Chapitre 21: Analyse asymptotique

A) Relation de domination, négligeabilité et équivalence

- Définitions, lien entre les différentes relations
- Notations o, O, \sim .
- Opérations sur la manipulation des relations
- Lien entre les différentes relations et le quotient des deux fonctions comparées.
- Traduction des croissances comparées à l'aide de ses relations
- Obtention d'un équivalent par encadrement
- Conservation du signe de la "non-annulation" et de la limite pour les équivalents.

B) Développements limités (en 0)

- Définition du développement limité en 0 à l'ordre $n \in \mathbb{N}$.
- Unicité du développement limité.
- Troncature d'un DL à l'ordre n à l'ordre $k \le n$.
- Utilisation de la parité/imparité des fonctions dans les DL.
- Opérations sur les DL(somme, multiplication par un scalaire, produit et composée).
- Développement limité usuels
- Méthode de DL pour un quotient.

C) Développement limité en un point réel adhérent à l'intervalle de définition de la fonction

- Définition
- Lien avec le DL en 0.

D) Existence de développements limités

- Primitivation de DL
- Formule de Taylor-Young
- Développements limités usuels et leur preuve

Questions de cours :

- Soit $(f, f_1, f_2, g, g_1, g_2, h) \in \mathcal{F}(I, \mathbb{C})^7$, et soit $a \in \mathbb{R}$ adhérent à I, on montrera les résultats suivants :
 - 1) Si $f_1(x) = \underset{x \to a}{o}(g(x))$ et $f_2(x) = \underset{x \to a}{o}(g(x))$ alors $f_1(x) + f_2(x) = \underset{x \to a}{o}(g(x))$.
 - 2) Si $f(x) = o_{x \to a}(g(x))$ alors $f(x)h(x) = o_{x \to a}(g(x)h(x))$.
 - 3) Si $f_1(x) = \underset{x \to a}{o}(g_1(x))$ et $f_2(x) = \underset{x \to a}{o}(g_2(x))$ alors $f_1(x)f_2(x) = \underset{x \to a}{o}(g_1(x)g_2(x))$.
 - 4) Soit $\varphi \in \mathcal{F}(J,I)$ et soit $b \in \mathbb{R}$ adhérent à J. Si $\lim_{x \to b} \varphi(x) = a$ et $f(x) = \underset{x \to a}{o} (g(x))$ alors $f \circ \varphi(x) = \underset{x \to b}{o} (g \circ \varphi(x))$.
- On prouvera les résultats suivants :
 - 1) L'unicité du développement limité à l'ordre n en 0 lorsqu'il existe.
 - **2**) Lien entre la parité/imparité d'une fonction et les coefficients de son DL à l'ordre $n \in \mathbb{N}$ en 0 lorsqu'elle en admet un.

Puis on calculera le DL à l'ordre $n \in \mathbb{N}$ en 0 d'un produit de fonctions usuelles au choix du colleur.

- Preuve de la primitivation d'un développement limité et calcul du développement limité à l'ordre 5 de $x \mapsto \arctan(x)$.
- Preuve de la formule de Taylor-Young (vue Lundi) et application au calul de développement limité de la fonction $x \mapsto \exp(x)$ et $x \mapsto (1+x)^{\alpha}$ et une fonction au choix du colleur.