) tels que P (0) = 1, P (1) = 3 et P (2) = 1.

2



15. Un polynôme de degré 6 n qui prend des valeurs rationnelles en n+1 rationnels est rationnel.

Soit P ∈ Cn[X ].

On suppose que ∀k ∈ [[1, n+ 1]], xk ∈ Q et ∀k ∈ [[1, n+ 1]], P (xk) ∈ Q.

Montrer que les coefficients de P sont rationnels.

16. Soit f : x 7−→ e−x2

.

f est de classe C∞ sur R. On pose pour tout n ∈ N, Hn(x) = f (n)(x)ex
2

.

a) Donner pour tout n ∈ N, une expression de Hn+1 en fonction de Hn.

b) Montrer que Hn est polynômiale, donner son degré et son coefficient dominant.

17. Trouver tous les polynômes P ∈ R[X ] tels que (X + 4)P (X) = XP (X + 1).

18. Soit n ∈ N∗ (fixé dans tout l’exercice), et f : [0, 1] −→ R

x 7−→ xn(1− x)n

a) Question minute : que valent f (k)(0) et f (k)(1) pour k ∈ [[0, n− 1]] ?

b) À l’aide de la formule de Leibniz, calculer f (n)(0) et f (n)(1).

c) Recommencer la question b), cette fois sans erreur.

d) Montrer que pour tout k ∈ [[0, n]], f (k) s’annule au moins k fois dans ]0, 1[.

3



TD23 MPSI 25–26 STRUCTURE D’ESPACE VECTORIEL

1. Dire si F est un sous-espace vectoriel de E.

a) E = R2, F = {(x+ 2y, y) , (x, y) ∈ R2}
b) E = R3, F = {(x, y, z) ∈ R3 , x > 0}
c) E = F(R,R), F = {f : R −→ R , f(0) = f(1)}
d) E = RN, F : ensemble des suites arithmétiques

e) E = Mn(R), F = {M ∈ E , tr(M) = 0}

2. Exprimer F comme l’ensemble des solutions d’un système d’équations.

a) F = Vect(u, v), avec u = (1, 2, 3), v = (3, 2, 0)

b) F = {(x+ 3y + z, x+ 2y + 2z, x+ y + 3z) , (x, y, z) ∈ R3}

3. Dans chaque cas, (ui) est une famille d’éléments de l’espace vectoriel E.

Dire si la famille (ui) est libre ou liée. Si elle est liée, exprimer un vecteur comme combinaison linéaire des
autres.

a) E = R3 u1 = (1,−1, 0) u2 = (2, 1,−1) u3 = (1, 5,−1)

b) E = R3 u1 = (1, 1, 2) u2 = (2, 1, 0) u3 = (3, 1, λ) (λ : paramètre réel)

4. Dans chaque cas, montrer que E est un espace vectoriel et donner une base de E.

a) E = {(x, y, z) ∈ R3 , x− y + 4z = 0}
b) E = {(x, y, z) ∈ R3 , x− y + 3z = 0 et 2x− y + z = 0}
c) E = {(x+ 2y − 2z,−x+ 3y − z, x+ 7y − 5z) , (x, y, z) ∈ R3}

d) E : ensemble des (x, y, z, t) ∈ R4 solutions de (S) :







2x + y + z − t = 0
x − y + z + t = 0
x + 2y − at = 0

(a : paramètre réel).

e) E = {P ∈ R3[X ] , P (2) = 0 et P ′(1) = 0}
f) E = {(un)n∈N ∈ RN , ∀n ∈ N, un+2 = 5un+1 − 6un}
g) E = {f ∈ C∞(R,R) , f ′′ − 4f ′ + 4f = 0}

5. Soit A ∈ M2(R). On note C(A) l’ensemble des matrices qui commutent avec A, et V (A) le SEV de M2(R)
engendré par les puissances de A :

C(A) = {M ∈ M2(R) , AM = MA} et V (A) = Vect{Ak, k ∈ N}

a) Montrer que C(A) est un sous-espace vectoriel de M2(R).

b) Dans toute la suite, on prend A =

(

2 1

4 −1

)

.

Montrer que pour tout n > 2, An ∈ Vect(A, I).

c) En déduire une famille génératrice finie de V (A).

d) A-t-on C(A) = V (A) ?

1



6. Liberté d’une famille de fonctions

Dans cet exercice, toutes les astuces suivantes peuvent être utilisées :

— Évaluation en un point
— Dérivation
— Équivalent/limite/croissance comparée (+ les DL la semaine prochaine !)

a) Dans F(R,R), montrer que la famille (sin, cos) est libre. Même question avec (sin, cos, sh, ch).

b) Pour k ∈ R, soit fk : R∗+ −→ R

x 7−→ xk
.

i) Montrer que la famille (f1, f√2, f3) est libre.

ii) Généralisation : montrer que la famille (fk)k∈R est libre.

c) Pour n ∈ N∗, on définit sn(x) = sin(nx).

Montrer que (s1, s2) est libre (on pourra dériver 2 fois), puis que (sn)n∈N∗ est libre.

7. Soit u1 = (1, 1, 1), u2 = (1, 2, 1), u3 = (3,−2, 1), u4 = (−1, 1, 1).

Soit F = Vect(u1, u2) ∩ Vect(u3, u4). Donner une base de F .

8. Soit A ∈ M3(R) fixée. Pour λ ∈ R, on note Eλ l’ensemble

Eλ = {X ∈ M31(R) , AX = λX}

a) Montrer que pour tout λ ∈ R, Eλ est un sous-espace vectoriel de M31(R).

b) On prend A =





0 −2 1

1 −3 1

2 −4 1



.

Dire pour quels λ ∈ R l’ensemble Eλ n’est pas réduit à {~0}, et pour ces valeurs de λ, donner une
base de Eλ.
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TD24 MPSI 25–26 ARITHMÉTIQUE

1. Exercices sur le PGCD (questions indépendantes)

a) Calculer le PGCD de a = 180 et b = 105 et trouver une relation de Bézout.

b) Soit (Fn) la suite de Fibonacci, définie par F0 = F1 = 1 et ∀n ∈ N, Fn+2 = Fn+1 + Fn.

Montrer que ∀n ∈ N, Fn ∧ Fn+1 = 1.

c) Montrer que ∀a, b ∈ Z, (2a+ 3b) ∧ (3a+ 4b) = a ∧ b.

d) Soit a, b ∈ Z. Montrer que si a et b sont premiers entre eux, alors a+ b et ab sont premiers entre eux.

On pourra considérer d, un diviseur commun à a+ b et à ab.

2. Soit n ∈ N∗. Vérifier que (2n+ 1)

(

2n

n

)

= (n+ 1)

(

2n+ 1

n+ 1

)

, et en déduire que n+ 1 divise

(

2n

n

)

.

3. Équation diophantienne linéaire

Soit a, b, c des entiers (a et b non nuls). Le but de l’exercice est de décrire la méthode générale permettant
de résoudre l’équation (E) : ax+ by = c, d’inconnue (x, y) ∈ Z2.

a) Montrer que si (E) admet des solutions, alors a ∧ b|c.
Dans toute la suite, on suppose que a ∧ b|c.

b) Donner a′, b′, c′ ∈ Z avec a′ ∧ b′ = 1, tels que (E) soit équivalente à a′x+ b′y = c′.

c) Montrer que (E) admet au moins une solution. Dans la suite, on note (x1, y1) une solution de (E).

d) On considère l’équation (E0) : a′x+ b′y = 0.

Montrer que si (x, y) est solution de (E0), alors a
′|y.

e) Décrire l’ensemble des solutions de (E0) puis l’ensemble des solutions de (E).

f) Résoudre dans Z2 l’équation (E) : 221x+ 247y = 13

4. CCINP exo 94

a) Énoncer le théorème de Bézout dans Z.

b) Soit a et b deux entiers naturels premiers entre eux. Soit c ∈ N.

Prouver que : (a|c et b|c) ⇔ ab|c.

c) On considère le système (S) :

{

x ≡ 6 [17]
x ≡ 4 [15]

dans lequel l’inconnue x appartient à Z.

i) Déterminer une solution particulière x0 de (S) dans Z.

ii) Déduire des questions précédentes la résolution dans Z du système (S).

5. Autour du petit théorème de Fermat

a) Montrer, en utilisant le petit théorème de Fermat, que 260 − 1 est divisible par 3, 5, 7, 11, 13, 31, 61.

b) Réciproque du petit théorème de Fermat

Soit p > 2. Montrer que si ∀a ∈ [[1, p− 1]], ap−1 ≡ 1[p], alors p est premier.

6. Nombres de Mersenne, nombres parfaits

a) Nombres de Mersenne

Soit a,m, n ∈ N∗ (a > 2).

1



i) Montrer que a− 1|an − 1.

ii) Montrer que si m|n, alors am − 1|an − 1.

iii) On suppose que n > 2. Montrer que si an − 1 est premier, alors a = 2 et n est premier. La
réciproque est-elle vraie ?

Un nombre premier de la forme 2n − 1 est appelé nombre premier de Mersenne. On ne sait pas s’il
en existe une infinité.

Le plus grand nombre de Mersenne premier connu à ce jour vaut 2136279841 − 1, validé en 2024.

b) Nombres parfaits.

Un nombre N > 2 est dit parfait lorsqu’il est égal à la somme de ses diviseurs stricts (autres que N
lui-même).

Par exemple, 6 et 28 sont parfaits (6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14).

Soit M = 2p − 1 un nombre premier de Mersenne, et soit N = 2p−1M .

i) Donner la liste de tous les diviseurs de N .

ii) Montrer que N est parfait.

On peut montrer que tout nombre parfait pair est de cette forme.

En revanche, on ne connâıt aucun nombre parfait impair. Il a été démontré que tout nombre parfait
impair est supérieur à 101500, possède au moins 101 facteurs premiers dans sa décompisition (dont
au moins 10 facteurs premiers distincts) et admet un facteur premier supérieur à 108 !

7. Questions indépendantes utilisant la valuation p-adique

a) Déterminer pour tout n ∈ N la valuation 2-adique de 52
n − 1.

Regarder pour n = 0, 1, 2, conjecturer, faire une récurrence. . .

b) Soit x, y ∈ N∗. Montrer que si x2|y2, alors x|y en utilisant la valuation p-adique.

De même, montrer que (x2) ∧ (y2) = (x ∧ y)2.

c) Déterminer le nombre de zéros consécutifs à la fin de l’écriture décimale de 2025!.

8. Montrer que
ln 3

ln 2
/∈ Q.

Ce résultat se généralise à
ln b

ln a
avec a, b > 2, a ∧ b = 1.

9. Divisibilité

Montrer les divisibilités suivantes. On pourra utiliser :

• La décomposition en facteurs premiers du diviseur.
• Les congruences.
• Le petit théorème de Fermat.

a) ∀n ∈ N, 6|5n3 + n.

b) ∀n ∈ N, 30|n5 − n.

c) ∀n ∈ N, 120|n5 − 5n3 + 4n.

10. Soit (G, ∗) un groupe commutatif d’élément neutre e.

On suppose qu’il existe n ∈ N∗ tel que ∀x ∈ G, xn = e, avec n = pq (p, q entiers premiers entre eux).

On pose H = {x ∈ G, xp = e} et K = {x ∈ G, xq = e}.
a) Montrer que H et K sont des sous-groupes de G.

b) Montrer que H ∩K = {e}.
c) Soit f : H ×K −→ G

(x, y) 7−→ x ∗ y
.

Montrer que f est bijective.

2



TD25 MPSI 25–26 DÉVELOPPEMENTS LIMITÉS

1. Compréhension des DL

Dans chaque cas, dire à quel ordre maximal on peut obtenir le DL de fg, f2 et g2.

a) f(x) = 1 + x+
x2

2
+

x3

6
+

x4

24
+ o

x→0

(

x4
)

g(x) = 1− x− x2

2
+ o

x→0

(

x2
)

b) f(x) = 1 + x+
x2

2
+ o

x→0

(

x2
)

g(x) = x− x2

2
+

x3

2
+ x4+ o

x→0

(

x4
)

2. Déterminer le développement limité en 0 de la fonction f , à l’ordre n.

On précisera pour chaque fonction usuelle composant f , à quel ordre il faut prendre son DL.

a) f : x 7−→ ex

1 + x
n = 2

b) f : x 7−→ arccosx n = 5

c) f : x 7−→
∫ x

1

exp(−t2) dt n = 5

d) f : x 7−→
√
ex (2 méthodes) n = 2

e) f : x 7−→ exp(sinx) n = 3

f) f : x 7−→ ex sinx n = 3

g) f : x 7−→ 1

x
− 1

sinx
n = 3

h) f : x 7−→ (cos x)sin x n = 5

i) f : x 7−→ (1 + x)1/x n = 2

j) f : x 7−→ ln(2 + x) n = 2

3. Déterminer la limite éventuelle de f en a.

a) f : x 7−→ ex − ln(1 + x)− cosx

sinx− x
a = 0

b) f : x 7−→ x cosx− sinx

x3
a = 0

c) f : x 7−→ sin2 x− x ln(1 + x)

ex + cosx− sinx− 2
a = 0

d) f : x 7−→ x3 sin
1

x
− x2 a = +∞

e) f : x 7−→ (3 × 2x − 2× 3x)1/x a = 0

f) f : x 7−→ 1

x2
− 1

sin2 x
a = 0

g) f : x 7−→ xx − x

1− x+ lnx
a = 1

h) f : x 7−→
(

ln(x+ 1)

lnx

)x lnx

a = +∞

4. Recherche d’asymptote

a) i) Soit f : x 7−→ (x+ 1) exp
(

1
x

)

, définie sur R∗+.

Montrer qu’il existe des réels a, b, c tels que f(x) = ax+ b+
c

x
+ o

x→+∞

(

1

x

)

On pourra se ramener en 0 en posant y =
1

x
ii) En déduire que la courbe de f admet une asymptote en +∞ et déterminer la position de la

courbe par rapport à l’asymptote pour les grandes abscisses.

b) Mêmes questions pour g : x 7−→ 3
√
x3 + x2 + x

1



5. CCINP exo 1 (ancien)

a) On considère deux suites numériques (un) et (vn) telles que (vn) est non nulle à partir d’un certain
rang et un ∼

n→+∞
vn.

Montrer que un et vn sont de même signe à partir d’un certain rang.

b) Déterminer le signe, au voisinage de l’infini, de un = sh

(

1

n

)

− tan

(

1

n

)

.

6. Questions indépendantes diverses

a) x étant un réel fixé, donner un équivalent quand n tend vers +∞ de un =
(

1 +
x

n

)n

− ex.

b) Déterminer les réels a, b, c pour que lim
x→0

1 + aex + be2x + c sinx

x3
existe et soit finie.

c) Soit f une fonction de classe C2 sur un intervalle R, et soit a ∈ R. Déterminer

lim
h→0

f(a+ h) + f(a− h)− 2f(a)

h2

7. Soit f : R −→ R

x 7−→ x+ x2 + x3

a) Montrer que f est bijective. Sa réciproque est notée g.

b) Montrer que g admet un DL à tout ordre en 0 et déterminer le DL3.

8. DL en un autre point que 0

a) Déterminer le DL4 en
π

6
de la fonction sin.

b) Déterminer le DL2 en 2 de la fonction f : x 7−→ 1

x
.

9. Soit n ∈ N. Déterminer un polynôme P ∈ R[X ] tel que Xn+1|1 +X − P (X)2

10. Étude d’une suite récurrente : le sinus itéré

Soit (un) définie par u0 = 1 et ∀n ∈ N, un+1 = sinun.

a) Convergence

Montrer que ∀n ∈ N, un ∈]0, 1].
Étudier la monotonie puis la convergence de (un).

b) Trouver α ∈ R tel que (uα
n+1 − uα

n) converge dans R
∗.

c) On admet le résultat suivant 4 :

Soit (vn) une suite réelle et ℓ ∈ R. Si vn+1 − vn −−−−−→
n→+∞

ℓ, alors
vn
n

−−−−−→
n→+∞

ℓ.

En déduire un équivalent de (un).

d) De même, donner un équivalent des suites (un) suivantes :

i) u0 = 1 et ∀n ∈ N, un+1 = arctanun. (voir TD 18)

ii) u0 = 1 et ∀n ∈ N, un+1 =
√
1 + 2un − 1.

4. C’est une reformulation du théorème de Cesàro (TD 16).
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TD26 MPSI 25–26 APPLICATIONS LINÉAIRES

1. Dans chacun des cas suivants, dire si l’application f de E dans F est linéaire.

Quand elle est linéaire, décrire le noyau et de l’image (donner une base sauf s’ils sont réduits à {~0}).
a) E = F = R2, f(x, y) = (x+ 2y, 3x− y)

b) E = F = R3, f(x, y, z) = (x+ y + z, 1, 2y− z)

c) E = F = R3, f(x, y, z) = (x, 2|y|, x− y + 2z)

d) E = F = R2[X ], f(P ) = P −XP ′

e) E = F = C∞(R,R), f(u) = u′′ + 2u′ + u (seulement le noyau)

2. Soit M =

(

1 −1 1

1 −1 −1

2 −2 0

)

et f l’endomorphisme canoniquement associé à M . Décrire Ker f et Im f .

3. Sommes directes, projections

a) Soit E = R3, F = Vect(u1) avec u1 = (1, 1,−1), G = {(x, y, z) ∈ E /x+ y + z = 0}
Montrer que E = F ⊕G et donner l’expression analytique de p, la projection sur F parallèlement à
G.

b) E = K[X ], F = K2[X ], G = {P ∈ K[X ] / P (1) = P ′(1) = P ′′(1) = 0}
Montrer que E = F ⊕G, et décomposer X3 dans cette somme directe

c) Très classique

Soit E = F(R,R), I l’ensemble des fonctions impaires, P l’ensemble des fonctions paires.

Montrer que I et P sont des SEV de E puis que E = I ⊕ P .

4. CCINP exo 60

Soit la matrice A =
(

1 2

2 4

)

et f l’endomorphisme de M2(R) défini par : f(M) = AM .

a) Déterminer une base de Ker f .

b) f est-il surjectif ?

c) Déterminer une base de Im f .

d) A-t-on M2(R) = Ker f ⊕ Im f ?

5. Soit E et F deux espaces vectoriels, soit f ∈ L(E,F ) et soit (x1, . . . , xr) une famille de vecteurs de E.
Montrer que :

a) Si
(

f(x1), . . . , f(xr)
)

est libre, alors (x1, . . . , xr) est libre.

b) Si (x1, . . . , xr) est libre et f est injective, alors
(

f(x1), . . . , f(xr)
)

est libre.

c) Si (x1, . . . , xr) est génératrice de E et f est surjective, alors
(

f(x1), . . . , f(xr)
)

est génératrice de F .

d) Si
(

f(x1), . . . , f(xr)
)

est génératrice de F et f est injective, alors (x1, . . . , xr) est génératrice de E.

1



6. d’après CCINP exo 62

Soit E un espace vectoriel sur R ou C.

Soit f ∈ L(E) tel que f2 − f − 2 Id = 0.

a) Prouver que f est bijective et exprimer f−1 en fonction de f .

b) Prouver que E = Ker(f + Id)⊕Ker(f − 2 Id).

7. Soit f : R3 −→ R3

(x, y, z) 7−→ (2x+ y + z, 2y − z, 2z)
Déterminer pour tout n ∈ N∗ l’expression explicite de fn.

8. Soit E un EV et f ∈ L(E). Montrer les équivalences :

a) Im f ∩Ker f = {~0} ⇔ Ker(f ◦ f) = Ker f

b) Im f +Ker f = E ⇔ Im(f ◦ f) = Im f

9. Soit E un EV, et soit f ∈ L(E) telle que pour tout x ∈ E, la famille (x, f(x)) soit liée.

Montrer qu’il existe λ ∈ K tel que f = λ IdE .

10. Soit f ∈ L(Mn(K),K) telle que ∀A,B ∈ Mn(K), f(AB) = f(BA).

Montrer qu’il existe λ ∈ K tel que f = λ tr.

2



TD27 MPSI 25–26 FRACTIONS RATIONNELLES

1. Décomposer en éléments simples la fraction rationnelle sur le corps éventuellement précisé.

a) F =
X3 + 1

X(X2 − 1)
.

b) F =
X3

X3 − 1
sur R.

c) F =
X2 +X + 1

(X + 1)2(X − 1)2
.

d) F =
X3 + 2

(X2 + 4)(X2 + 1)
sur R.

e) F =
Xn−1

Xn − 1
sur C (n > 2).

2. Déterminer une primitive de la fonction f sur l’intervalle I précisé.

a) f(x) =
x3 + x2

x2 − 1
I =]− 1, 1[.

b) f(x) =
1

x(x2 − 1)
I =]0, 1[.

c) f(x) =
1

x(x2 + 1)
I = R∗+.

3. Calculer les sommes suivantes, en utilisant la décomposition en éléments simples et des changements
d’indice.

a) an =
n
∑

k=1

k2 + k + 1

k2 + k

b) bn =
n
∑

k=1

1

4k2 − 1

c) cn =
n
∑

k=1

1

k(k + 1)(k + 2)

4. Résoudre sur ]1,+∞[ l’équation différentielle (E) : (x2 − 1)y′(x)− (3x− 1)y(x) = 0

5. Montrer qu’il n’existe pas de polynôme P non nul tel que
P ′

P
=

1

1−X2

6. Soit n ∈ N∗. Déterminer la DES dans R(X) de F =
1

Xn − 1
.

On partira de la DES dans C(X).

On fera deux cas, suivant la parité de n.

7. Anti-décomposition en éléments simples

Soit n > 2. Mettre F =
∑

ω∈Un

ω2

X − ω
sous la forme

P

Q
, avec P et Q polynômes à déterminer.

1



8. Soit P ∈ C[X ].

Montrer que P n’a que des racines simples si et seulement si P et P ′ sont premiers entre eux.

9. Soit P = X4 + 4X3 + 2X2 − 4X + 1.

Calculer P ∧ P ′ (ce n’est pas 1). En déduire la factorisation de P .

10. Soit n > 2. Déterminer tous les polynômes P ∈ C[X ] de degré n, tels que P ′|P .

2



TD28 MPSI 25–26 ESPACES VECTORIELS DE DIMENSION FINIE

1. Reprendre les exercices suivants du TD 26 en gagnant du temps en utilisant la dimension.

— 1. a)
— 2.
— 3. a) (sans le calcul de la projection)
— 4. b) c) d) (CCINP 60)

2. Soit Sn(R) (resp. An(R)) l’ensemble des matrices symétriques (resp. antisymétriques) de Mn(R).

On pourra faire l’exercice avec n = 3 puis essayer de généraliser à n ∈ N∗ quelconque.

a) Montrer que Sn(R) et An(R) sont des SEV de Mn(R) et donner leur dimension.

b) Montrer que Mn(R) = Sn(R)⊕An(R) (2 méthodes possibles).

3. Donner le rang de la famille F d’éléments de E, puis une base du SEV engendré.

a) E = R3, F =
(

(1, 2, 1), (1, 3,−1), (1, 1, a)
)

(a : paramètre réel)

b) E = C∞(R,R), F =

(

ch, sh, exp,
1

exp

)

4. Soit f ∈ L(R2) définie par f(x, y) = (2x+ y, x− y).

Soit u1 = (1, 3) et u2 = (1, 2). Vérifier que B = (u1, u2) est une base de R2 et déterminer M = MB(f).

Réponse partielle : M =
(

−12 ?

? ?

)

5. CCINP exo 71

Soit p la projection vectorielle de R3, sur le plan P d’équation x+ y + z = 0, parallèlement à la droite D

d’équation x =
y

2
=

z

3
.

a) Vérifier que R3 = P ⊕D.

b) Soit u = (x, y, z) ∈ R3.

Déterminer p(u) et donner la matrice de p dans la base canonique de R3.

c) Déterminer une base de R3 dans laquelle la matrice de p est diagonale.

6. CCINP exo 90

K désigne le corps des réels ou celui des complexes. Soit a1, a2, a3 trois scalaires distincts donnés dans K.

a) Montrer que Φ: K2[X ] −→ K3

P 7−→
(

P (a1), P (a2), P (a3)
)

est un isomorphisme d’espaces vectoriels.

b) Question rajoutée : donner la matrice de Φ dans les bases canoniques.

c) On note (e1, e2, e3) la base canonique de K3 et on pose ∀k ∈ {1, 2, 3}, Lk = Φ−1(ek).

i) Justifier que (L1, L2, L3) est une base de K2[X ].

ii) Exprimer les polynômes L1 L2 et L3 en fonction de a1, a2 et a3.

d) Soit P ∈ K2[X ]. Déterminer les coordonnées de P dans la base (L1, L2, L3).

e) Application : on se place dans R2 muni d’un repère orthonormé et on considère les trois points
A(0, 1), B(1, 3), C(2, 1).

Déterminer une fonction polynômiale de degré 2 dont la courbe passe par les points A, B et C.

1



7. Résolution d’une équation différentielle d’ordre 4

On note E l’ensemble des fonctions de classe C∞ de R dans R.

Soit F = {u ∈ E /u(4) = 16u} où u(4) est la dérivée 4e de u.

Soit F1 = {u ∈ E /u′′ = 4u} et F2 = {u ∈ E /u′′ = −4u}
a) Montrer que F = F1 ⊕ F2.

b) Donner une base et la dimension de F1 puis de F2.

c) Donner une base (notée B) et la dimension de F .

d) Soit d : F −→ F
u 7−→ u′

.

Montrer que d ∈ L(F ) puis donner la matrice de d dans B. On la note M

e) Calculer M4.

8. Endomorphisme nilpotent

Soit E un EV de dimension finie p, et soit f ∈ L(E) nilpotent, c’est-à-dire : il existe n ∈ N∗ tel que
fn = O. (O désigne l’endomorphisme nul sur E).

L’indice de nilpotence de f est n0 = min{n ∈ N∗ / fn = O}.
a) Montrer qu’il existe x ∈ E tel que fn0−1(x) 6= ~0.

b) Montrer que la famille
(

x, f(x), . . . , fn0−1(x)
)

est libre, puis que fp = O.

c) Montrer que si dimE = 3 et si f est d’indice de nilpotence 3, alors il existe une base B de E telle

que MB(f) =

(

0 0 0

1 0 0

0 1 0

)

.

9. CCINP 64

Soit f un endomorphisme d’un espace vectoriel E de dimension finie n.

a) Démontrer que : E = Im f ⊕Ker f ⇒ Im f = Im f2.

b) i) Démontrer que : Im f = Im f2 ⇔ Ker f = Ker f2.

ii) Démontrer que : Im f = Im f2 ⇒ E = Im f ⊕Ker f .

10. Soit E un EV de dimension finie, et f ∈ L(E).

a) Montrer que si ∀x ∈ E, ∃p ∈ N∗ / fp(x) = ~0, alors f est nilpotente.

b) Montrer que si ∀x ∈ E, ∃p ∈ N∗ / fp(x) = x, alors ∃p ∈ N∗ / fp = IdE .

c) Montrer que ces propriétés ne sont plus vraies quand E est de dimension infinie.

11. Noyaux, images itérés

Soit E un EV de dimension finie, et f ∈ L(E).

On note In = Im(fn) et Kn = Ker(fn).

a) Montrer que pour tout n ∈ N : Kn ⊂ Kn+1 et In+1 ⊂ In.

b) Montrer qu’à partir d’un certain rang n0 la suite (In) est constante.

c) Montrer que ∀n > n0, Kn+1 = Kn.

d) Montrer que E = In0
⊕Kn0

.

12. Soit a, b ∈ R, c = a+ ib et f : C −→ C

z 7−→ cz
.

Vérifier que f ∈ L(C) (où C est considéré comme un R-espace vectoriel) et donner la matrice de f dans
la base (1, i).

2



13. Soit f : R3 −→ R3

(x, y, z) 7−→ (2x+ y + z, 2y − z, 2z)
Déterminer pour tout n ∈ N∗ l’expression explicite de fn.

14. Déterminer les SEV de C([0, 1],R) de dimension finie et stables par produit.

15. Deux questions très proches

a) Version discrète

Soit M =
(

sin(i + j)
)

i∈[[1,n]]
j∈[[1,n]]

∈ Mn(R).

On note Cj la je colonne de M .

Montrer que rg(C1, . . . , Cn) = 2.

b) Version continue

Soit E = F(R,R). Pour a ∈ R, on définit sa ∈ E par sa : x 7−→ sin(x+ a)

Soit F = Vect
(

(sa)a∈R

)

Montrer que F est de dimension finie, et en donner une base.

16. Soit f ∈ L(R3) non nul, telle que f2 = 0.

Montrer que rg f = 1, puis que la matrice de f dans une base bien choisie est





0 0 0

1 0 0

0 0 0



.

17. Soit E un espace vectoriel, F , G et H des SEV de E tels que E = F ⊕G = F ⊕H .

Montrer que G et H sont isomorphes.

i) En supposant que E est de dimension finie.

ii) Sans supposer que E est de dimension finie.

18. Soit En = {M ∈ Mn(R) / tr(M) = 0}
a) Montrer que En est un sous-espace vectoriel de Mn(R).

b) Donner une base et la dimension de E3.

c) Généraliser à n quelconque.

d) Montrer que Mn(R) = En ⊕Vect(In).

19. Déterminer le rang de M =





−1− λ −1 3

1 −3− λ 3

1 −1 1− λ



 (λ ∈ R).

20. Matrice à diagonale dominante

Soit A ∈ Mn(C) telle que ∀i ∈ [[1, n]], |Aii| >
∑

j 6=i

|Aij |.

Montrer que A est inversible.

21. Soit A,B ∈ M3(R), toutes les deux de rang 2.

Montrer que AB 6= 0.
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TD29 MPSI 25–26 DÉNOMBREMENTS

1. Dénombrements élémentaires

Soit G = [[1, 100]]2. Dénombrer les ensembles suivants.

Quand c’est possible, on exprimera l’ensemble à l’aide de produits cartésiens, réunions et intersections
d’ensembles élémentaires.

a) A = {(a, b) ∈ G/a 6 50 et b > 50}
b) B = {(a, b) ∈ G/a 6 50 ou b 6 50}
c) C = {(a, b) ∈ G/a = b}
d) D = {(a, b) ∈ G/a 6 b}
e) E = {(a, b) ∈ G/ b 6 a2}

2. Anagrammes et permutations

Pour chaque question, donner un procédé de construction (en expliquant pas à pas comment construire
tous les anagrammes, une seule fois) puis ensuite, donner une formule mathématique !

a) Combien d’anagrammes le mot COMBIEN a-t-il ?

b) Combien d’anagrammes le mot ANAGRAMME a-t-il ?

c) Un service d’assiettes est composé de 3 assiettes rouges, 4 bleues et 5 jaunes, toutes identiques entre
elles à part la couleur. De combien de façons peut-on les empiler ?

3. Problèmes d’anniversaire

On s’intéresse aux dates d’anniversaire des élèves d’une classe de n élèves.

On négligera les années bissextiles, et on supposera que tous les jours de l’année sont équiprobables (ce
qui est bien sûr faux).

Après avoir modélisé la situation (définir un ensemble représentant toutes les possibilités), calculer les
probabilités des événements suivants (donner la valeur exacte puis faire l’application numérique avec
n = 36) :

a) Personne n’est né un 3 du mois.

b) Au moins une personne est née un 30 du mois.

c) Toutes les dates d’anniversaires sont différentes.

4. Soit n ∈ N∗.

a) Combien y a-t-il de fonctions injectives d’un ensemble à n éléments dans un ensemble à n+1 éléments ?

b) (Plus difficile) Combien y a-t-il de fonctions surjectives d’un ensemble à n + 1 éléments dans un
ensemble à n éléments ?

Jeux de cartes

• Dans un jeu de cartes, il y a 4 “couleurs” : pique, coeur, carreau, trèfle.
• Dans un jeu de 32 cartes il y a 8 hauteurs par couleur : par ordre croissant 7 8 9 10 V D R A
• Dans un jeu de 52 cartes il y a 13 hauteurs par couleur : 2 3 4 5 6 en plus des précédentes.

5. On distribue au hasard une main de 8 cartes d’un jeu de 32.

a) Modéliser l’épreuve (définir un ensemble qui modélise l’ensemble des situations possibles).

b) Combien y a-t-il de mains possibles ?

1



c) Quelle est la probabilité de n’avoir que des cartes noires (piques, trèfles) ?

d) Quelle est la probabilité d’avoir les 4 as ou les 2 rois rouges ?

6. On distribue une main de poker fermé (5 cartes d’un jeu de 52). Calculer la probabilité des événements
suivants :

a) Quinte flush : 5 cartes consécutives et de la même couleur. Exemple : 9♦ 8♦ 7♦ 6♦ 5♦.

b) Quinte : 5 cartes consécutives d’au moins deux couleurs différentes. Exemple : 9♦ 8♥ 7♦ 6♣ 5♠.

L’as peut servir de plus petite carte ou de plus grande carte dans les quintes et quintes flush.

c) Couleur : 5 cartes de la même couleur sans quinte. Exemple : A♦ 8♦ 7♦ 6♦ 3♦.

d) Simple paire : 2 cartes de la même hauteur et 3 cartes de hauteurs différentes entre elles et différentes
de celle de la paire. Exemple : A♦A♣R♦D♦ 7♠.

e) Brelan : 3 cartes de la même hauteur et 2 cartes de hauteurs différentes entre elles et différentes de
celle du brelan. Exemple : A♦A♣A♥D♦ 7♠.

f) Double paire : Les 2 paires ont des hauteurs différentes entre elles et différentes de la 5e carte.
Exemple : A♦A♣D♥D♦ 7♠.

g) Full : 3 cartes de même hauteur et 2 autres cartes de même hauteur. Exemple : A♦A♣A♥D♦D♠.

h) Carré : 4 cartes de la même hauteur. Ex : A♦A♣A♥A♠D♠.

i) Rien (“carte haute”) : aucune des combinaisons précédentes.

Classer ces événéments par probabilités croissantes.

7. CCINP 112

Soit n ∈ N∗ et E un ensemble possédant n éléments.

On désigne par P(E) l’ensemble des parties de E.

a) Question rajoutée : Soit k ∈ [[0, n]]. Déterminer le nombre uk de couples (A,B) ∈ (P(E))2 tels
que cardB = k et A ⊂ B.

b) Déterminer le nombre a de couples (A,B) ∈ (P(E))2 tels que A ⊂ B.

c) Déterminer le nombre b de couples (A,B) ∈ (P(E))2 tels que A ∩B = ∅.
d) Déterminer le nombre c de triplets (A,B,C) ∈ (P(E))3 tels que A, B et C soient deux à deux

disjoints et vérifient A ∪B ∪ C = E.

8. Les deux questions sont indépendantes.

Dans chaque cas, on commencera par modéliser précisément l’épreuve.

a) On dispose de p urnes et n boules toutes blanches sauf une qui est rouge. On met les boules au hasard
dans les urnes. Quelle est la probabilité que la boule rouge soit seule dans une urne ?

b) n+ 1 objets sont placés au hasard dans les n tiroirs d’un meuble. Quelle est la probabilité que tous

les tiroirs soient non vides ? Réponse :
(n+ 1)!

2nn

9. a) On lance successivement 3 fois un dé normal (à 6 faces).

i) Quelle est la probabilité que les chiffres obtenus forment une suite strictement croissante ?

ii) Même question si on lance 6 fois un dé à 20 faces (là c’est plus difficile d’énumérer toutes les
possibilités !)

b) On lance simultanément 3 dés normaux (à 6 faces).

Quelle est la probabilité d’obtenir 3 nombres consécutifs ?
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TD30 MPSI 25–26 INTÉGRATION

1. Exercice d’entrâınement, à chercher hors séance de TD

Calculer les intégrales ou primitives suivantes :

a) I =

∫ 1

0

x3

x2 − 4
dx

b) I =

∫ 5

1

⌊lnx⌋ dx

c) F , primitive de f : x 7−→ x

x4 − x2 − 2
sur ]−

√
2,
√
2[.

2. Soit f : x 7−→
∫ x

1
x

1

1 + t+ t2 + t3
dt.

Montrer que f est dérivable sur R∗+, et en déduire une expression simple de f .

3. CCINP exo 56 (ancien) (un grand classique)

On considère la fonction H définie sur ]1,+∞[ par H(x) =

∫ x2

x

dt

ln t
.

a) Montrer que H est C1 sur ]1,+∞[ et calculer sa dérivée.

b) Montrer que la fonction u définie par u(x) =
1

lnx
− 1

x− 1
admet une limite en x = 1.

c) En utilisant la fonction u de la question b), calculer la limite en 1+ de la fonction H .

4. En utilisant une formule de Taylor, montrer les inégalités suivantes.

On précisera quelle fonction on utilise, entre quelles bornes, et à quel ordre.

a) ∀x ∈ R+, x− x3

6
6 sinx 6 x− x3

6
+

x5

120

b) ∀x ∈ R+, 1 + x+
x2

2
6 ex 6 1 + x+

x2

2
ex

c) ∀n ∈ N, ∀x ∈ R+,
n
∑

k=0

xk

k!
6 ex 6

n
∑

k=0

xk

k!
+

xn+1

(n+ 1)!
ex

5. Développement en série entière de ln(1 + x)

a) Soit x > 0 fixé dans tout l’exercice. Appliquer les deux formules de Taylor à ln entre 1 et 1 + x à
l’ordre n (n ∈ N∗).

b) Pour n ∈ N∗, on pose un =
n
∑

k=1

(−1)k+1 x
k

k
. Montrer que |ln(1 + x)− un| 6

xn+1

n+ 1

c) On suppose que x ∈]0, 1]. Étudier la convergence de la suite (un)n>1.

6. Soit z ∈ C fixé. Pour n ∈ N, on pose un =
n
∑

k=0

zk

k!
.

En appliquant l’inégalité de Taylor-Lagrange à f : t 7−→ ezt de 0 à 1, déterminer lim
n→+∞

un.
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7. Petits exercices de colle (questions indépendantes)

a) Déterminer lim
x→+∞

∫ 2x

x

t+ 1

t2 + cos t
dt Encadrer, intégrer !

b) Soit f ∈ C([0, 1],R). On définit g : R −→ R

x 7−→
∫ 1

0

f(t) sin(xt) dt

Montrer que g est lipschitzienne.

c) Soit f ∈ C([0, 1],R) telle que

∫ 1

0

f(t) dt =
1

2
.

Montrer que f admet un point fixe.

Le résultat reste-t-il vrai si f ∈ Cm([0, 1],R) ?

d) Soit f ∈ C([0, 1],R), et In =

∫ 1

0

tnf(t) dt.

i) Montrer par encadrement que In −−−−−→
n→+∞

0

ii) Montrer que si f est de classe C1 et f(1) = 0, alors In = o
n→+∞

(

1

n

)

8. Sommes de Riemann

Déterminer la limite des suites ci-dessous :

a) un =
1

n

n−1
∑

k=0

1

k

n
+ 1

b) vn =
n
∑

k=1

n

n2 + k2

c) wn =

(

(2n)!

(n!)nn

)
1
n

9. Pour n > 1, soit Sn =
n
∑

k=1

√
k.

Donner un équivalent de (Sn).

10. Pour x ∈ R+, on définit f(x) =

∫ 1

0

e−x2t2 dt

a) Montrer que ∀u ∈ R+, |e−u − 1| 6 u. En déduire que f est dérivable en 0 et que f ′(0) = 0.

b) Montrer que f(x) −−−−−→
x→+∞

0. On pourra faire le changement de variable u = xt.

11. Continuité uniforme

a) Soit I un intervalle, et f : I −→ R.

Montrer que f est uniformément continue sur I si et seulement si pour toutes suites (xn) et (yn)
d’éléments de I telles que xn − yn −−−−−→

n→+∞
0, on a f(xn)− f(yn) −−−−−→

n→+∞
0.

b) La fonction f : R −→ R

x 7−→ sin(x2)
est-elle uniformément continue ?

c) Soit f ∈ C(R,R) qui admet des limites finies en −∞ et +∞. Montrer que f est uniformément
continue.
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TD31 MPSI 25–26 CHANGEMENT DE BASE, RANG, HYPERPLAN,. . .

1. Exercice de compréhension

Soit A =

(

0 −1

2 3

)

et f l’endomorphisme canoniquement associé.

a) Trouver deux vecteurs colonnes U1 et U2 non nuls tels que f(U1) = U1 et f(U2) = 2U2.

b) Montrer que A est semblable à D =

(

1 0

0 2

)

et donner P ∈ GL2(R) telle que D = P−1AP .

2. Soit M =





1 2 4

−2 1 0

1 −1 −1



.

a) Montrer que M est semblable à A =





1 1 0

0 1 0

0 0 −1



, et donner une matrice de passage P telle que

A = P−1MP .

b) En déduire une méthode pour calculer Mn.

L’expression explicite des coefficients n’est pas demandée.

3. Soit M =





1 −1 1

1 −1 −1

2 −2 0



 et f l’endomorphisme canoniquement associé à M .

a) Pour tout λ ∈ R, déterminer le rang de M − λI3.

b) Déterminer tous les réels λ tels que l’équation MX = λX admette des solutions X ∈ M31(R) non
nulles, et pour chacun de ces λ, déterminer une base de l’ensemble des solutions.

c) Déterminer une base B de M31(R) telle que MB(f) soit diagonale.

d) Déterminer une matrice P inversible, telle que P−1MP soit diagonale.

4. Soit E = {u ∈ C∞(R,R) / u′′ + 4u′ + 4u = 0}
Soit f : E −→ E

u 7−→ u′

Montrer que f ∈ L(E) et calculer tr(f).

5. Déterminer le rang de M =





−1− λ −1 3

1 −3− λ 3

1 −1 1− λ



 (λ ∈ R).

6. Soit E de dimension finie, et f ∈ L(E) de rang 1.

Montrer que f2 = (tr f)f .

Indication : considérer la matrice de f dans une base bien choisie.

7. Soit M =





0 1 1

0 0 1

0 0 0



 et A =





0 0 0

1 0 0

0 1 0



.

Montrer que M est semblable à A et donner P ∈ GL3(R) telle que A = P−1MP .
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8. A et B étant des matrices de Mn(K) données, on étudie l’équation

(E) : X + (trX)A = B d’inconnue X ∈ Mn(K)

Soit ϕ : Mn(K) −→ Mn(K)
X 7−→ X + (trX)A

La question a) peut être traitée indépendamment des questions b) et c).

a) Cas où trA = 0

En procédant par analyse-synthèse, montrer que (E) a une unique solution et donner son expression.

b) Cas où trA 6= 0 On noteH l’ensemble des matrices de trace nulle :H = {X ∈ Mn(K) / tr(X) = 0}.

i) Montrer rapidement que Mn(K) = H ⊕KA.

ii) Soit B une base adaptée à cette somme directe. Déterminer MB(ϕ).

iii) En déduire que ϕ est bijective si et seulement si trA 6= −1.

iv) Exprimer trϕ en fonction de A.

c) Cas où trA = −1

i) Donner rgϕ, Imϕ et une base de Kerϕ.

ii) Décrire en fonction de B l’ensemble des solutions de (E).

9. Le plan R2 est muni d’un repère (O,~i,~j). Toutes les coordonnées sont prises dans ce repère.

On considère le point C(5,−2) et une droite (D). Soit (∆) la parallèle à (D) passant par C.

En faisant le moins de calculs possibles, chercher des équations (affine et cartésienne) ainsi qu’un
paramétrage de (∆) dans chacun des cas suivants :

a) (D) a pour coefficient directeur m ∈ R.

b) (D) est la droite (AB), avec A(3,−2), B(−1, 4).

10. Dans cet exercice (et les suivants), l’espace R3 est muni d’un repère (O,~i,~j,~k) et toutes les coordonnées
sont exprimées dans ce repère.

On considère les points A(1, 2, 0), B(2, 1, 1) et C(2, 2, 2).

Déterminer une équation cartésienne du plan P passant par A,B,C.

Remarque : M ∈ P ⇔ (
−−→
AB,

−→
AC,

−−→
AM) est liée.

11. Déterminer une équation du plan parallèle à (Oy) passant par les points A(0,−1, 2) et B(−1, 2, 3).

(Oy) est la droite passant par O, de vecteur directeur ~j.

12. Soit A(−1,−1, 1), B(0, 0, 2), C(1, 0, 0) et D(1,−2,−6).

Déterminer l’intersection des droites (AB) et (CD).

13. Dans Mnp(K), combien y a-t-il de classes d’équivalence pour la relation “A est équivalente à B” ?

14. Soit M ∈ Mn(K) nilpotente.

Montrer que M est semblable à une matrice triangulaire supérieure de diagonale nulle.

Indication : commencer par montrer qu’il existe X1 ∈ Mn1(K) non nul tel que MX1 = 0, puis procéder
par récurrence.
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TD32 MPSI 25–26 SÉRIES NUMÉRIQUES

1. Étudier la nature de la série
∑

n
un :

a) un = ln

(

1 +
1

n

)

b) un = cos

(

1

n

)

− 1

c) un =
lnn

n
√
n

d) un = e
1
n − cos

(

1

n

)

e) un =
(−1)n

n2 + sinn

f) un = e−
√
n

g) un =
√
n4 + 1− n2

h) un =

√
n cos(n)− 1

n2 − n sin(n)

2. Montrer que les sommes suivantes sont bien définies, et les calculer :

a)
+∞
∑

n=2

1

n2 − 1
.

b)
+∞
∑

n=0
q2n (q ∈]− 1, 1[).

c)
+∞
∑

n=0

cos(nx)

2n
x ∈ R fixé.

3. CCINP exo 7

a) Soit (un) et (vn) deux suites de nombres réels positifs.

On suppose que (un) et (vn) sont non nulles à partir d’un certain rang.

Montrer que :

un ∼
n→+∞

vn ⇒
∑

un et
∑

vn sont de même nature.

b) Étudier la convergence de la série

∑

n>2

((−1)n + i) ln(n) sin

(

1

n

)

√
n+ 3− 1

4. CCINP exo 46

On considère la série :
∑

n>1

cos
(

π
√
n2 + n+ 1

)

.

a) Prouver que, au voisinage de +∞, π
√
n2 + n+ 1 = nπ +

π

2
+ α

π

n
+ O

n→+∞

(

1

n2

)

, où α est un réel

que l’on déterminera.

b) En déduire que
∑

n>1

cos
(

π
√
n2 + n+ 1

)

converge.

c)
∑

n>1

cos
(

π
√
n2 + n+ 1

)

converge-t-elle absolument ?

5. Soit E =

{

(a, b, c) ∈ R3 /
∑

n>1

a lnn+ b ln(n+ 1) + c ln(n+ 2) converge

}

.

Montrer que E est un SEV de R3 et en donner une base.
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6. CCINP exo 5

a) On considère la série de terme général un =
1

n(lnn)α
, où n > 2 et α ∈ R.

i) Cas α 6 0

En utilisant une minoration très simple de un, démontrer que la série diverge.

ii) Cas α > 0

Étudier la nature de la série.

Indication : on pourra utiliser la fonction f définie par f(x) =
1

x(ln x)α
.

b) Déterminer la nature de la série
∑

n>2

(

e−
(

1 +
1

n

)n)

e
1
n

(ln(n2 + n))2

7. a) Soit α ∈ R∗+. Étudier la convergence de
∑

n

(−1)n

nα
et sa convergence absolue.

b) Étudier la convergence de
∑

n
xn, avec xn =

(−1)n√
n+ (−1)n

On pourra utiliser le DL de x 7−→ 1

1 + x
.

c) Donner un équivalent simple de xn. Que peut-on en déduire ?

8. Comparaisons séries-intégrales. Les questions sont indépendantes.

a) Pour n ∈ N∗, soit un =
n
∑

k=1

k2 (on ne suppose pas connue l’expression explicite de un)

Donner un encadrement de un, et en déduire un ∼
n→+∞

n3

3
.

Généraliser à un =
n
∑

k=1

kp avec p ∈ N∗.

b) Soit un =
1

n
∑

k=1

1√
k

. Étudier la convergence de
∑

n
un.

c) Montrer que ln(n!) ∼
n→+∞

n lnn en faisant une comparaison série-intégrale.

9. Équivalent du reste d’une série de Riemann convergente

Soit α > 1. On note un =
1

nα
, et Rn le reste d’ordre n de

∑

n
un : Rn =

+∞
∑

k=n+1

1

kα

En faisant une comparaison série-intégrale, encadrer Rn, et en déduire que

Rn ∼
n→+∞

1

(α− 1)nα−1

10. Pour n ∈ N, soit un =
+∞
∑

k=n

(−1)k√
k + 1

Expliquer pourquoi un est bien défini, et étudier la convergence de la série de terme général un.
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11. Formule de Stirling (détermination de la constante)

On a démontré dans le cours qu’il existe c ∈ R∗+ tel que

n! ∼
n→+∞

c
nn

en
√
n

Le but de l’exercice est de déterminer c.

On considère les intégrales de Wallis : Wn =

∫ π

2

0

cosn(t) dt, n ∈ N.

On admettra les résultats suivants (déjà rencontrés) :

• ∀n ∈ N, Wn+2 =
n+ 1

n+ 2
Wn (obtenu avec une IPP).

• ∀n ∈ N, (n+ 1)Wn+1Wn =
π

2
(immédiat d’après la relation précédente).

• Wn ∼
n→+∞

√

π

2n
(utiliser la décroissance de (Wn)).

a) Donner pour tout n ∈ N une expression explicite de W2n à l’aide des factorielles.

b) En déduire c.

12. L’escargot de Gardner

Léo l’escargot doit parcourir une bande élastique d’une longueur initiale de 100 mètres. Il se déplace de 1
mètre par heure.

Mais toute les heures, un géant étire l’élastique de manière parfaitement homogène, de telle sorte que
sa longueur soit augmentée de 100 mètres. La distance restante à parcourir pour Léo augmente, mais la
distance qu’il a déjà parcourue aussi.

Léo atteindra-t-il un jour la fin de l’élastique ? Si oui, donner une approximation du temps qu’il lui faudra.
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TD33 MPSI 25–26 PROBABILITÉS

1. Soit n ∈ N∗ et Ω = [[1, n]] et P une probabilité sur Ω.

On suppose que P({i}) est proportionnel à i : il existe α ∈ R tel que ∀i ∈ Ω, P({i}) = αi.

Déterminer α.

2. Un sac contient 4 boules blanches et 2 boules noires. On tire successivement sans remise 3 boules.

a) Quelle est la probabilité que la troisième boule soit noire ?

b) Quelle est la probabilité que la premère boule soit noire sachant que la deuxième est blanche ?

c) Quelle est la probabilité que parmi les deux premières boules il y ait une blanche et une noire ?

3. Exo CCINP 105

a) Énoncer et démontrer la formule de Bayes pour un système complet d’événements.

b) On dispose de 100 dés dont 25 pipés (c’est-à-dire truqués).

Pour chaque dé pipé, la probabilité d’obtenir le chiffre 6 lors d’un lancer vaut
1

2
.

i) On tire un dé au hasard parmi les 100 dés. On lance ce dé et on obtient le chiffre 6.

Quelle est la probabilité que ce dé soit pipé ?

ii) Soit n ∈ N∗.

On tire un dé au hasard parmi les 100 dés. On lance ce dé n fois et on obtient n fois le chiffre 6.

Quelle est la probabilité pn que ce dé soit pipé ?

iii) Déterminer lim
n→+∞

pn. Interpréter ce résultat.

4. D’après exo CCINP 101

Dans une zone désertique, un animal erre entre trois points d’eau A, B et C.

À l’instant t = 0, il se trouve au point A.

Quand il a épuisé l’eau du point où il se trouve, il part avec équiprobabilité rejoindre l’un des deux autres
points d’eau. L’eau du point qu’il vient de quitter se régénère alors.

Soit n ∈ N. On note An (resp. Bn, Cn) l’événement “l’animal est en A (resp. B, C) après son ne trajet.”

On pose P(An) = an, P(Bn) = bn et P(Cn) = cn.

a) i) Exprimer, en le justifiant, an+1 en fonction de an, bn et cn.

ii) Exprimer, de même, bn+1 et cn+1 en fonction de an, bn et cn.

b) On considère la matrice A =

(

0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

)

.

i) Montrer que Ker(A+ 1
2I3) n’est pas réduit à {~0} et en donner une base.

ii) Montrer que A est semblable à une matrice D diagonale de la forme D = diag

(

−1

2
,−1

2
, α

)

avec α ∈ R à déterminer.

iii) Déterminer une matrice P inversible telle que D = P−1AP .

Remarque : le calcul de P−1 n’est pas demandé.

c) Montrer comment les résultats de la question b) peuvent être utilisés pour calculer an, bn et cn en
fonction de n.

Remarque : aucune expression finalisée de an, bn et cn n’est demandée.
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5. Un gardien d’immeuble ivrogne possède un trousseau de 10 clés, dont 2 qui peuvent ouvrir la porte
d’entrée.

Pour tout i > 1, on note Ai : “C’est la ie clé essayée qui ouvre la porte”

a) Les jours où il n’est pas ivre, il essaie les clés une par une, en écartant les clés déjà essayées, jusqu’à
ce qu’il ouvre la porte.

Calculer dans ce cas la probabilité de A1 puis de A2 puis de Ai pour tout i ∈ [[1, 10]].

b) Les jours où il est ivre, il ne se rappelle plus quelles clés il a déjà essayées, donc il essaie une clé au
hasard jusqu’à ce que la porte soit ouverte.

Même question.

c) On sait qu’il est ivre un jour sur trois.

Quelle est la probabilité qu’il soit ivre, sachant que la porte s’est ouverte au bout de 9 clés essayées ?

6. Exo CCINP 107

On dispose de deux urnes U1 et U2.

L’urne U1 contient deux boules blanches et trois boules noires.

L’urne U2 contient quatre boules blanches et trois boules noires.

On effectue des tirages successifs dans les conditions suivantes :

on choisit une urne au hasard et on tire une boule dans l’urne choisie.

On note sa couleur et on la remet dans l’urne d’où elle provient.

Si la boule tirée était blanche, le tirage suivant se fait dans l’urne U1.

Sinon, le tirage suivant se fait dans l’urne U2.

Pour tout n ∈ N∗, on note Bn l’événement “la boule tirée au ne tirage est blanche”. et on pose pn = P(Bn).

a) Calculer p1.

b) Prouver que : ∀n ∈ N∗, pn+1 = − 6

35
pn +

4

7
.

c) En déduire, pour tout entier naturel n non nul, la valeur de pn.

7. Un livre contient N erreurs. Avant de le publier, l’éditeur décide de le faire relire par r relecteurs
(indépendants les uns des autres).

Chaque erreur (indépendamment des autres) a la probabilité p d’être découverte par un relecteur donné.

Quelle doit être la valeur minimale de r pour que la probabilité que toutes les erreurs aient été découvertes
soit supérieure à 99%?

Application numérique : N = 200, p =
1

2
, réponse : r > 15

8. On considère deux urnes : U1 et U2

Dans chacune des urnes se trouvent initialement une boule blanche et une boule noire.

On prend une boule dans U1 et une boule dans U2, et on les permute. On recommence plusieurs fois. . .

On note pour n ∈ N :

An : Après n permutations, dans U1 il y a 2 boules blanches.

Bn : Après n permutations, dans U1 il y a 1 boule blanche.

Cn : Après n permutations, dans U1 il y a 0 boule blanche.

a) Calculer P(A0), P(B0), P(C0), P(A1), P(B1), P(C1)

b) Exprimer P(An+1|An), P(An+1|Bn).

c) Soit an = P(An), bn = P(Bn), cn = P(Cn).

Trouver une relation de récurrence entre (an+1, bn+1, cn+1) et (an, bn, cn) puis calculer les 3 suites.
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9. Fiabilité de test (exercice type)

On applique un test pour dépister une maladie.

• Le test est positif chez 99% des personnes malades.
• Le test est négatif chez 98% des personnes en bonne santé.
• La maladie atteint une personne sur dix.

i) On choisit une personne au hasard. Quelle est la probabilité qu’elle soit malade sachant que le test
est positif ?

ii) Quelle est la probabilité qu’elle soit en bonne santé sachant que le test est négatif ?

3



TD34 MPSI 25–26 DÉTERMINANTS

1. Calculer les déterminants des matrices suivants et les exprimer sous la forme la plus factorisée possible.

a) A =

(

2 −1 1

1 0 −1

2 −2 1

)

b) A =





a c c b

c a b c

c b a c

b c c a



 a, b, c ∈ R

c) A =

(

a b c

a2 b2 c2

a3 b3 c3

)

a, b, c ∈ R

d) A =





1 x x2 x3

x3 1 x x2

x2 x3 1 x

x x2 x3 1



 x ∈ R

2. Soit x ∈ R et A =

(

2 −1 1

−1 x 1

1 1 2

)

. Donner det(A) puis rgA en fonction de x.

3. Calculer le déterminant et la trace des endomorphismes f suivants :

a) f : R3 −→ R3

(x, y, z) 7−→ (x− y, y − z, x+ z)

b) f : Kn[X ] −→ Kn[X ]
P 7−→ (XP − P )′

c) f : Mn(K) −→ Mn(K)
M 7−→ M⊤

4. a) Soit A ∈ Mn(K). On note U la matrice de taille n× n dont tous les coefficients valent 1.

Pour x ∈ K, on pose B(x) = A+ xU et d(x) = detB(x).

Montrer que la fonction d est affine. On pourra faire un développement.

b) (a, b, c) ∈ R3, et A ∈ Mn(R) dont les coefficients diagonaux valent a, les coefficients au-dessus de la
diagonale (i < j) valent b, ceux sous la diagonale (i > j) valent c.

i) Expliciter d(x) puis detA dans le cas où b 6= c.

ii) Calculer detA lorsque b = c.

5. D’après CCINP exo 63 (ancien)

Soit un entier n > 1. On considère la matrice carré d’ordre n à coefficients réels :

An =















2 −1 0 ··· 0

−1 2 −1
. . .

...

0 −1
. . .

. . . 0

...
. . .

. . . 2 −1

0 ··· 0 −1 2















Pour n > 1, on note Dn le déterminant de An.

a) Démontrer que Dn+2 = 2Dn+1 −Dn.

1



b) Déterminer Dn en fonction de n.

c) Existe-t-il un vecteur colonne X non nul telle que AnX = 0?

6. Valeurs propres d’une matrice

Soit M ∈ Mn(K) et λ ∈ K.

a) Montrer l’équivalence entre les deux propriétés suivantes :

i) Il existe X ∈ Mn1(K) non nul tel que MX = λX .

ii) det(M − λIn) = 0.

Dans ce cas, on dit que λ est une valeur propre de M .

b) Soit M =

(−1 2 3

0 −2 0

1 2 1

)

.

Calculer det(M −λI3), en déduire les valeurs propres de M (il y en a deux et elles sont entières), puis
pour chacune d’entre elles, donner l’ensemble des solutions de l’équation MX = λX puis montrer
que M est semblable à une matrice diagonale.

7. Pour les matrices M suivantes, calculer le déterminant puis le rang de M − λI (λ ∈ R).

M =

(

2 2

−1 5

)

M =





2 −3 −3

−3 2 3

3 −3 −4



 M =





2 1 2

1 2 2

−1 −1 −1





8. Rang de la comatrice

a) Soit M ∈ Mn(K). Montrer que si rgM = n, alors rg(comM) = n.

b) Montrer que si rgM 6 n− 2, alors rg(comM) = 0.

c) Montrer que si rgM = n− 1, alors rg(comM) = 1.

9. a) Soit Q,R ∈ Mn(C) telles que Q+ iR soit inversible. Montrer qu’il existe x ∈ R tel que Q+ xR soit
inversible.

Indication : que peut-on dire de la fonction f : C −→ C

x 7−→ det(Q+ xR)
?

b) Soit A,B ∈ Mn(R) deux matrices C-semblables (c’est-à-dire avec une matrice de passage complexe).
Montrer qu’elles sont R-semblables.

10. Danc chaque cas, décomposer σ en produit de cycles à supports disjoints et déterminer sa signature :

a) σ =

(

1 2 3 4 5 6 7 8 9

3 5 1 7 6 2 8 4 9

)

b) σ = ( 1 3 2 ) ◦ ( 1 5 3 )
−1 ◦ ( 5 7 6 )

2 ◦ ( 1 3 4 2 )

11. Soit n ∈ N impair.

a) Montrer que l’équation M2 = −In n’a pas de solution dans Mn(R).

b) Montrer que les matrices antisymétriques de taille n ne sont pas inversibles.

c) Montrer que ces résultats sont faux quand n est pair.
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12. Pour λ ∈ R, soit fλ : R −→ R

x 7−→ eλx

Montrer en utilisant le déterminant de Vandermonde que la famille (fλ)λ∈R est libre.

13. Mn(Z) désigne l’ensemble des matrices carrées de taille n, à coefficients dans Z (n > 1).

a) Montrer que ∀M ∈ Mn(Z), detM ∈ Z.

b) Soit M ∈ Mn(Z). Montrer que M est inversible et d’inverse dans Mn(Z) si et seulement si
detM = ±1.

14. Ordre d’une permutation

a) Soit σ ∈ Sn. Montrer que l’ensemble {p ∈ N∗ / σp = Id} est un ensemble non vide.

Le plus petit élément de cet ensemble est appelé l’ordre de σ.

b) Quel est l’ordre d’un p-cycle ?

c) Déterminer l’ordre des permutations σ de l’exercice 10.

15. Soit E un EV de dimension n ∈ N∗, et B une base de E. Soit f ∈ L(E).

a) Montrer que l’application

ϕ : En −→ K

(u1, . . . , un) 7−→ detB(f(u1), u2, u3, . . . , un)
+ detB(u1, f(u2), u3, . . . , un)

...
+ detB(u1, u2, . . . , un−1, f(un))

est n-linéaire alternée.

b) Montrer que ϕ = tr(f)× detB

16. Le centre de Sn est trivial pour n > 3

Si (G, ∗) est un groupe, son centre est l’ensemble (noté Z(G)) formé des éléments qui commutent avec
tout :

Z(G) = {g ∈ G/ ∀h ∈ G, h ∗ g = g ∗ h}
a) Soit σ ∈ Sn, et a, b ∈ [[1, n]] (a 6= b). Montrer que σ ◦ (a b) ◦ σ−1 = (σ(a) σ(b)).

b) Montrer que si n > 3, alors le centre de (Sn, ◦) est { Id}.

17. a) Montrer que toute permutation de Sn est le produit d’au plus n− 1 transpositions.

b) Soit n > 3. Montrer que toute permutation paire de Sn se décompose en produit de 3-cycles.

18. L’espace R3 est muni d’un repère (O,~i,~j,~k) et toutes les coordonnées sont exprimées dans ce repère.

On considère les points A(1, 2, 0), B(2, 1, 1) et C(2, 2, 2).

Déterminer une équation cartésienne du plan P passant par A,B,C.

Remarque : M ∈ P ⇔ (
−−→
AB,

−→
AC,

−−→
AM) est liée.
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TD35 MPSI 25–26 VARIABLES ALÉATOIRES RÉELLES

1. On considère un dé à 6 faces, truqué de telle sorte que la probabilité d’obtenir un chiffre soit proportionnelle
à ce chiffre. Soit X le chiffre obtenu.

a) Déterminer la loi de X .

b) Calculer E(X).

c) On pose Y =
1

X
. Déterminer la loi de Y et E(Y ).

2. Soit θ ∈
[

0,
1

2

[

, et X une variable aléatoire réelle à valeurs dans [[0, 3]], dont la loi de probabilité est définie

par

{

P(X = 0) = P(X = 3) = θ

P(X = 1) = P(X = 2) =
1

2
− θ

a) On pose R = X(X − 1)(X − 2)(X − 3). Donner la loi de probabilité de R.

b) Mêmes questions avec S =
(1−X)(2−X)(3−X)

6
et T =

X(3−X)

2
.

c) Calculer E(X) et V(X).

3. CCINP exo 95

Une urne contient deux boules blanches et huit boules noires.

a) Un joueur tire successivement, avec remise, cinq boules dans cette urne.

Pour chaque boule blanche tirée, il gagne 2 points et pour chaque boule noire tirée, il perd 3 points.

On note X la variable aléatoire représentant le nombre de boules blanches tirées.

On note Y le nombre de points obtenus par le joueur sur une partie.

i) Déterminer la loi de X , son espérance et sa variance.

ii) Déterminer la loi de Y , son espérance et sa variance.

b) Dans cette question, on suppose que les cinq tirages successifs se font sans remise.

i) Déterminer la loi de X .

ii) Déterminer la loi de Y .

4. CCINP exo 104

Soit n un entier naturel supérieur ou égal à 3.

On dispose de n boules numérotées de 1 à n et d’une bôıte formée de trois compartiments identiques
également numérotés de 1 à 3.

On lance simultanément les n boules.

Elles viennent toutes se ranger aléatoirement dans les 3 compartiments.

Chaque compartiment peut éventuellement contenir les n boules.

On note X la variable aléatoire qui à chaque expérience aléatoire fait correspondre le nombre de compar-
timents restés vides.

a) Préciser les valeurs prises par X .

b) i) Déterminer la probabilité P(X = 2).

ii) Finir de déterminer la loi de probabilité de X .

c) i) Calculer E(X).
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ii) Déterminer lim
n→+∞

E(X). Interpréter ce résultat.

5. CCINP exo 109

Soit n ∈ N∗. Une urne contient n boules blanches numérotées de 1 à n et deux boules noires numérotées
1 et 2.

On effectue le tirage une à une, sans remise, de toutes les boules de l’urne.

On note X la variable aléatoire égale au rang d’apparition de la première boule blanche.

On note Y la variable aléatoire égale au rang d’apparition de la première boule numérotée 1.

a) Déterminer la loi de X .

b) Déterminer la loi de Y .

6. Dans une urne contenant 10 boules portant les numéros 1 à 10, on effectue 3 tirages sans remise.

On note X le plus grand numéro obtenu et Y le plus petit numéro obtenu.

a) Déterminer la loi de X de deux façons différentes :

i) Pour i ∈ [[1, 10]], calculer P(X 6 i) puis en déduire P(X = i).

ii) Calculer P(X = i) directement.

b) Déterminer la loi de Y .

c) Montrer que X et 11− Y ont la même loi.

d) Soit Z le numéro intermédiaire. Quelle est la loi de Z ?

7. Marche aléatoire

Une puce se déplace sur un axe, par sauts indépendants et d’amplitude 1, aléatoirement vers la gauche ou
vers la droite.

Soit Xn sa position après n sauts (elle commence à la position 0)

Soit Yn le nombre de fois où elle a sauté vers la droite au cours des n premiers sauts.

a) Donner la loi de Yn.

b) Exprimer Xn en fonction de Yn.

c) Donner la loi de Xn.

d) On suppose n pair, n = 2m. Quelle est la probabilité pn que la puce revienne à son point de départ
après n sauts ? Étudier la convergence de la suite (pn).

8. Une urne contient n boules ; m sont blanches et les autres sont noires (1 6 m < n)

On effectue des tirages sans remise jusqu’à épuisement.

On note Y le nombre de tirages effectués jusqu’à ce qu’on ait eu toutes les boules blanches.

a) Pour i ∈ [[0, n]], on note Xi le nombre de boules blanches obtenues au cours des i premiers tirages.

Quelle est la loi de Xi ?

b) Exprimer, pour k ∈ [[2, n]], l’événement Y 6 k en fonction de Xk.

c) En déduire la loi de Y .

d) On suppose m = 1. Donner explicitement la loi de Y .

e) Même question si m = 2.
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TD36 MPSI 25–26 ESPACES PRÉHILBERTIENS

1. Dans chaque cas, montrer que 〈·, ·〉 est un produit scalaire sur E.

a) E = Mnp(R), 〈A,B〉 = tr
(

A⊤B
)

(produit scalaire canonique sur Mnp(R))

b) E = R[X ], 〈P,Q〉 =
∫ 1

−1

P (t)Q(t)(1 − t2) dt

c) E = R2, 〈(x, y), (x′, y′)〉 = xx′ + yy′ +
xy′ + x′y

2

d) E = R[X ], 〈P,Q〉 =
+∞
∑

k=0

P (k)Q(k)

2k

2. Montrer les inégalités suivantes.

a) ∀f ∈ C([0, 1],R),
∫ 1

0

tf(t) dt 6
1√
3

√

∫ 1

0

f(t)2 dt

b) ∀A ∈ Mn(R), tr(A)
2 6 n tr(A⊤A)

3. Soit u1 = (1, 1, 1), u2 = (1,−1, 1) et u3 = (1, 0, 0).

Vérifier que (u1, u2, u3) est une base de R3, et l’orthonormaliser (pour le produit scalaire canonique).

4. Soit F = {(x, y, z) ∈ R3 / x+ y − z = 0}.
Donner une base orthonormée de F , puis la matrice dans la base canonique de p, la projection orthogonale
sur F .

5. CCINP exo 76

Soit E un R-espace vectoriel muni d’un produit scalaire (|).
On pose ∀x ∈ E, ‖x‖ =

√

(x|x)

a) i) Énoncer et démontrer l’inégalité de Cauchy-Schwarz.

ii) Dans quel cas a-t-on égalité ? Le démontrer.

b) Soit E = {f ∈ C([a, b],R) / ∀x ∈ [a, b], f(x) > 0}.

Prouver que l’ensemble

{

∫ b

a

f(t) dt×
∫ b

a

1

f(t)
dt , f ∈ E

}

admet une borne inférieurem et déterminer

la valeur de m.

6. CCINP exo 81

On définit dans M2(R) ×M2(R) l’application ϕ par ϕ(A,A′) = tr(A⊤A′), où tr(A⊤A′) désigne la trace
du produit de la matrice A⊤ par la matrice A′.

On admet que ϕ est un produit scalaire sur M2(R).

On note F =

{(

a b

−b a

)

, (a, b) ∈ R2

}

.

a) Démontrer que F est un sous-espace vectoriel de M2(R).

b) Déterminer une base de F⊥.
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c) Déterminer la projection orthogonale de J =

(

1 1

1 1

)

sur F⊥.

d) Calculer la distance de J à F .

7. CCINP exo 77

Soit E un espace euclidien.

a) Soit A un sous-espace vectoriel de E.

Démontrer que (A⊥)⊥ = A.

b) Soit F et G deux sous-espaces vectoriels de E.

i) Démontrer que (F +G)⊥ = F⊥ ∩G⊥.

ii) Démontrer que (F ∩G)⊥ = F⊥ +G⊥.

8. Soit E un espace préhilbertien.

Si F et G sont deux SEV de E, on dit que F ⊥ G lorsque ∀u ∈ F, ∀v ∈ G, 〈u, v〉 = 0

a) Soit x, y deux vecteurs de E tels que ∀t ∈ R, ‖x‖ 6 ‖x+ ty‖. Montrer que x ⊥ y.

b) Soit p un projecteur de E qui réduit la norme : ∀x ∈ E, ‖p(x)‖ 6 ‖x‖.
Montrer que p est un projecteur orthogonal, c’est-à-dire Im p ⊥ Ker p.

c) Soit s une symétrie de E. Montrer que si s est une isométrie (∀x ∈ E, ‖s(x)‖ = ‖x‖), alors s est une
symétrie orthogonale, c’est-à-dire Ker(s+ IdE) ⊥ Ker(s− IdE).

9. Dans R4, soit F = {(x, y, z, t) ∈ R4 / x+ y + z + t = x− y + z − t = 0}.
Déterminer une base orthonormée de F , une base orthonormée de F⊥, puis calculer la distance de u =
(1, 2, 3, 4) à F .

10. Calculer inf
(a,b)∈R2

∫ 1

−1

(x2 − ax− b)2 dx en utilisant une projection orthogonale.

11. Représentation des formes linéaires dans un espace euclidien

Soit E un espace euclidien.

a) Pour v ∈ E, on définit l’application “scalaire v” notée 〈·, v〉 par
〈·, v〉 : E −→ R

u 7−→ 〈u, v〉
Vérifier que 〈·, v〉 ∈ L(E,R).

b) Montrer que pour toute f ∈ L(E,R), il existe un unique v ∈ E tel que f = 〈·, v〉.
Indication : on pourra considérer l’application ϕ : v 7−→ 〈·, v〉.

c) Montrer qu’il existe un unique P ∈ R3[X ] tel que :

∀Q ∈ R3[X ],

∫ π

2

Q(t)

1 + t2
dt =

∫ 1

−1

P (t)Q(t)(1 − t2) dt

d) Soit f : R[X ] −→ R

Q 7−→ Q(1)
Montrer que f ∈ L(R[X ],R) mais qu’il n’existe pas P ∈ R[X ] tel que

∀Q ∈ R[X ], f(Q) =

∫ 1

−1

P (t)Q(t)(1− t2) dt

2



12. d’après CCINP exo 39

On note ℓ2 l’ensemble des suites x = (xn)n∈N des nombres réels telles que la série
∑

x2
n converge.

a) i) Démontrer que, pour x = (xn)n∈N ∈ ℓ2 et y = (yn)n∈N ∈ ℓ2, la série
∑

xnyn est convergente.

On pose alors (x|y) =
+∞
∑

n=0
xnyn.

ii) Démontrer que ℓ2 est un sous-espace vectoriel de l’espace vectoriel des suites de nombres réels.

Dans la suite de l’exercice, on admet que (|) est un produit scalaire sur ℓ2.

On suppose que ℓ2 est muni de ce produit scalaire et de la norme euclidienne associée.

b) On considère l’ensemble F des suites réelles presque nulles, c’est-à-dire l’ensemble des suites réelles
dont tous les termes sont nuls sauf peut-être un nombre fini de termes.

Déterminer F⊥ (au sens de (|)).
Comparer F et (F⊥)⊥.

13. Conditions suffisantes de linéarité

Soit E un espace préhilbertien, et f : E −→ E.

a) Montrer que si ∀u, v ∈ E, 〈f(u), v〉 = 〈u, f(v)〉, alors f est linéaire.

b) Montrer que si ∀u, v ∈ E, 〈f(u), f(v)〉 = 〈u, v〉, alors f est linéaire.
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TD37 MPSI 25–26 VARIABLES ALÉATOIRES RÉELLES (2)

1. Une cage contient neuf papillons : trois mâles (deux blancs et un jaune) et six femelles (quatre blanches
et deux jaunes). On prend simultanément et au hasard deux papillons.

Soit X le nombre de papillons mâles que l’on a pris, et Y le nombre de papillons jaunes que l’on a pris.

Déterminer les lois de probabilités de X , de Y et du couple (X,Y ). Les variables aléatoires X et Y
sont-elles indépendantes ?

2. Soit K une variable aléatoire qui suit U([[0, 3]]). On pose Θ = K
π

2
puis X = cosΘ et Y = sinΘ.

a) Donner la loi de X et de Y , puis du couple (X,Y ).

b) Calculer cov(X,Y ). X et Y sont-elles indépendantes ?

3. Variables aléatoires de Bernoulli

a) Soit X et Y deux variables de Bernoulli, indépendantes, de paramètres respectifs p1 et p2.

Donner la loi de XY , sa variance et son espérance.

b) Soit Z et T deux variables de Bernoulli.

Montrer que si Z et T sont de covariance nulle, alors elles sont indépendantes.

4. Sur les min/max

Les deux parties sont indépendantes.

a) On lance deux dés (à 6 faces). On note X le plus grand chiffre obtenu, et Y le plus petit.

i) Déterminer la loi du couple (X,Y ).

ii) Déterminer la loi de Y et la loi de X .

iii) Montrer que X et 7− Y ont la même loi.

b) Soit n, p deux entiers strictement positifs, et soit X1, . . . , Xn des variables aléatoires uniformes sur
[[1, p]], mutuellement indépendantes.

i) Soit Y = max(X1, . . . , Xn).

Déterminer la loi de Y .

ii) De même, on pose Z = min(X1, . . . , Xn). Déterminer la loi de Z.

5. Loi trinomiale

Une urne contient 2 boules blanches, 3 boules noires et 5 boules rouges. On effectue n tirages avec remise.

On note X (resp. Y , Z) le nombre de fois où on a obtenu une boule blanche (resp. noire, rouge).

a) Dans cette partie uniquement, on prend n = 6.

i) Calculer la probabilité d’obtenir dans cet ordre : Blanc, Noir, Noir, Rouge, Rouge, Rouge.

ii) Calculer la probabilité de l’événement A : “X = 1 ∩ Y = 2 ∩ Z = 3”.

b) Soit i, j, k trois entiers positifs tels que i+ j + k = n. Calculer la probabilité de l’événement

“X = i ∩ Y = j ∩ Z = k”.

c) Déterminer la loi du couple (X,Y ) et ses lois marginales.

d) Soit j ∈ [[0, n]]. Déterminer la loi de X sachant Y = j. Reconnâıtre une loi usuelle.

e) Soit T = X + Y . Déterminer la loi de T .

1



6. Dans une urne contenant n (∈ N∗) boules numérotées de 1 à n, on effectue un tirage. On note X le chiffre
obtenu.

Dans une autre urne contenant X boules (numérotées de 1 à X), on effectue un tirage, et on note Y le
chiffre obtenu.

a) Quelle est la loi de X ?

b) Déterminer pour tout i ∈ [[1, n]] la loi de Y sachant X = i.

c) Donner la loi de Y (on ne cherchera pas à simplifier l’expression).

d) Calculer E(Y ) (l’expression se simplifie).

7. Dans une urne contenant n (∈ N∗) boules numérotées de 1 à n, on effectue un tirage. On note X le chiffre
obtenu.

On lance ensuite X fois un dé bien équilibré. On appelle Y le nombre de fois où on a obtenu 6 avec le dé.

a) Quelle est la loi de X ?

b) Déterminer la loi jointe de X et Y , puis donner la loi de Y (on ne cherchera pas à simplifier l’expres-
sion).

c) Calculer E(Y ) (l’expression se simplifie).

8. CCINP exo 99

a) Rappeler l’inégalité de Bienaymé-Tchebychev.

b) Soit (Yn) une suite de variables aléatoires mutuellement indépendantes, de même loi.

On pose Sn =
n
∑

k=1

Yk.

Prouver que : ∀a ∈]0,+∞[, P

(∣

∣

∣

∣

Sn

n
−E(Y1)

∣

∣

∣

∣

> a

)

6
V(Y1)

na2
.

c) Application : On effectue des tirages successifs, avec remise, d’une boule dans une urne contenant
2 boules rouges et 3 boules noires.

À partir de quel nombre de tirages peut-on garantir à plus de 95% que la proportion de boules rouges
obtenues restera comprise entre 0, 35 et 0, 45 ?

Indication : considérer la suite (Yi) de variables aléatoires de Bernoulli où Yi mesure l’issue du ie

tirage.
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TD38 MPSI 25–26 FONCTIONS DE DEUX VARIABLES

1. Calculer les dérivées partielles des fonctions suivantes :

a) f(x, y) = ln(xy4 + 1)

b) f(x, y) = cos(x sin y)

2. CCINP exo 33

On pose : ∀(x, y) ∈ R2 \ {(0, 0)}, f(x, y) = xy
√

x2 + y2
et f(0, 0) = 0.

a) Démontrer que f est continue sur R2.

b) Démontrer que f admet des dérivées partielles en tout point de R2.

c) f est-elle de classe C1 sur R2 ? Justifier.

3. Soit a, b ∈ N∗.

On définit f sur R2 par f(x, y) =







xayb

x2 + y2
si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

a) En partant de ∀u = (x, y) ∈ R2, |x| 6 ‖u‖ et |y| 6 ‖u‖, montrer que si a+ b > 2, alors f est continue
en (0, 0).

b) Montrer que si a+ b 6 2, alors f n’est pas continue en (0, 0).

c) Montrer que si a+ b > 3, alors
∂f

∂x
et

∂f

∂y
existent et sont continues en (0, 0).

4. a) Soit D = {(x, y) ∈ R2, x > y}. On admet que D est ouvert.

Existe-t-il des fonctions f : D → R de classe C1 telles que











∂f

∂x
=

x

x− y
+ ln(x− y)− x

∂f

∂y
=

x

y − x

Si oui, les trouver toutes.

b) Résoudre de même :



















f : R2 −→ R

∂f

∂x
= 2xy

∂f

∂y
= y2 + x

5. On note f la fonction définie sur ]0,+∞[2 par : f(x, y) = x+ y +
1

xy
.

a) Justifier que la fonction ln est concave et en déduire que ∀a, b, c ∈]0,+∞[, (abc)
1
3 6

a+ b+ c

3
.

b) Démontrer que f admet un unique point critique sur l’ouvert ]0,+∞[2, puis démontrer que f admet
un extremum global que l’on déterminera.
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6. a) Montrer que l’ensemble E = {(x, y) ∈ R2 / x > 0} est ouvert.

b) Plus généralement, montrer que si f : R2 −→ R est continue, alors l’ensemble

E = {(x, y) ∈ R2 / f(x, y) > 0}

est ouvert.

7. Fonction qui admet en un point une dérivée selon tout vecteur mais non continue

Soit f : R2 −→ R définie par :

f(x, y) =

{

1 si x 6= 0 et y = x2

0 sinon

Montrer que f n’est pas continue en (0, 0) mais que Dvf(0, 0) existe pour tout v ∈ R2.

8. Équation d’advection

Soit c > 0 une constante fixée.

Le but de l’exercice est de trouver toutes les fonctions f : (x, t) 7−→ f(x, t) de classe C1 sur R2 telles que :

(E) :
∂f

∂t
− c

∂f

∂x
= 0

Pour la résoudre, on fait le changement de variable linéaire

{

u = x+ ct
v = x− ct

c’est-à-dire







x =
u+ v

2

t =
u− v

2c
Une fonction f : R2 −→ R étant donnée, on définit g : R2 −→ R

(u, v) 7−→ f(x, t) = f

(

u+ v

2
,
u− v

2c

)

Les variables de f seront donc notées x et t, celles de g notées u et v.

a) Exprimer les dérivées partielles de g en fonction de celles de f .

b) Montrer que si f est solution de (E), alors il existe une fonction h : R −→ R de classe C1 telle que

∀(x, t) ∈ R2, f(x, t) = h(x+ ct)

c) Donner toutes les solutions de (E).

9. Soit f définie sur R2 par f(x, y) = 2x3 + 6xy − 3y2 + 2.

a) Montrer que f admet deux points critiques. On les notera (x1, y1) et (x2, y2) avec x1 > x2.

b) f admet-elle un extremum local en (x1, y1) ? On pourra considérer f(x, 0).

c) i) Pour (h, k) ∈ R2, on pose g(h, k) = f(x2 + h, y2 + k)− f(x2, y2). Simplifier g(h, k).

ii) Pour (h, k) ∈ B
(

(0, 0), 1
)

, donner le signe de g(h, k).

Indication : montrer que h3 6 h2.

iii) f admet-elle un extremum local en (x2, y2) ?

iv) f admet-elle un extremum global sur R2 ?

d) On pose K = [0, 1]2 et C =]0, 1[2.

i) Illustrer par un dessin que C est ouvert et que K ne l’est pas.

ii) Montrer que si f|K admet un extremum, alors cet extremum est atteint sur K \ C.

iii) Montrer que f|K admet un maximum et un minimum et préciser en quels points ils sont atteints.
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TD39 MPSI 25–26 FAMILLES SOMMABLES

1. Soit q ∈ C, |q| < 1.

Montrer que la famille (q|n|)n∈Z est sommable, et calculer sa somme.

2. Soit z ∈ C, |z| < 1. Justifier l’existence de S =
+∞
∑

n=0
(n+1)zn, puis l’expliciter par deux méthodes différentes.

a) Première méthode : partir de (n + 1)zn =
n
∑

k=0

zn, écrire S comme somme double et sommer par

paquets.

b) Deuxième méthode : considérer

(

+∞
∑

n=0
zn
)2

et faire le produit de Cauchy.

3. Fonction zêta de Riemann

Pour k > 2, on définit ζ(k) par

ζ(k) =

+∞
∑

n=1

1

nk

Calculer S =
+∞
∑

k=2

(

ζ(k)− 1
)

On l’écrira comme une somme double et on utilisera le théorème de Fubini.

4. Soit (uij)(i,j)∈N2 définie par :

∀i, j ∈ N, uij =







1 si i = j
−1 si i = j + 1
0 sinon

a) Calculer
+∞
∑

j=0

(

+∞
∑

i=0

uij

)

b) Calculer
+∞
∑

i=0

(

+∞
∑

j=0

uij

)

c) La famille (uij)(i,j)∈N2 est-elle sommable ?

5. Soit α ∈ R. Pour (i, j) ∈ N2, on définit

uij =
1

(i + j + 1)α

a) En faisant une sommation par paquets avec Ik = {(i, j) ∈ N2 / i + j = k} (k ∈ N), montrer que la
famille (uij)(i,j)∈N2 est sommable si et seulement si α > 2.

b) Quand α > 2, exprimer
∑

(i,j)∈N2

uij à l’aide de la fonction ζ.

6. Calculer S =
+∞
∑

n=0

+∞
∑

k=n

1

k!

1



7. Pour n ∈ N∗, soit dn le nombre de chiffres dans l’écriture décimale de n.

Soit a ∈ R∗+.

Étudier la convergence (et donner la somme, le cas échéant) de
∑

n>1

un, avec un = adn .

8. Somme des inverses des nombres premiers

Pour n ∈ N∗, on note pn le ne nombre premier par ordre croissant : p1 = 2, p2 = 3, p3 = 5, etc.

a) Soit x1, . . . , xn des réels dans ]− 1, 1[.

Montrer que
n
∏

k=1

1

1− xk
=

∑

(i1,...,in)∈Nn

xi1
1 xi2

2 · · ·xin
n

b) Pour n ∈ N∗, on définit
En =

{

pi11 pi22 · · · pinn / (i1, . . . , in) ∈ Nn
}

Montrer que [[1, n]] ⊂ En.

c) Montrer que
n
∏

k=1

1

1− 1

pk

=
∑

i∈En

1

i

d) En déduire que
n
∏

i=1

1

1− 1

pi

−−−−−→
n→+∞

+∞

e) En déduire la nature de la série de terme général
1

pn
.
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