Chapitre 11 : Nombres réels et suites numériques

A) Bestiaire des ensembles

- Description des ensembles classiques, $\mathbb{N}, \mathbb{Z}, \mathbb{D}, \mathbb{Q}, \mathbb{R}, \overline{\mathbb{R}}$

B) L'ensemble des nombres réels

- Propriété de la borne supérieure/inférieure sur \mathbb{R} .
- Caractérisation de la borne supérieure (classique et avec des ε .)
- Caractérisation des intervalels de $\mathbb R$ comme les uniques parties convexes de $\mathbb R$.
- Partie entière : ℝ est archimédien, preuve de l'existence de la partie entière (Unicité dans chp inégalités)
- Approximation des réels par les décimaux.
- Parties denses dans $\mathbb R$
- \mathbb{D} , \mathbb{Q} et $\mathbb{R}\setminus\mathbb{Q}$ sont denses dans \mathbb{R} .

C)Généralités sur les suites réelles

- Terme général, famille d'éléments indexés sur \mathbb{N}, \mathbb{N}^* ou $[n_0, +\infty[$
- Définition $\mathbb{R}^{\mathbb{N}}$
- somme, produit, multiplication par un réel d'une suite
- relation d'ordre
- suite majorée, minorée
- suite stationnaire
- Monotonie d'une suite (insistance sur le fait qu'on a besoin de regarder que 2 termes consécutifs)
- 3 méthodes pour prouver qu'une suites est croissante :
 - a) signe $u_{n+1} u_n$
 - b) Si u est strictement positive, position de $\frac{u_{n+1}}{u_n}$ par rapport à 1.
 - c) Etude de fonction.
- Exemples
- Notion d' " à partir d'un certain rang"
 - C) Limite d'une suite réelle
- Suites convergentes : Def, visulation de la définition
- Unicité de la limite
- Toute suite bornée converge
- Opérations sur les limites de suites (convergentes) :
- Produit, produit par un réel, somme, quotient,...
- Divergence vers $\pm \infty$
- Majoration,minoration pour suites divergentes vers $\pm \infty$
- Opérations sur les suites divergentes
- Si u converge vers $l \in \mathbb{R}$ avec a < l < b alors passé un certain rang, $a < u_n < b$.
- Si (u) cv vers l et (v) converge vers l' avec l < l' alors, passé un certain rang $u_n < v_n$.
- Théorème de passage à la limite dans les inégalités (larges)
- Théorème d'encadrement (gendarmes)
- Théorème de divergence vers ±∞
- Théorème de la limite monotone
- Toute suite convergente croissante(resp. décroissante) a son terme général majorée (resp.minoré) par sa limite.
- Def Suites adjacentes
- 2 suite adjacentes (a) et (b) converge vers une même limite l avec $\forall n \in \mathbb{N}, a_n \leq l \leq b_n$.

C) Suites extraites

- Définition extractrices et suites extraites
- Si φ extractrice, $\forall n \in \mathbb{N}, \varphi(n) \geq n$.
- Si une suite converge ses suites extraites converge,t (rec fausse)
- Utilisation de la contraposée de ce résultat pour montrer la divergence d'une suite.
- Si u_{2n} et u_{2n+1} convergent vers une limite l alors u converge vers cette même limite.

- Théorème de Bolzano Weierstrass, démonstration par dichotomie.

D) Caractérisations séquentielles

- Caractérisation séquentielle de la densité.
- Caractérisation séquentielle de la borne supérieure

E) Suites complexes

- Définitions liées aux suites complexes (partie imaginaire, partie réelle, conjugué, module)
- Adaptation des théorèmes précédents aux suites complexes
- Les propriétés dépendant de la relation d'ordre ne sont pas conservées sur C (qui n'a pas de relation d'ordre naturelle).
- Théorème de Bolzano Weierstrass sur les suites complexes.

F) Suites particulières

- Suites géométriques, arithmétiques, arithmético-géométriques
- Suite récurrentes linéaires d'ordre 2, cas complexe et cas réel

Questions de cours :

- Démonstration du théorème de Bolzano Weierstrass par dichotomie (pour alléger un peu la preuve, on pourra admettre que Les suites (a_n) , (b_n) , $n \in \mathbb{N}$ définies par dichotomies successives sont adjacentes.)
- Déterminer le terme général d'une suite arithmético-géométrique et d'une suite récurrente linéaire d'ordre 2 au choix du colleur (on pourra demander le cas complexe ou réel dans le cadre des suites récurrentes linéaires d'ordre 2).
- Preuve de la caractérisation séquentielle de la densité et de la borne supérieure.
- On montrera les 3 propriétés suivantes :
 - a) Si u converge vers $l \in \mathbb{R}$ avec a < l < b alors passé un certain rang, $a < u_n < b$
 - b) Théorème de passage à la limite : Si u est convergente de limite l et $\forall n \in \mathbb{N}, a \leq u_n$ alors $a \leq l$.
 - c) Théorème d'encadrement.