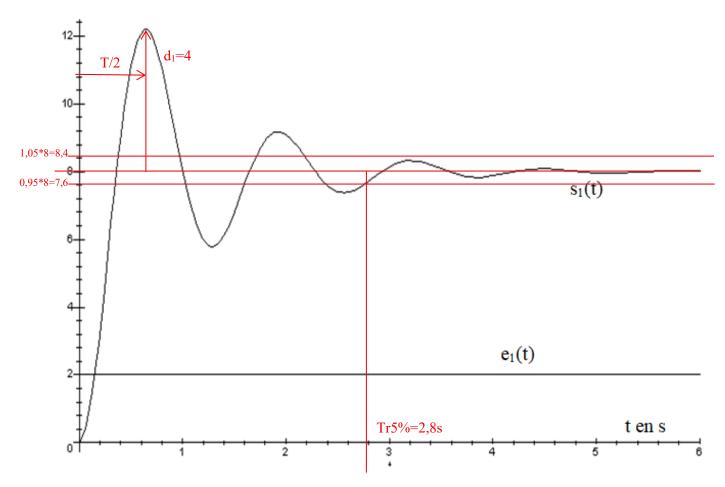
Exercice 8: modèle comportemental à partir d'une identification temporelle

Q3. Quelle est, en régime permanent, la différence entre la température réelle à un instant donné et la température lue sur la graduation ? ce thermomètre est-il précis dans la lecture d'une température variable ?

$$\begin{split} &\lim_{t\to\infty} \left(tempr(t) - tempg(t)\right) = \lim_{p\to 0} p\left(Tempr(p) - Tempg(p)\right) \\ &= \lim_{p\to 0} p\left(\frac{a}{p^2} - \frac{1}{1+\tau}\frac{a}{p^2}\right) = \lim_{p\to 0} \frac{a}{p}\left(1 - \frac{1}{1+\tau}\frac{1}{p}\right) = \lim_{p\to 0} \frac{a}{p}\left(\frac{1+\tau}{1+\tau}\frac{p-1}{p}\right) = a.\tau \end{split}$$

Exercice 9: modèles comportementaux à partir d'identifications temporelles

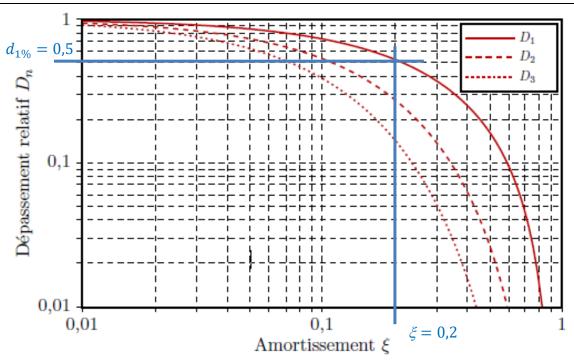
Q1. Déterminer les expressions numériques de $H_1(p)$ et $H_2(p)$ et vérifier le temps de réponse.



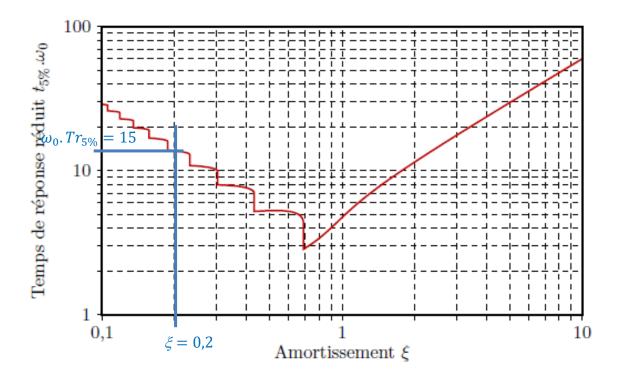
Modèle 2 ieme ordre car pente de tangente à 0=0 et pseudo oscillation $\Rightarrow H_1(p) = \frac{K}{1+\frac{2m}{\omega_0}p+\frac{1}{\omega_0^2}p^2}$.

- $K = \frac{s_1(\infty)}{e_1(\infty)} = \frac{8}{2} = 4$
- Pour m on peut utiliser la formule du cours (donnée dans le cas d'un devoir) : $d_{1\%} = e^{\frac{-\pi m}{\sqrt{1-m^2}}} = \frac{12-8}{8} = 0,5$. Ce qui donne : $m = \frac{|\ln d_{1\%}|}{\sqrt{\pi^2 + (\ln d_{1\%})^2}} \approx 0,2$ ou utiliser l'abaque (à échelles logarithmiques) donnant les dépassements relatifs en fonction de ξ . Tracés ci-dessous.

Lycée Claude Fauriel Page 1 sur 6

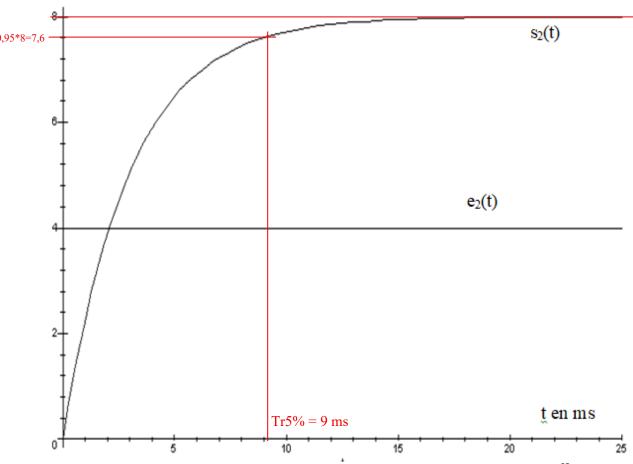


• Pour ω_0 : on peut mesurer la pseudo période ($T\approx 1,2~s$) et utiliser la formule (donnée dans le cas d'un devoir) $T=\frac{2\pi}{\omega_0\sqrt{1-m^2}}$ ce qui donne $\omega_0\approx 5~rad/s$ ou mesurer le temps de réponse à 5% ($Tr_{5\%}=2,8s$) et utiliser l'abaque donnant le temps de réponse réduit ($\omega_0.Tr_{5\%}$) en fonction de ξ . Tracés ci-dessous.



D'où
$$H_1(p) = \frac{4}{1 + \frac{0.4}{5}p + \frac{1}{25}p^2}$$

Lycée Claude Fauriel Page 2 sur 6



Modèle 1er ordre car pente de tangente à $0 \neq 0$ et pas de pseudo oscillation $\Rightarrow H_2(p) = \frac{K}{1+\pi n}$

- $K = \frac{s_2(\infty)}{e_2(\infty)} = \frac{8}{4} = 2$
- Pour τ , on peut par exemple utiliser le temps de réponse ($Tr_{5\%} \approx 3. \tau \approx 9 \, ms$) d'où $\tau \approx 0.003 \, s.$

D'où
$$H_2(p) = \frac{2}{1+0,003 p}$$

Q2. Choisir (en justifiant) $H_3(p)$ parmi les propositions suivantes :

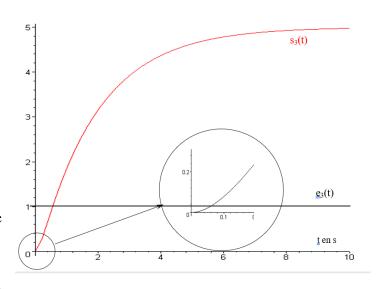
$$H_{3I}(p) = \frac{5}{1 + 0.5p + 0.25p^2}$$

$$H_{32}(p)=\frac{5}{1+2p}$$

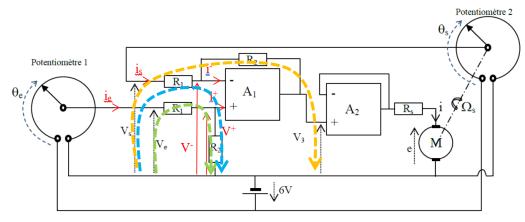
$$H_{31}(p) = \frac{5}{1+0.5p+0.25p^2} \qquad H_{32}(p) = \frac{5}{1+2p} \qquad H_{33}(p) = \frac{500}{100+500p+25p^2} = \frac{5}{1+5p+0.25p^2}$$

Modèle $2^{i\text{ème}}$ ordre car pente de la tangente à 0 = 0. Pas de pseudo oscillations donc $\xi > 1$. Donc on élimine $H_{32}(p)$.

- Les gains statiques de $H_{31}(p)$ et $H_{33}(p)$ sont de 5 (en prenant soin de mettre $H_{33}(p)$ sous forme canonique).
- On calcule ω_0 qui sont identiques pour ces deux fonctions de transfert. $\frac{1}{\omega_0^2} = 0.25 \Rightarrow$ $\omega_0 = 2 \, rad/s$.
- On calcule les facteurs d'amortissement pour chaque FT : $\frac{2m_{31}}{\omega_0} = 0.5 \Rightarrow m_{31} = 0.5 < 1 \text{ donc}$ donnerait un régime pseudo périodique $\frac{2m_{33}}{\omega_0} = 5 \Rightarrow m_{33} = 5 > 1$. C'est donc $H_{33}(p)$ la fonction de transfert associée aux tracés fournis



Exercice 10: un peu d'histoire... correction d'un asservissement de position angulaire analogique



Q1. Exprimer la tension $V_3(p)$ en fonction de Ve(p) et de Vs(p). Traduire l'équation obtenue sous la forme d'un schéma bloc.

Loi des nœuds : $i_+ = i_- \approx 0$ A donc les intensités traversant R₁ et R₂ sont i_e et i_s (respectivement « branches » basse et haute)

Loi des mailles : (1) $V_e - R_1 i_e - V_+ = 0$ (en temporel ou Laplacien c'est pareil puisqu'il n'y a pas de composant intégrateur ou dérivateur. Donc équa diff de degré 0)

(2)
$$V_S - R_1 i_S - V_- = 0$$
 et (3) $V_S - (R_1 + R_2)i_S - V_3 = 0$

On note également que (4) $V_{+} = R_{2}i_{e} = V_{-}$

(1) et (4) donnent
$$i_e = \frac{V_e}{R_1 + R_2}$$
 (2) donne $i_s = \frac{1}{R_1} \left(V_s - R_2 \frac{V_e}{R_1 + R_2} \right)$ (3) donne $V_s - (R_1 + R_2) \frac{1}{R_1} \left(V_s - R_2 \frac{V_e}{R_1 + R_2} \right) = V_3$ ce qui permet d'écrire : $V_3(p) = \frac{R_2}{R_1} \left(V_e(p) - V_s(p) \right)$

Q2. Etablir la transmittance (ou fonction de transfert) des potentiomètres de commande et de recopie. Donner les schémas bloc correspondants.

Si l'entrée du potentiomètre vaut $\theta_e = 0$ rad alors la sortie est à $V_e = 0$ V.

Si l'entrée du potentiomètre vaut $\theta_e = 6 \ rad$ alors la sortie est à $V_e = 6 \ V$.

La relation entrée /sortie est proportionnelle donc la Fonction de transfert du potentiomètre est 1 (en V/rad)

Q3. Etablir une relation entre le courant I(p) dans le moteur, sa vitesse Ω_s (p) et la tension $V_3(p)$.

Loi des mailles :
$$V_3 - 0 - (R_s + R_m)i - e = 0$$
. Or $e = K\omega_s$ D'où : $V_3(p) = (R_s + R_m)I(p) + K\Omega_s(p) = 0$

La loi fondamentale de la dynamique s'écrit, si on néglige tous les frottements mécaniques : $C(t) = J \frac{d \omega_s(t)}{dt}$

Q4. En appliquant cette loi et en utilisant le résultat de la question précédente, montrer que la transmittance de l'ensemble (ampli A_2 + moteur) s'écrit : $H(p) = \frac{\Omega_s(p)}{V_2(p)} = \frac{5}{1+0.075p}$

Par Laplace : $C(p) = Jp \Omega_{S}(p)$. Or C(p) = K I(p).

D'où:
$$V_3(p) = (R_s + R_m) \frac{Jp}{K} \Omega_s(p) + K \Omega_s(p) = \left((R_s + R_m) \frac{Jp}{K} + K \right) \Omega_s(p)$$

Ce qui donne:

$$H(p) = \frac{\Omega_s(p)}{V_3(p)} = \frac{1}{(R_s + R_m)\frac{Jp}{K} + K} = \frac{1/K}{\frac{(R_s + R_m)Jp}{K^2} + 1} = \frac{5}{1 + 0.075p}$$

Lycée Claude Fauriel Page 4 sur 6

Q5. Compléter le schéma fonctionnel du système ci-dessous et en déduire sa transmittance en boucle ouverte $H_{bo}(p) = \frac{V_S(p)}{V_e(p) - V_S(p)}$.

$$\frac{\theta_{e}}{1} = 100$$

$$\frac{V_{e} - V_{s}}{R_{1}} = 100$$

$$\frac{V_{s}}{R_{1}} = 100$$

$$\frac{V_{s}}{1 + 0.075p}$$

$$\frac{1}{p}$$

$$\frac{V_{s}}{p}$$

$$\frac{V_{s}}{p}$$

$$\frac{V_{s}}{p}$$

$$\frac{V_{s}}{V_{s}}$$

$$\frac{1}{p} = \frac{500}{(1 + 0.075p)p}$$

Q6. Donner l'expression de la transmittance en boucle fermée de l'asservissement $H_{bf}(p) = \frac{\theta_s(p)}{\theta_e(p)}$ et calculer son amortissement m.

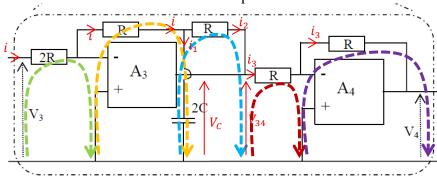
$$H_{bf}(p) = \frac{\theta_s(p)}{\theta_e(p)} = \frac{\frac{500}{(1+0.075p)p}}{1 + \frac{500}{(1+0.075p)p}} = \frac{500}{p+0.075p^2+500} = \frac{1}{1 + \frac{1}{500}p + \frac{0.075}{500}p^2}$$
Ce qui donne une pulsation propre : $\omega_0 = \sqrt{\frac{500}{0.075}} \approx 81 \, rad/s$ et $\xi = \frac{1}{2} \frac{1}{500} \, \omega_0 = 0{,}081$

Q7. Conclure quant à son comportement en réponse à un échelon.

Donc très faible facteur d'amortissement ce qui donne tr5% grand et bcp de dépassement ($d_{1\%}$). Réponse indicielle très oscillante.

D'après les abaques de l'exo précédent en prenant $\xi \approx 0.1$: $d_{1\%} \approx 80\%$ et $\omega_0.Tr_{5\%} \approx 30$ donc $Tr_{5\%} \approx 0.37$ s ce qui bcp dans la plupart des applications en robotique.

Il faut corriger le système d'où l'introduction du schéma électrique suivant.



Q8. Etablir la relation entre v4(t) et v3(t) puis la transmittance $\frac{V_4(p)}{V_3(p)}$.

$$V_{3} - 2Ri - V_{-} = 0 \quad \text{avec } V_{-} = V_{+} = 0 \quad \Rightarrow \quad i = \frac{V_{3}}{2R}$$

$$V_{+} - Ri - V_{C} = 0 \quad \Rightarrow \quad i = \frac{-V_{C}}{R}$$

$$V_{C} - Ri_{2} - V_{34} = 0 \quad \Rightarrow \quad i_{2} = \frac{V_{C} - V_{34}}{R}$$

$$V_{34} - Ri_{3} - V_{+} = 0 \quad \text{avec } V_{+} = 0$$

$$V_{+} - Ri_{3} - V_{4} = 0$$

$$V_{+} = -V_{34}$$

Loi de nœuds : $i = i_1 + i_2$ et loi de comportement du condo : $i_1 = 2C \frac{dV_C}{dt}$

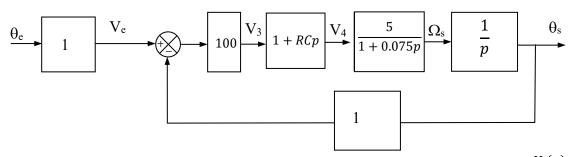
D'où :
$$i = \frac{V_3}{2R} = i_1 + i_2 = 2C \frac{dV_C}{dt} + \frac{V_C - V_{34}}{R} = -C \frac{dV_3}{dt} - \frac{V_3}{2R} + V_4$$

Lycée Claude Fauriel Page 5 sur 6

MPSI/MP2I Exercices modélisation SLCI S2I

Ce qui donne l'équation :
$$V_3 + RC \frac{dV_3}{dt} = V_4$$
 $\Rightarrow \frac{V_4(p)}{V_3(p)} = 1 + RCp$

D'où le nouveau schéma bloc :



Q9. Donner l'expression de la nouvelle transmittance en boucle ouverte $H_{boc}(p) = \frac{V_S(p)}{V_e(p) - V_S(p)} du$ système corrigé. Sachant que $R = 39 \text{ k}\Omega$, calculer la valeur de la capacité C pour que la transmittance en boucle ouverte se réduise à un simple intégrateur.

$$H_{boc}(p) = \frac{V_s(p)}{V_e(p) - V_s(p)} = \frac{500(1 + RCp)}{(1 + 0.075p)p}$$

On veut : $H_{boc}(p)$ de type $\frac{K}{p}$ donc $1 + RCp = 1 + 0.075p \Rightarrow RC = 0.075 \Rightarrow C = \frac{0.075}{R} \approx 1.9.10^{-6} F$

C'est une méthode dite de compensation de pôle

Q10. En déduire l'expression de la nouvelle transmittance en boucle fermée $H_{bfc}(p) = \frac{\theta_s(p)}{\theta_e(p)}$ et caractériser la réponse indicielle du système ainsi corrigé. Conclure sur l'effet de la correction apportée.

$$H_{bfc}(p) = \frac{\theta_s(p)}{\theta_e(p)} = \frac{\frac{500}{p}}{1 + \frac{500}{p}} = \frac{500}{p + 500} = \frac{1}{1 + \frac{1}{500}p}$$

La réponse indicielle est celle d'un premier ordre de gain statique 1 et de temps de réponse $Tr5\% \approx \frac{3}{500} \approx 6 \, ms$ ne présentant aucun dépassement. Le correcteur (appelé montage dérivateur) a rendu le système rapide et très stable.

Lycée Claude Fauriel Page 6 sur 6